Climate change and Newtok

26 08 2014

How does this topic relate to the textile industry?   Well, it just so happens that the textile industry is huge – and a huge producer of greenhouse gasses.  The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.  Your textile choices do make a difference – next week we’ll take a look at why.

Newtok is one example of what the United Nations Intergovernmental Panel on Climate Change warns is part of a growing climate change crisis that will displace 150 million people by 2050.

Climate change is impacting Alaska and Arctic areas disproportionately because shiny ice and snow reflect a high proportion of the sun’s energy into space while the exposed rock and water absorb more and more of the sun’s energy, making it even warmer.   Arctic areas, including Alaska, are warming about twice as fast as the rest of the world. In 2012, Arctic sea ice coverage hit the lowest level ever recorded, and by 2040, it is predicted that summer sea ice could be limited to the northern coasts of Greenland and Canada.[1] But the cities and towns of the east coast of the United States are waking up to their own version of climate change – in the form of storm surges from hurricane Sandy. About half of America’s population lives within 50 miles of a coastline.

This video is an Emmy nominated documentary, Melting Point Greenland – winner of the 2013 National Headliners Award First Prize Environmental:

Today, more than 180 native communities in Alaska are facing flooding and losing land as warming temperatures are melting coastal ice shelves and frozen sub-soils, which act as natural barriers to protect villages against summer deluges and ocean storm surges. One of these villages is Newtok, an Eskimo village on the banks of the Ninglick River and home to indigenous Yup’ik Eskimos. The river coils around Newtok on three sides before emptying into the Bering Sea. The river has steadily been eating away at the land, carrying away 100 feet or more in some years, in a process accelerated by climate change.  It is estimated that the local school, on the highest point of land in the village, will be under water by 2017.

There are other changes too: Historically, Newtok would expect snow by October. In early December of 2013, snow had not yet fallen. Residents have told media that geese have been altering migratory patterns that had been unchanged for centuries and moose are migrating into caribou country. Comments Nathan Tom, a Yup’ik villager, “The snow comes in a different timing now. The snow disappears way late. That is making the geese come at the wrong time. Now they are starting to lay their eggs when there is still snow and ice and we can’t go and pick them.  It’s changing a lot. It’s real, global warming, it’s real.” [2]

Permafrost

Newtok may well be the site of some of the planet’s first climate refugees.

“Climate refugee” usually refers to a people displaced from their homes by the impact of a changing climate – although the strict definition of a refugee in international law is more narrow – including people displaced by war, violence or persecution, but not environmental changes.

The first image that usually springs to mind for climate refugees are small tropical islands in the Pacific or of a low-lying delta like those in Bangladesh, where inhabitants have been forced out of their homes by sea-level rise. But given the rapidity of the changes in the Arctic regions, this image is about to become more diverse.

But as with most things these days, the variables are complex: As applied to Newtok, the term “climate refugees” is somewhat ironic, given that the Yup’ik were nomadic by nature, migrating over the permafrost.  In the 1950s the U.S. government told the Yup’ik that their nomadic lifestyle was no longer acceptable, they had to settle in one location so their children could go to school.  The Yup’ik begrudgingly accepted, settling in Kayalavik, a village of sod huts, farther north.

When Alaska became a state in 1959, federal officials began to pressure the Yup’ik to relocate, as the Kayalavik village was harder for supply barges to access.  Eventually the ill-fated decision was made to relocate the tribe to Newtok — a seasonal stopping place for the tribe’s late-summer berry picking.

“The places are often where they are because it was easy to unload the building materials and build the school and the post office there,” said Larry Hartig, who heads the state’s Commission on Environmental Conservation. “But they weren’t the ideal place to be in terms of long-term stability and it’s now creating a lot of problems that are exacerbated by melting permafrost and less of the seasonal sea ice that would form barriers between the winter storms and uplands.”[3]

The U.S. Army Corps of Engineers has estimated that moving Newtok could cost $130 million. Twenty-six other Alaskan villages are in immediate danger, with an additional 60 considered under threat in the next decade, according to the corps. But as the villagers of Newtok are discovering, recognizing the gravity of the threat posed by climate change – and responding in time are two very different matters. Since the first meeting in December 2007, at which the villagers held the first public meeting about the move, little has been done, tethered to a dangerous location by bureaucratic obstacles and lack of funds.

 

 

 

[1] http://wwf.panda.org/what_we_do/where_we_work/arctic/what_we_do/climate/

[2]http://www.dailytech.com/Government+Creates+Global+Warming+Refugee+Crisis+in+Alaska/article31546.htm

[3] http://www.theguardian.com/environment/interactive/2013/may/13/newtok-alaska-climate-change-refugees





Climate change and extreme weather

23 04 2012

I just saw this powerful video based on a recent editorial by Bill McKibben  in the Washington Post on May 23, 2011.   Narritation is  by Stephen Thomson of Plomomedia.com, who accompanies the piece with striking footage of the events Bill wrote about.





Bioplastics – are they the answer?

16 04 2012

From Peak Energy blog; August 27, 2008

From last week’s blog post, we discussed how bio based plastics do indeed save energy during the production of the polymers, and produce fewer greenhouse gasses during the process.  Yet right off the bat, it could be argued that carbon footprints may be an irrelevant measurement,  because it has been established that plants grow more quickly and are more drought and heat resistant in a CO2 enriched atmosphere!   Many studies have shown that worldwide food production has risen, possibly by as much as 40%, due to the increase in atmospheric CO2 levels.[1] Therefore, it is both ironic and a significant potential problem for biopolymer production if the increased CO2 emissions from human activity were rolled back, causing worldwide plant growth to decline. This in turn would greatly increase the competition for biological sources of food and fuel – with biopolymers coming in last place.[2]  But that’s probably really stretching the point.

The development of bioplastics holds the potential of renewability, biodegradation, and a path away from harmful additives. They are not, however, an automatic panacea.  Although plant-based plastics appeal to green-minded consumers thanks to their renewable origins,  their production carries environmental costs that make them less green than they may seem.  It’s important to remember that bioplastics, just like regular plastics, are synthetic polymers; it’s just that plants are being used instead of oil to obtain the carbon and hydrogen needed for polymerization.

It’s good marketing, but bad honesty, as they say, because there are so many types of plastics and bioplastics that you don’t know what you’re getting in to;  bioplastics are much more complicated than biofuels.  There are about two dozen different ways to create a bioplastic, and each one has different properties and capabilities.

Actually the term “bioplastic” is pretty meaningless, because some bioplastics are actually made from oil – they’re called “bioplastics” because they are biodegradeable.  That causes much confusion because plastics made from oil can be biodegradeable whereas some plant-based  bioplastics are not. So the term bioplastics can refer either to the raw material (biomass) or, in the case of oil-based plastic, to its biodegradability.  The problem with biodegradability and compostability is that there is no agreement as to what that actually means either,  and under what circumstances

You might also see the term “oxo-degradable”.   Oxo-degradables look like plastic, but they are not. It is true that the material falls apart, but that is because it contains metal salts which cause it to disintegrate rapidly into tiny particles. Then you cannot see it anymore, but it is still there, in the ocean too. Just as with conventional plastics, these oxo-degradables release harmful substances when they are broken down.

Let’s re-visit  some of the reasons bioplastics are supposed to be an environmental benefit:

  • Because it’s made from plants, which are organic, they’re good for the planet.  Polymer bonds can be created from oil, gas or plant materials. The use of plant materials does not imply that the resulting polymer will be organic or more environmentally friendly. You could make non-biodegradable, toxic plastic out of organic corn!
  • Bioplastics are biodegradable. Although made from materials that can biodegrade, the way that material is turned into plastic  makes it difficult (if not impossible) for the materials to naturally break down.  There are bioplastics made from vegetable matter (maize or grass, for example) which are no more biodegradable than any other plastics, says Christiaan Bolck of Food & Biobased Research.[3]  Bioplastics do not universally biodegrade in normal conditions  –  some require special, rare conditions to decompose, such as high heat composting facilities, while others may simply take decades or longer to break down again, mitigating the supposed benefits of using so-called compostable plastics material. There are no independent standards for what even constitutes “biodegradable plastic.”  Sorona makes no claim to break down in the environment; Ingeo is called “compostable” (though it can only be done in industrial high heat composters). Close studies of so-called degradable plastics have shown that some only break down to plastic particles which are so small they can’t be seen  (“out of sight, out of mind”), which are more easily ingested by animals. Indeed, small plastic fragments of this type may also be better able to attract and concentrate pollutants such as DDT and PCB.[4]
  • Bioplastics are recyclable. Because bioplastics come in dozens of varieties, there’s no way to make sure you’re getting the right chemicals in the recycling vat – so although some bioplastics are recyclable, the recycling facilities won’t separate them out.  Cargill Natureworks insists that PLA  can in theory be recycled, but in reality it is likely to be confused with polyethylene terephthalate (PET).  In October 2004, a group of recyclers and recycling advocates issued a joint call for Natureworks to stop selling PLA for bottle applications until the recycling questions were addressed.[5]  But the company claims that levels of PLA in the recycling stream are too low to be considered a contaminant.  The process of recycling bioplastics is cumbersome and expensive – they present a real problem for recyclers because they cannot be handled using conventional processes. Special equipment and facilities are often needed. Moreover, if bioplastics commingle with traditional plastics, they contaminate all of the other plastics, which forces waste management companies to reject batches of otherwise recyclable materials.
  • Bioplastics are non-toxicBecause they’re not made from toxic inputs (as are oil based plastics), bioplastics have the reputation for being non toxic.  But we’re beginning to see the same old toxic chemicals produced from a different (plant-based) source of carbon. Example:  Solvay’s bio-based PVC uses phthalates,  requires chlorine during production, and produces dioxins during manufacture, recycling and disposal. As one research group commissioned by the European Bioplastics Association was forced to admit, with regard to PVC,  “The use of bio-based ethylene is …  unlikely to reduce the environmental impact of PVC with respect to its toxicity potential.[6]

The arguments against supporting bioplastics include the fact that they are corporate owned, they compete with food, they bolster industrial agriculture and lead us deeper into genetic engineering, synthetic biology and nanotechnology.  I am not with those who think we shouldn’t go there, because we sorely need scientific inquiry  and eventually we might even get it right.  But, for example, today’s industrial agriculture is not, in my opinion, sustainable, and the genetic engineering we’re doing is market driven with no altruistic motive. 

If properly designed, biodegradable plastics have the potential to become a much-preferred alternative to conventional plastics. The Sustainable Biomaterials Collaborative (SBC)[7] is a coalition of organizations that advances the introduction and use of biobased products. They seek to replace dependence on materials made from harmful fossil fuels with a new generation of materials made from plants – but the shift they propose is more than simply a change of materials.  They promote (according to their website): sustainability standards, practical tools, and effective policies to drive and shape the emerging markets for these products.  They also refer to “sustainable bioplastics” rather than simply “bioplastics”.  In order to be a better choice, these sustainable bioplastics must be:

  • Derived from non-food, non-GMO source materials – like algae rather than GMO corn, or from sustainably grown and harvested cropland or forests;
  • Safe for the environment during use;
  • Truly compostable and biodegradable;
  • Free of toxic chemicals during the manufacturing and recycling process;
  • Manufactured without hazardous inputs and impacts (water, land and chemical use are considerations);
  • Recyclable in a cradle-to-cradle cycle.

Currently, manufacturers are not responsible for the end-life of their products. Once an item leaves their factories, it’s no longer the company’s problem. Therefore, we don’t have a system by which adopters of these new bioplastics would be responsible for recovering, composting, recycling, or doing whatever needs to be done with them after use. Regarding toxicity, the same broken and ineffective regulatory system is in charge of approving bioplastics for food use, and there is no reason to assume that these won’t raise just as many health concerns as conventional plastics have. Yet again, it will be an uphill battle to ban those that turn out to be dangerous.

A study published in Environmental Science & Technology traces the full impact of plastic production all the way back to its source for several types of plastics.[8]   Study author Amy Landis of the University of Pittsburgh says, “The main concern for us is that these plant-derived products have a green stamp on them just because they’re derived from biomass.  It’s not true that they should be considered sustainable. Just because they’re plants doesn’t mean they’re green.”

The researchers found that while making bioplastics requires less fossil fuel and has a lower impact on global warming, they have higher impacts for eutrophication, eco-toxicity and production of human carcinogens.  These impacts came largely from fertilizer use, pesticide use and conversion of lands to agricultural fields, along with processing the bio-feedstocks into plastics, the authors reported.

According to the study, polypropylene topped the team’s list as having the least life-cycle impact, while PVC and PET (polyethylene terephthalate) were ranked as having the highest life-cycle impact.

But as the Plastic Pollution Coalition tells us, it’s not so much changing the material itself that needs changing – it’s our uses of the stuff itself.  We are the problem:   If we continue to buy single-use disposable objects such as plastic bottles and plastic bags, with almost 7 billion people on the planet, our throwaway culture will continue to harm the environment, no matter what it’s made of.

The Surfrider Foundation

The Surfrider Foundation has a list of ten easy things you can do to keep plastics out of our environment:

  1. Choose to reuse when it comes to  shopping bags and bottled water.  Cloth bags and metal or glass reusable  bottles are available locally at great prices.
  2. Refuse single-serving packaging, excess  packaging, straws and other ‘disposable’ plastics.  Carry reusable utensils in your purse, backpack or car to use at bbq’s, potlucks or take-out  restaurants.
  3. Reduce everyday plastics such as sandwich bags and juice cartons by replacing them with a reusable lunch bag/box that includes a thermos.
  4. Bring your to-go mug with you to the coffee shop, smoothie shop or restaurants that let you use them. A great  way to reduce lids, plastic cups and/or plastic-lined cups.
  5. Go digital! No need for plastic cds,  dvds and jewel cases when you can buy your music and videos online.
  6. Seek out alternatives to the plastic  items that you rely on.
  7. Recycle. If you must use plastic, try to choose #1 (PETE) or #2 (HDPE), which are the most commonly recycled      plastics. Avoid plastic bags and polystyrene foam as both typically have very low recycling rates.
  8. Volunteer at a beach cleanup. Surfrider Foundation Chapters often hold cleanups monthly or more frequently.
  9. Support plastic bag bans, polystyrene  foam bans and bottle recycling bills.
  10. Spread the word. Talk to your family and friends about why it is important to Rise Above Plastics!

[1] See for example: Idso, Craig, “Estimates of Global Food Production in the year 2050”, Center for the Study of Carbon dioxide and Global Change, 2011  AND  Wittwer, Sylvan, “Rising Carbon Dioxide is Great for Plants”, Policy Review, 1992  AND  http://www.ciesin.org/docs/004-038/004-038a.html

[2] D. B. Lobell and C. B. Field, Global scale climate-crop yield relationships and the impacts of recent warming, Env. Res. Letters 2, pp. 1–7, 2007 AND L. H. Ziska and J. A. Bunce, Predicting the impact of changing CO2 on crop yields: some thoughts on food, New Phytologist 175, pp. 607–618, 2007.

[3] Sikkema, Albert, “What we Don’t Know About Bioplastics”, Resource, December 2011; http://resource.wur.nl/en/wetenschap/detail/what_we_dont_know_about_bioplastics

[4] Chandler Slavin, “Bio-based resin report!” Recyclable Packaging Blog May 19, 2010 online at http://recyclablepackaging.wordpress.com/2010/05/19/bio-based-resin-report

[6] L. Shen, “Product Overview and Market Projection of Emerging Bio- Based Plastics,” PRO-BIP 2009, Final Report, June 2009





Is it sustainable just because we’re told it is?

22 09 2010

I just tried to find out more about Project UDesign,   a competition sponsored by the Savannah College of Art and Design (SCAD), Cargill, Toray Industries and Century Furniture.  The goal is to produce a chair that is both “sustainable and sellable.”  It is targeted to be the next “ eco friendly wing chair” on the market, with the goal of educating the industry and consumers on the topic of sustainable furniture design.[1] Century Furniture has pledged to put the winning chair into production.

Since criteria for the chair design is limited to the use of Cargill’s BiOH® polyols soy foam and Toray’s EcoDesign™ Ultrasuede® upholstery fabric we would like to help Project UDesign reach their goal of educating us on sustainable furniture design by explaining why we think these two products cannot be considered a sustainable choice .  In fact, by sponsoring this competition and limiting the student’s choices to Cargill’s BiOH® polyols (“soy”)  foams and Toray’s EcoDesign™ Ultrasuede® fabrics, it sends absolutely the wrong message to the students and the public about what constitutes an “eco friendly” choice.

So, let’s take a look at these two products to find out why I’m in such a dither:

Beginning with soy foam:   the claim that soy foam is a green product is based on two claims:

  1. that it’s made from soybeans, a renewable resource
  2. that it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based, contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that soy accounts for  only 10% of the foam’s total volume. Why?  Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in 40/60 ratios (40% is the high end for BiOH® polyols used, it can be as low as 5%), “20% soy based” translates to 20% of the polyol portion, or 20% of the 40% of polyols used to make the foam. In this example the product remains 90% polyurethane foam  ‘based’ on fossil fuels, 10% ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.  In the graphic below, “B-Component” represents the polyol portion of polyurethane, and the “A-Component” represents the isocyanate portion of the polyurethane:

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.   But because the soy based polyols represent only about 10% of the final foam product, the true energy reduction is only about 4.6% rather than 23%, which is what Cargill leads you to believe in their LCA, which can be read here.   But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet, so this couldn’t be what is fueling my outrage.

The real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a   ” greenhouse gas-spewing petroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock of Upholstery Arts.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops (GMO), appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon” ) on what they consider to be a driving force behind  Amazon rain forest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly” (a white paper by Upholstery Arts),  another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer-causing toluene diisocyanate (TDI). So it remains ‘business as usual’ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH® polyols are not more biodegradable than traditional petroleum-based cushioning”.[2] Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy-derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

As Len Laycock says, “While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale.  As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”

If you’re still with us, lets turn our attention to Toray’s Ultrasuede, and their green claims.

Toray’s green claim for Ultrasuede is that it is based on new and innovative recycling technology, using their postindustrial polyester scraps, which cuts both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters.

If that is the only advance in terms of environmental stewardship, it falls far short of being considered an enlightened choice, as I’ll list below.

If we  look at the two claims made by the company:

  1. Re: energy reduction:  If we take Toray’s claim that it takes just 25 MJ of energy[3] to produce 1 KG of Ultrasuede – that’s still far more energy than is needed to produce 1 KG of organic hemp or linen (10 MJ), or cotton (12 MJ) – with none of the benefits provided by organic agriculture.
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide, acetaldehyde and 1,4-dioxane (also potentially carcinogenic).

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with its EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  6. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
      1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
      2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
      3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
      4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise unsaleable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is disingenuous. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:  plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7]

We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

[1] Cargill press release, July 20, 2010  http://www.cargill.com/news-center/news-releases/2010/NA3031350.jsp

[2] http://www.bioh.com/bioh_faqs.html

[3] If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ (data from “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute) , and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede®

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill





Is Ultrasuede® a “green” fabric?

8 09 2010

In 1970, Toray Industries colleagues Dr. Toyohiko Hikota and Dr. Miyoshi Okamoto created the world’s first micro fiber as well as the process to combine those fibers with a polyurethane foam into a non-woven structure – which the company trademarked as Ultrasuede®.

In April 2009,  Toray announced “a new  environmentally responsible line of products which are based on innovative recycling technology”, called EcoDesign™.    An EcoDesign™ product, according to the company press release, “captures industrial materials, such as scrap polyester films, from the Toray manufacturing processes and recycles them for use in building high-quality fibers and textiles.”

One of the first EcoDesign™ products to be introduced by Toray is a variety of their Ultrasuede®  fabrics.

So I thought we’d take a look at Ultrasuede® to see what we thought of their green claims.

The overriding reason Toray’s EcoDesign™ products are supposed to be environmentally “friendly” is because recycling postindustrial polyesters reduces both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters, according to Des McLaughlin, executive director of Toray Ultrasuede (America).   (Conventional recycling of polyesters generally state energy savings of between 33% – 53%.)

If that is the only advance in terms of environmental stewardship, we feel it falls far short of being considered an enlightened choice.  If we just look at the two claims made by the company:

  1. Re: energy reduction:  If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ[1], and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede® –  still far more energy than is needed to produce 1 KG of organic hemp (2 MJ), linen (10 MJ), or cotton (12 MJ).
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[2] acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[3]

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with it’s EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  1. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
    1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
    2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
    3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
    4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise un-useable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is  premature. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:     indeed plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7] We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

We’ve said it before and we’ll say it again:  The trend to eco consciousness in textiles represents major progress in reclaiming our stewardship of the earth, and in preventing preventable human misery.  You have the power to stem the toxic stream caused by the production of fabric. If you search for and buy an eco-textile, you are encouraging a shift to production methods that have the currently achievable minimum detrimental effects for either the planet or for your health. You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles do exist and they give you a greener, healthier, fair-trade alternative.

What will an eco-textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.


[1]“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute

[2] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[3] Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill





Plastics – part 2: Why recycling is not the answer

5 05 2010

In Plastics, Part 1 (last week’s post; click here to read it) I tried to give a summary of why plastics are not such a good thing.  The Plastic Pollution coalition has a list of basic concepts about plastic.  Click here to read the expanded version:

  • Plastic is forever
  • Plastic is poisoning our food chain
  • Plastic affects human health
  • Recycling is not a sustainable solution

Yet there seems to be no end to our demand for plastics.   In one year alone, from 1995 – 96, plastic packaging increased by 1,000,000,000 lbs.  And despite recycling efforts, for every 1 ton increase in plastic recycling, there was a 14 ton increase in new plastic production.

I tried to explain some of the roadblocks to plastic recycling efforts.   We have all heard that recycling is good for the environment,  and it’s hard to argue with the intuitively correct reasoning that if we recycle we reduce our dependence on foreign oil, we conserve energy and emissions and we keep bottles out of the landfills.

And what about the lighter weight of plastic bottles?  Surely there are benefits in shipping lighter weight bottles  – giving plastic bottles a lower overall carbon footprint?  Well, here’s the thing:  there are environmental trade offs, just like in life.  Even if we accept that plastics are more carbon efficient than alternative materials (glass) in transportation, we’re still talking about vast amounts of carbon emissions.  Plastics use releases at least 100 million tons of CO2 – some say as much as 500 million tons – into the atmosphere each year.  That’s the equivalent of the annual emissions from 10 – 45% of all U.S. drivers.  Plastic manufacturing also contributes 14% of the national total of toxic (i.e., other than CO2) releases to our atmosphere; producing a 16 oz PET bottle generates more than 100 times the amount of toxic emissions than does making the same size in glass.  But the critical point is that it’s definitely cheaper to ship liquids in plastic rather than in glass.  And it’s also cheaper for manufacturers to use virgin plastic than a recycled plastic.

These rather alarming CO2 numbers could be much lower, we understand, if only Americans recycled more than the paltry 7% of plastic which is recycled today.  We could cut our usage of virgin material by one third – and that means an annual savings of 30 to 150 million tons of CO2.

So why aren’t Americans recycling more?  Although our plastic consumption has grown by a factor of 30 since the 1960s, recycling has grown by a factor of just two.  Is this just because we don’t take the time to separate recyclable plastics from general waste, or because we don’t take the time to throw the bottle into the proper recycling bin?  What about companies that use the plastic – they are not clamoring to spend more to use recycled plastic (again that bugaboo “cost”) so they continue to demand virgin plastic.

When Rhode Island enacted comprehensive recycling legislation in 1986, including bans on plastic bottles – the plastic industry responded by introducing their resin codes, in part (some say) to deflect attention from the virgin polyester production and encourage an environmental spin on the plastics.  The plastics industry’s  “chasing arrows” symbol surrounding a number (those resin codes) were “deliberately misleading” according to Daniel Knapp, director of Berkeley’s Urban Ore.  “The plastics industry has wrought intentional confusion with that symbol”, said Bill Sheehan, director of GrassRoots Recycling Network.  Unlike glass and aluminum, plastic has no system for recycling – no infrastructure to sell it, no markets to buy it, no facilities to make it.  “In short, the arrows led nowhere.”(1)

According to many, these codes just gave plastic an environmental patina, which the industry was quick to use.  “Several states have postponed or backed off from restrictive packaging legislation as a result of the voluntary coding system” – this gleeful statement from a 1988 newsletter of the Council on Plastics and Packaging in the Environment.

The industry’s critics say that it won’t do anything to support recycling.  Mel Weiss, an independent plastics broker, sees the industry focused on PR and not at all interested in recycling.  He says:  “the American Plastics Council (APC), a trade group representing virgin-resin producers, won’t do anything to support recycling. If they had a choice between selling one pound of virgin and 22 tons of recycled, they’d sell the virgin. All they’re doing is masking what they’re doing with an expensive ad campaign.”

Here’s the irony:  it was the veneer of recyclability – cultivated by the plastics industry – that led to this explosion of plastic use.

The plastics industry, spearheaded by the American Plastics Council (APC), has sponsored campaigns to convince the public that recycling is easy, economical and a big success.  They are a “responsible choice in a more environmentally conscious world”, according to the APC.  Between November 1992 and July 1993, the APC spent $18 million in a national advertising campaign to “Take Another Look at Plastics.” (Environmental Defense Fund, October 21, 1997, “Something to hide: The sorry state of plastics recycling.”)  Examples of how plastics “leave a lighter footprint on the planet” include the argument that plastic grocery bags are lighter and create less waste by volume than paper sacks, the industry said. And the fact that plastics are so lightweight and durable enables manufacturers to use less energy and generate less waste in production processes, plastic promoters said.

In addition to the American Plastics Council, the American Chemical Council (ACC) also spends millions to defend the chemicals produced by their members to make plastics. – including lobbying against any bills that would add a few cents to each bag or bottle to encourage returns and recycling efforts.    According to Lisa Kaas Boyle, Board Member of Heal the Bay, the ACC has hired the same advisors who defended the tobacco industry to formulate a strategy to promote and defend the petrochemical industry.  That strategy is based on preventing legislation to curtail single use plastics  (SUPs – i.e., soda bottles etc.) and to generate positive press on the promotion of recycling as the solution to plastic pollution.  This approach makes the industry look environmental while continuing with business as usual.

Because most manufacturers don’t take back their products, there’s often little opportunity to sell collected plastic. It is true that the West Coast  is blessed with domestic and overseas markets that have made recycling of #1 and #2 plastics – soda bottles and milk jugs – somewhat easier. But even here, metals and paper are the real money-makers.

“Plastics is the least profitable part of the business,” said Kevin McCarthy, regional recycling manager at Waste Management Inc.,  “and it may not even be fair to say that it is profitable at all.”

Like McCarthy’s operation, many recyclers will collect plastic only to meet contractual requirements from government agencies. The impetus to collect certain types of plastic comes from residents. But these plastics often have no market for reuse. Recyclers call it “junk plastic,”  – stuff that gets collected only “because residents wanted it collected because they watched the commercials on TV extolling the recyclability of plastic,” said one recycling official who insisted on anonymity.

In Europe, plastic recycling rates hover around 16.5%, largely because there are strict regulations from Europe’s “End of Life Directive”, in which manufacturers must take more responsibility for the processing of waste from their products.  In the U.S., efforts come largely from voluntary programs within companies, such as Wal Mart’s campaign to reduce the size of packages and increase their use of recycled materials.   The  U.S. government is highly unlikely to enact recycling legislation.  We in Seattle  voted last summer on a citizen sponsored plastic bag tax (we called it a fee)  of $0.20 per disposable bag coupled with a ban on Styrofoam.  The American Chemistry Council spent more than $1.4 million to defeat the bill – and they succeeded.

One aspect of recycling which is little known to consumers is the fact that almost all of the plastics we recycle, regardless of type, end up in China, where worker safety standards are virtually nonexistent and materials are sorted and processed under dirty, primitive conditions. The economics surrounding plastic recycling — unlike those for glass and aluminum — make it a dubious venture for U.S. companies.

(1)  Dan Rademacher, “Manufacturing a Myth: The plastics recycling ploy”, Terrain Magazine, Winter 1999





Volatile Organic Compounds (VOCs)

17 03 2010

What are Volatile Organic Compounds (VOC’s) that we hear so much about?

Simply, they are chemicals which are carbon-based (hence the “organic” in the name, as organic chemistry is the study of carbon containing compounds) and which volatilize – or rather, evaporate or vaporize – at ordinary (atmospheric) temperatures.  This is a very broad set of chemicals!

These volatile organic compounds (VOC’s) are ubiquitous in the environment.  You can’t see them, but they’re all around us.  They’re not  listed as ingredients on the products you bring home, but they’re often there.   The most common VOC is methane, which comes from wetlands and rice agriculture to …well, “ruminant gases” (or cow farts – which are actually not a trivial consideration:  cows are responsible for 18% of all greenhouse gasses – read more here).  We ourselves contribute to CO2 emissions each time we breathe out.  They’re also in paint, carpets, furnishings, fabrics and cleaning agents.

The evaporating chemicals from many products contribute to poor indoor air quality, which the U.S. Environmental Protection Agency estimates is two to five times worse than air outside – but concentrations of VOC’s can be as much as 1,000 times greater indoors than out.  These chemicals can cause chronic and acute health effects, while others are known carcinogens.   Hurricane Katrina proved a lesson in what happens when we don’t pay attention to indoor air quality:  The trailers which were provided to refugees of Katrina proved, in a test done by the Centers for Disease Control and Prevention, to have formaldehyde levels that were 5 times higher than normal; with some levels as high as 40 times higher.  Other airborne contaminants were found to be present.  The result? This is from Newsweek, November 22, 2008:

”  …the children of Katrina who stayed longest in ramshackle government trailer parks in Baton Rouge are “the sickest I have ever seen in the U.S.,” says Irwin Redlener, president of the Children’s Health Fund and a professor at Columbia University’s Mailman School of Public Health. According to a new report by CHF and Mailman focusing on 261 displaced children, the well-being of the poorest Katrina kids has “declined to an alarming level” since the hurricane. Forty-one percent are anemic—twice the rate found in children in New York City homeless shelters, and more than twice the CDC’s record rate for high-risk minorities. More than half the kids have mental-health problems. And 42 percent have respiratory infections and disorders that may be linked to formaldehyde…”

There is no clear and widely supported definition of a VOC.   Definitions vary depending on the particular context and the locale.  In the U.S., the EPA defines a VOC as any compound of carbon (excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates  and ammonium carbonate)  which reacts with sunlight to create smog  –   but also includes a list of dozens of exceptions for compounds “determined to have negligible photochemical reactivity.” 

Under European law, the definition of a VOC is based on evaporation into the atmosphere, rather than reactivity, and the British coatings industry has adopted a labeling scheme for all decorative coatings to inform customers about the levels of organic solvents and other volatile materials present. Split into five levels, or “bands”, these span minimal, low, medium, high, and very high.

These differences in definition have led to a lot of confusion.  Especially in the green building community, we think of VOCs as contributors to indoor air quality (IAQ) problems—and the amount of VOCs is often our only IAQ metric for a product. But there are lots of compounds that meet a chemist’s definition of VOC   but are not photoreactive (as in the EPA definition)  so are not defined as VOCs by regulators. Some of these chemicals—including formaldehyde, methyl chloride, and many other chlorinated organic compounds—have serious health and ecological impacts.  Manufacturers can advertise their products as being “low-VOC” – while containing extremely toxic  volatilizing chemicals, such as perchloroethane in paint, which is not listed as a VOC by the EPA and therefore not required to be listed!

The Canadian government  (bless em) has an extensive list of which chemicals are considered VOC’s and you can access it here.  When products are identified as to which might contain VOC’s, furnishings are often cited and formaldehyde is the chemical highlighted, because it’s the chemical used most widely in fabric finishes.  However, there are many other chemicals on the list which are used in textile production, such as benzenes and benzidines;  methylene chloride, tetrachloroethylene, toluene and pentachlorophenol.

Some manufacturers advertise the amount or type of VOC in their products – and that may or may not be a good indication of what is actually released into the air, because sometimes these chemicals morph into something new as they volatilize.  The key word to remember is: reactive chemistry.  The chemicals don’t exist in a vacuum – heat, light, oxygen and other chemicals all have an effect on the chemical.

VOC’s are also found in our drinking water – the EPA estimates that VOC’s are present in 1/5 of the nation’s water supplies.  They enter the ground water from a variety of sources  – from textile effluents to oil spills.  The EPA lists VOC’s currently regulated in public water supplies (see that list here); they have established a maximum contaminant level (MCL) for each chemical listed.  But little is known about the additive effects of these chemicals.

Another point to remember is that the evaporation doesn’t happen in a pouf!  Chemicals evaporate over time – sometimes over quite long periods of time.  The graph below is of various evaporating chemicals at ground zero (GZ)  of the World Trade Center after the September 11 attacks:

For indoor air quality purposes we should look to results from chamber testing protocols that analyze key VOC’s individually.  Most of these protocols – such as California’s Section 01350, GreenGuard for Children and Schools, Indoor Advantage Gold and Green Label Plus – reference California’s list of chemicals for which acceptable exposure limits have been established.  But even this is not a comprehensive list.

Indoor air quality is certainly important, but in the case of fabrics there are many chemicals used in production which do not volatilize and which are certainly not beneficial to human health!  These include the heavy metals used in dyestuffs and many of the polymers (such as PVC).  So VOC considerations are just one part of the puzzle in evaluating a safe fabric.








Follow

Get every new post delivered to your Inbox.

Join 1,243 other followers