Green Revolution part 2

22 06 2011


“It is well that thou givest bread to the hungry, better were it that none hungered and that thou haddest none to give.”
– St. Augustine

Last week we posted Josh Viertel’s article about the false premise that Deutsche Bank and Monsanto used in finding ways to feed the world’s burgeoning population and end hunger.  They focused on increasing crop yields:   Monsanto wants to use genetically modified crops and Deutsche Bank wants to invest in industrial agriculture in the Third World and shift the emphasis to commodity agriculture.

But Mr. Viertel says:

 Hunger is not a global production problem. It is a global justice problem. We need to increase global equity, not global yields. There may be profit to be made in exporting our high-tech, input-reliant, greenhouse-gas-emitting agricultural systems to the developing world. But let us not pretend it will solve global hunger or address climate change. After all, high-tech, input-reliant, commodity agricultural is a major cause of global hunger and climate change.

That’s a lot to swallow.  Let’s look at how today’s high tech agriculture can be considered a major cause of hunger, and then we’ll look at why hunger can be considered a global justice problem.

With regard to the oft repeated accusations that commodity agriculture has resulted in an increase in global hunger, I think  Sharon Astyk’s article in the online Energy Bulletin, (click here to read it)  is so important  that I’ve reproduced most of it below:

While the Green Revolution increased grain yields, it also cut back on other food sources. For example, among rice eating people, the pesticides required for the cultivation of the miracle rices produced in the 1960s killed fish and frogs that provided much of the protein in the diets of rice eating people, resulting in, as Margaret Visser points out in Much Depends on Dinner, “…the sadly ironic result that ‘more rice’ could mean ‘worse nutrition.’ The same can be said of the loss of vegetables often grown in and at the edges of rice paddies. The famous “golden rice” that was supposed to alleviate blindness due to Vitamin A deficiency, a common problem among poor people who have little but rice to eat, ignored the fact that one of the reasons for the decline in Vitamin A consumption was that nutritious vegetables and weeds traditionally grown or harvested with rice were no longer available.

The same is true of food grown in the US, in our very own breadbasket. As our corn and wheat and soybeans were produced by larger and larger farms, with more and more industrial equipment, we began to stop producing other, smaller crops that were less amenable to industrialization, but that made up a significant portion of people’s diets. For example, virtually every farm family in the US had a garden in the first half of the 20th century, and most of those gardens produced most or all of the family’s vegetables. Since we’re talking about a time when 1/3-1/5 of the US population lived on farms,  that is an enormous quantity of produce. The significance of gardens is easy to underestimate, but it would be an error to do so. During World War II, 40% of the nation’s produce was grown in house gardens. The figures were higher in Britain during the same period. In the late 1990s, a study done by the Louisiana Extension service suggested that the average house vegetable garden produced $350 worth of produce. Food produced in gardens was a significant part of our dietary picture not so very long ago, and much of it was lost to industrial agriculture, either directly, in the consolidation of family farms, or indirectly, through agricultural subsidies that made purchased food often nearly as cheap as growing your own, and even social policies that encouraged suburbs to become places of lawns, not vegetable gardens.

House gardens in rural areas, urban centers, and suburbs are another casualty of the Green Revolution – the artificial cheapness of food, created by industrial, subsidized agriculture in the second half of the 20th century drove the house garden out of existence. We went from producing 40% of our produce to less than 3% in home garden over four decades. And it would be a mistake to see “produce” as watery vegetables like lettuce, and thus believe that few of our calories came from our gardens – among the vegetables lost were dense calorie crops like potatoes and sweet potatoes, which can substitute for grains in the diet.

Going back to what the Green Revolution, and its ugly step-child globalization did to the American farm family – the exhortation by Earl Butz (Secretary of Agriculture under Presidents Nixon and Ford) to “get big or get out” in the 1970s, and the systematic farm policies that favored large commodity growers and regional specialization cut back enormously on the quantity of food we produced. Small farmers in the 1940s might have raised corn or wheat as their central crop, but they also grew gardens, had an orchard, raised some pigs for sale and milked a house cow. The loss of all that food value, spread over millions of farm families, was a significant one. A farmer might have tapped his sugar maple trees and sold the syrup, and would probably have sold some eggs. He might also have sold a pig to a neighbor or had a calf butchered and shared the meat. The industrial commodity farmer rarely does these things, and in many cases, the area that permitted them – the woodlot, the barn, the chicken coop have been removed to allow unhindered access to more acres. In a bad crop year, a farmer might have planted a late crop of sunflowers for oil seed, lettuce or something else, which is also not calculated into our total consumption. In many cases a family member might also operate a small truck garden and sell produce locally – even children did this routinely.

All these are foods that were removed from the food stream, and this systematic deprivation over millions of households represents an enormous loss of total calories produced.

The economic pressure of farms to specialize also took its toll. Joan Dye Gussow, in This Organic Life documents that in the 1920s, Montana was self-sufficient for 75% of its produce, including fruit. Now Montana is one of the harshest climates in the US and has very little water, comparatively speaking, and yet this was possible in part because the economic pressure of big business had not yet persuaded small farmers that they couldn’t grow fruit effectively in Montana, but should leave it to Washington and Florida. None of us know how many calories were lost this way, but it is almost certainly an enormous quantity. And this systematic removal in the name of efficiency and specialization happened all over the world to one degree or another.

All this is particularly important because of the urgent distinction between yield and output. Dr. Peter Rosset, former Director of Food First/The Institute for Food and Development Policy and an internationally renowned expert on food security, has documented that industrial agriculture is, in fact, more efficient in terms of yield. ( That is, when five acres of soybeans and five thousand acres of soybeans are compared, you get more soybeans per acre by growing 5000 acres.)  But when you compare output – that is the total amount of food, fertility and fiber you get from small scale polyculture farms (that just means farms where you grow a bunch of different things, not a single commodity), the five acre farm comes out not just ahead, but vastly ahead in per acre output. It isn’t just that five acres are more productive in terms of total output, they are often hundreds of times more productive (Rosset, www.mindfully.org/Farm/Small-Farm-Benefits-Rosset.htm). Rosset’s figures are not in dispute, as Rosset points out here:

Surveying the data, we indeed find that small farms almost always produce far more agricultural output per unit area than larger farms. This is now widely recognized by agricultural economists across the political spectrum, as the “inverse relationship between farm size and output”. Even leading development economists at the World Bank have come around to this view, to the point that they now accept that redistribution of land to small farmers would lead to greater overall productivity. (Note:  to read why Dr. Rosset sees small-farm agriculture as providing a productive, efficient and ecological vision for the future, click here.)

And the difference in total output rises further when you talk about garden models. A half acre garden is often tens or hundreds of times more productive than the same acreage in industrial agriculture. The displacement of house and farm gardens by industrial agriculture represents a dramatic loss in important food crops due to the Green Revolution. On a given acre of land, the Green Revolution might have increased rice or wheat yields by several times, but since the garden, henhouse and berry bushes that could have been on that acre would have been many times more productive in total than what was granted to us by fertilizers and hybridization, what we are experiencing is a net total loss, not a gain in many cases.

In the US, during most the last 50 years, we have had enormous grain surpluses, mostly of corn, and as Michael Pollan documents in The Omnivore’s Dilemma, industrial food production has been challenged to keep finding new ways to use our spare corn up. Processed foods are all sweetened with our extra corn, made of processed corn, or of meat from corn fed to livestock. And we have seen a rise in obesity, type 2 diabetes and heart disease – all associated with high meat, low vegetables, processed food diets. We kept raising our yields, at the cost of our outputs, and our diets came to reflect that – we ate fewer kinds of vegetables and fruits, and fewer of them. To a large degree, what happened was that we gave up foods that we did need to be healthy and have good, varied, tasty diets, and replaced them with a couple of grain crops that we did not particularly need more of, and we harmed ourselves doing so.

I cannot find a single reliable number about how much food was lost to us, worldwide by the Green Revolution. It may never be possible for us to find out what we lost to industrial agriculture, and I will make no claims that I know precisely. If someone can locate such a number, I’d be fascinated. But there is no question that it was enough food to feed millions, maybe even billions of people. And we must, in our analysis of what the Green Revolution cost us, also recognize that we lost an uncertain, but enormous quantity of future food, mortgaging the future to overfeed the present.

As I said, I don’t know whether in the net the Green Revolution gave us more food or not. But it is absolutely clear that it did not give us the enormous increases in food that were claimed for it. And it may well be that all of us experienced a loss of nutritious food, or food value. It is manifestly the case that not only may we not need industrial agriculture to feed us, we may well be better off without it.

In looking at the second issue, global hunger as a social justice problem, we need to remember that in order for farmers to be successful during the Green Revolution, they required the optimal use of irrigation, intensive use of fertilizers, rich soil and proper pest control with chemical pesticides.  These prerequisites, coupled with the increased use of machinery, meant that many peasant farmers were simply too poor to afford the expensive irrigation equipment, the fertilizers and the inordinate amounts of pesticides required.  As a result, these peasant farmers and agricultural laborers were less able to afford the food which was being produced in ever-greater quantities.

These high-yielding varieties allowed the wealthy upper-class owners of farms to prosper, as they were the only group actually able to achieve the advertised high-yields. This eventually led to increased polarization and a widening of the social and economic gap between the lower and upper class of developing nations.

“Introducing any new agricultural technology into a social system stacked in favor of the rich and against the poor-without addressing the social questions of access to the technology’s benefits-will over time lead to an even greater concentration of the rewards from agriculture, as is happening in the United States.”[1]

Why can’t poor farmers compete:

  •  Many poor farmers were tenant farmers, with little money to buy the seeds and fertilizers required.  They couldn’t even begin to buy fertilizer and other inputs in volume; big growers can get discounts for large purchases.
  • Poor farmers can’t hold out for the best price for their crops, as can larger farmers whose circumstances are far less desperate.
  • In much of the world, water is the limiting factor in farming success, and irrigation is often out of the reach of the poor. The new high yielding varieties of seeds required reliable sources of water, which in most of the world meant irrigation.  Canal irrigation favors those near the top of the flow. Tubewells, often promoted by development agencies, favor the bigger operators, who can better afford the initial investment and have lower costs per unit.  As well as being expensive, in some cases where inappropriate schemes were used salinization became a problem.
  • In areas where there was an increase in mechanization there was an increase in unemployment as tractors displaced workers.  This lead to migration to the cities, causing urban problems.  Those farmers who tried to take on the new technologies became heavily in debt, leading to increased stress and in some instances suicide.
  • Credit is also critical. It is common for small farmers to depend on local moneylenders
    and pay interest rates several times as high as wealthier farmers. Government-subsidized credit overwhelmingly benefits the big farmers.
  • Most of all, the poor lack clout. They can’t command the subsidies and
    other government favors accruing to the rich.

When conducting agricultural research, scientists must consider the diverse, complex and risk-prone conditions under which small-scale farmers strive to produce. This inability by scientists to understand the ecology of farms in developing countries was clearly one of the key reasons behind the failure of the Green Revolution[2].

Furthermore, scientists and politicians must empower the small-scale farmers with the ability to influence and direct modern agricultural research, as they are the only people to know how to use and to manipulate their local environment most efficiently. All the textbooks and the laboratory research in the world cannot substitute first-hand knowledge and experience.

The rich got richer, the poor got poorer and most importantly, the hungry got hungrier:  The World Bank concluded in a 1986 study of world hunger that a rapid increase in food production does not necessarily result in food security – i.e., less hunger.  Current hunger can only be alleviated by “redistributing purchasing power and resources toward those who are undernourished,” the study said.  In a nutshell, they stated that if the poor don’t have the money to buy food, having more food available won’t help.

We’ve come to see that without a strategy for change that addresses the powerlessness of the poor, the tragic result will be more food and yet more hunger.

More next week…


[1] “Lessons from the Green Revolution”, Institute for Food & Development Policy, April 8, 2000, http://www.foodfirst.org/media/opeds/2000/4-greenrev.html

[2] Huyn, Frederick, “Green Revolution”, Environment, Sustainability & Health ACT, http://www.saharov.com/eshact/Research/GreenRevolution/tabid/124/Default.aspx





The Green Revolution

9 06 2011

Last week we promised to explore the Green Revolution.

The term “Green Revolution”  was coined in the 1960s to highlight a particularly striking breakthrough in yields, which is the traditional way to measure agricultural performance  – in tonnes per hectare, bushels per acre or whatever.  Farmers have been trying to improve yields by improving seeds through experimentation since the beginning of time – they’d keep seeds from the biggest, highest, most vigorous plants to sow the next spring.  These seeds are the product of thousands of years of experimental plant breeding by millions of farmers across the world. The crops that humanity has painstakingly bred (sometimes from wild plants) are the kernels of our civilization.

The Green Revolution is a term used to describe a tremendous boom in agricultural productivity based on high-yielding varieties (HYV’s)  of crops (beginning with wheat, but also including rice and corn) which were developed in the 1940’s.  With a big boost from the International Agricultural Research Centers created by the Rockefeller and Ford Foundations, the “miracle” seeds of high yielding varieties quickly spread around the world.  By the 1970s, the term “revolution” was well deserved, for the new seeds – accompanied by chemical fertilizers, pesticides, and, for the most part, irrigation – had replaced the traditional farming practices of millions of Third World farmers as well as those in the United States. [1]

Much of the reason why these “high yielding varieties” produced more than traditional varieties was that they were more responsive to petrochemical fertilizers. To produce their high yields, the new seeds required far more fertilizer than traditional varieties could absorb.   Fertilizer – inducing a demand for it, supplying it, teaching farmers to use it and putting it to work – is one key to the Green Revolution[2].  In fact, some people say the term “high-yielding varieties” is a misnomer, because it implies that the new seeds are high yielding of themselves. The distinguishing feature of the seeds, however, is that they are highly responsive to certain key inputs such as fertilizers and irrigation water. They say the term “high responsive varieties” is more appropriate.

Global Fertilizer use from 1975 - 1995

Global Fertilizer use from 1960 - 1995 FROM: http://lepo.it.da.ut.ee/~olli/eutr/html/htmlBook_4.html

There is yet another aspect of the Green Revolution which tied agriculture to the petrochemical industry:    by developing high yield varieties of crops, farmers chose to grow these seeds only – so  only a few species of (for example) rice were grown.  In India for example there were about 30,000 rice varieties prior to the Green Revolution, today there are around ten – all the most productive types. By having this homogeneity the crops were more prone to disease and pests because there were not enough varieties to fight them off.   In addition, because of their narrow genetic base, they’re inherently more susceptible to pests, so monocropping  provides a large and often permanent niche for pests, turning minor diseases into epidemics.   In order to protect these new varieties, more pesticides and insecticides were used, so pesticide use grew as well.  During 1970 – 1990, global pesticide use more than doubled, from 1.3 to 2.9 million tons per year[3].

Thus agriculture became inextricably tied to the petrochemical industry, because these new seeds wouldn’t grow well without petroleum-based fertilizers  – and they also required additional labor.  These inputs increased farmers costs:  the  high yields of IR-8 (a new rice seed) was four times as costly to grow as ordinary rice because of the fertilizers, pesticides and additional labor required.

Irrigation also played a large role in the Green Revolution.  It changed the areas where various crops can be grown:   For instance before the Green Revolution, agriculture was severely limited to areas with a significant amount of rainfall, but by using irrigation, water could be stored and sent to drier areas, putting more land into agricultural production – thus increasing nationwide crop yields.

The basis of the Green Revolution is the belief that technology increases output.  But while agricultural output increased dramatically as a result of the Green Revolution, the energy input to produce a crop increased even faster[4].   The Green Revolution has increased energy inputs in agriculture to levels around 50 times those of traditional agriculture[5]. To give you an idea of how energy intensive modern agriculture has become, to produce one kilogram of nitrogen for fertilizer requires the energy equivalent of 1.4 to 1.8 liters of diesel fuel.  This equates to the energy content of 15.3 billion liters of diesel fuel, or 96.2 million barrels.(6)

Yet the energy inputs have continued to increase without a corresponding increase in crop yields – so modern agriculture must continue to increase its energy expenditures simply to maintain current crop yields.  And what will we do when the oil runs out?

What has the Green Revolution accomplished?  Nobody denies it was a screaming success in terms of yields:  over  a twenty-year period between 1970 and 1990, average yields of corn, rice and wheat more than doubled; as a consequence there was an 11% increase (on average) in food per person because of these increased crop yields.[7]

Today, though, the miracle of the green revolution seems to be over:  Disturbingly, for the first time since the Green Revolutionm, crop yields are growing more slowly than population – in other words, growth in population and demand for food have both slowed down, but crop yields have slowed even more.  Between 1961 and 1990, wheat yields were growing by about 3% per year.  From 1990 to 2007, wheat yields grew by only 0.5%.   In Central Luzon, Philippines, rice yields grew steadily during the 1970s, peaked in the early 1980s, and have been dropping gradually ever since.  Long-term experiments conducted by the International Rice Research Institute (IRRI) in both Central Luzon and Laguna Province confirm these results. Similar patterns have now been observed for rice-wheat systems in India and Nepal[8].  In West Java, a  23 percent yield increase was virtually canceled by 65 and 69 percent  increases in fertilizers and pesticides respectively.[9]

In the Punjab, the crowning success of the Green Revolution, yield growth has essentially flattened since the mid-1990s. Over-irrigation has led to steep drops in the water table, now tapped by 1.3 million tube wells, while thousands of hectares of productive land have been lost to salinization and waterlogged soils. Forty years of intensive irrigation, fertilization, and pesticides have not been kind to the loamy gray fields of Punjab.  Nor, in some cases, to the people themselves:  so many people now take the train from the Malwa region in India to the cancer hospital in Bikaner that it’s now called the Cancer Express.[10]  Daniel Pepper, writing in US News and World Report , reported  on the toxic consequences of the Green Revolution among Indian farmers, to read it click here.

One additional aspect of the Green Revolution was brought to life in the blog by Josh Viertel, President of Slow Food USA, in which he states a false premise taken for fact by proponents of a new Green Revolution :

A year ago I sat in a room at the Earth Institute at Columbia surrounded by executives from big food companies. One of them, I believe from Unilever, clicked to a slide that read “The solution to global hunger is to turn malnutrition into a market opportunity.” The audience—global development practitioners and academics and other executives—nodded and dutifully wrote it down in their notebooks; I shuddered. The experience stayed with me and I haven’t gotten over it. Last month, I had a flashback.

On a Tuesday evening I sat in a room on the 44th floor of a building in the financial district of lower Manhattan with representatives from General Mills, Monsanto, Dean Foods, Deutsche Bank, and the Rainforest Alliance. We were there to speak to institutional investors—the hedge fund managers, bankers, and others who invest in big food companies—about sustainability and food. In particular, we were there to talk about how sustainability and hunger issues may give these companies both exposure to risk and access to opportunity.

It was not your average sustainable food panel discussion. Reflecting back on it, three things jump out at me. The first was a false premise that is taken for fact. The false premise:

Both Deutsche Bank and Monsanto made it clear that they are basing their business strategy on answering a simple question: How will we feed the world in 2050, when the population reaches over 9 billion and global warming puts massive strains on our resources?

The answer for Deutsche Bank:   increase yields by investing in industrial agriculture in the developing world, with an emphasis on technology;  put lots of capital into rural land to shift subsistence and local market agricultures to commodity export agriculture.

The answer for Monsanto:  increase yields by decreasing resource dependence using genetically modified crops.

Sounds good on paper, but Josh Viertel says it’s based on a false premise.  What is the false premise?  Tune in next week.


[1] “Lessons from the Green Revolution”, Food First, http://www.foodfirst.org/media/opeds/2000/4-greenrev.html

[4] Church, Norman, “Why our food is so dependent on oil”, Energy Bulletin, April 2005, http://www.energybulletin.net/node/5045

[5] Fenderson, Adam, “The Read Green Revolution”, New Matilda//Energy Bulletin, July 26, 2006

(6)  Pfeiffer, Dale Allen, “Eating Fossil Fuels”, from The Wilderness Publications, http://www.copvcia.com.

[7]  Ibid.

[8] Rosset, “Lessons From the Green Revolution, March/April 2000 http://www.soc.iastate.edu/sapp/greenrevolution.pdf

[10] Bourne, Joel K. Jr., “The Global Food Crisis: The End of Plenty”, National Geographic,  June 2009.





Renewable?

23 11 2010

We keep seeing the term “renewable”  in the media   –   a lot  –  and especially with reference to products made from “renewable resources”.  And we understand why this term can be so appealing in this time of diminishing natural resources and increasing population growth.  But what do they really mean?  Stick with us and you’ll find that this is yet another area in which a little bit of knowledge can be a dangerous thing.

A “renewable resource” is a resource that can be replenished naturally  in the same amount of time (or less) than it takes to draw the supply down.  These constantly replenishing natural resources  include forest resources,  and the fertility of agricultural land.  Some renewable resources have essentially an endless supply, such as solar energy, wind energy and geothermal pressure.   Some resources are considered renewable, even though some effort must go into procuring them, such as fisheries or food crops.

To help us make better choices, there is now a differentiation between non-renewable resources, such as petroleum or old-growth timber  (which takes centuries to renew)  and what is known as “rapidly renewable resources”.  These items, as defined by the LEED system of building certification from the U.S. Green Building Council (USGBC) offers points for rapidly renewable materials that regenerate in 10 years or less, such as bamboo, wool, and straw. To qualify for the credit in a new construction project, the value of these materials must represent at least 2.5 % of the total cost of the products used in the building.

Renewable resources have become a focal point of the environmental movement, both politically and economically. Energy obtained from renewable resources puts much less strain on our limited supply of fossil fuels (non-renewable resources). The problem with using renewable resources on a large scale, however, is that it  may create some new and unforeseen problems.

What can some of these new and unforeseen problems be?  Like all green claims, it’s terribly important to understand the wider implications of each of our choices.  Take bamboo, for example.  Bamboo is a fast growing grass which is hard enough to be used as a replacement for wood in applications such as flooring and furniture. However, most bamboo is grown and processed in China, so while ocean shipping consumes less fuel per mile than overland trucking, the type of fuel used in shipping can be more polluting. In addition, there are concerns about forestry practices, the toxicity of binders, and worker safety.  A few bamboo plantations have earned certification from the Forest Stewardship Council (FSC), which accredits forests managed “to meet the social, economic, ecological, cultural, and spiritual needs of present and future generations.” However, certified bamboo products are still not widely available in the U.S. And even though bamboo plantations sequester as much carbon as native forests, they do not support the same wildlife.  Clearly, the environmental balance is more difficult to calculate than by simply examining the length of a harvest cycle.

Another product worth examining is cork, which comes from the bark of cork oaks. Unlike nearly every other tree species, cork trees are  not harmed by removal of their bark. A mature tree is stripped about once every 10 years and lives for an average of 16 strippings. After stripping, the large slabs of bark are boiled, and bottle stoppers are punched from them. The leftover material is then ground up, pressed into sheets, and cut into tiles for flooring. This dual-purpose production is critical to the cork industry.   According to the World Wildlife Fund International, cork production provides a vital source of income for thousands of people and supports one of the world’s highest levels of biodiversity among forest habitats, with plant diversity reaching as high as 135 species per square meter. In an ironic twist, the increased market share for alternative wine stoppers could reduce the value of cork oak, leading the areas in which cork is grown to be converted or abandoned. It also may contribute to the end of the cork ecosystem.

The World Wildlife Fund International and the Forest Stewardship Council have established programs to promote and encourage responsible cork use to save this natural resource. For more information, visit www.panda.org and www.fsc.org.

Another not so easy call, is it?

In my opinion, another area worth investigating is the very visible promotion of biobased products using corn and soybeans  (soy based foam in upholstery and biobased polymers are two products that come immediately to mind) as being environmentally preferable because they’re based on a renewable resource.  Dow Cargill, manufacturer of BiOH polyols, the soybean derived biopolymer, says that it creates products with from 5 to 20% renewable content (meaning the soybeans). But soybeans are one of the three crops globally which have the highest percentage of GMO (corn and cotton being the other two).   The GMO percentage of global soybean production was 77%  in 2009, and for cotton it was 49%.  (In India, 87% of all cotton was GMO in 2009.)

Monsanto, the largest seed producer in the world, with a massive 20% share of the world market, has been  interested in a technology which was named “Terminator” – and began applying it to their seeds.

The Terminator idea was to genetically modify seeds so that the plants they produced when they grew were sterile. In biotechnology jargon, this is known as a “genetic use restriction technology”, or GURT.  Companies such as Monsanto were keen on such “suicide seeds” because they would enable the company to control any proprietary genetic traits they had engineered into the seeds. So resistance to a particular herbicide, for example, or an ability to grow faster, would not be passed on from one generation of plants to the next.

So most GMO seeds have a genetic modification that prevents the crops from setting fertile seed.  So seeds for next year’s crop must be purchased – effectively ending the centuries old practice of collecting seeds at each harvest  so they could be replanted next year.

The main problem with this is that over 1.4 billion people around the world depend on saved seeds from season to season to grow crops. Terminator seeds force dependence on the Monsantos of the world, destroying local and indigenous seed exchange practices, as well as the breeding and selection done by farmers.

There was a great outcry against this technology.

“While seeds with the ability to reproduce contain the essence of life, Terminator represents only ‘exploitation and death,’” according to Terry Boehm, vice-president of the National Farmer’s Union in Saskatchewan, Canada. Boehm further uses nuclear weapons as a parallel to Terminator technology: “Extensive testing of nuclear weapons did not change the fact that this was such a dangerous technology that it should not be used.”

At the  United Nations’ Convention on Biodiversity in Nagoya, Japan (18-29 October 2010) the Action Group on Erosion, Technology and Concentration (ETC) warned that there are a  handful of multinational corporations which are pressuring governments to allow what could become the broadest and most dangerous patent claims in history.

“The Gene Giants are stockpiling patents that threaten to put a choke-hold on the world’s biomass and our future food supply,” warns Silvia Ribeiro of ETC Group. “The breadth of many patent claims on climate ready crop genes is staggering. In many cases, a single patent or patent application claims ownership of engineered gene sequences that could be deployed in virtually all major crops – as well as the processed food and feed products derived from them,” explains Ribeiro.

Hope Shand, research director of ETC,  links the argument over Terminator technologies with wider criticisms of the ways in which agribusiness is exercising its increasingly powerful influence. “The top 10 seed companies control 57% of the commercial seed market worldwide. That’s a staggering level of corporate control over the first link in the food chain,” she says.

“Whoever controls our seeds, controls the food supply. These companies are trying to reduce competition and maximize profits by promoting laws and technologies that eliminate the practice of farmer-saved seeds. Whether it’s promoting genetic seed sterilization and patent laws, or dictating trade regimes, these trends threaten traditional farming communities and erode crop diversity.”

The ETC web site goes on to say that “the natural genetic diversity of crops is a vital insurance against future farming catastrophes. The world needs to retain as many different varieties of potato, tomato, rice and wheat as possible in case the commercial varieties grown in bulk get diseased, or are rendered useless by the accelerating impacts of global warming. That’s why there are some 1,400 “seed banks” around the world, storing some six million different species.”  For more information on this issue, see the ETC Group’s report, Gene Giants Stockpile Patents on “Climate-Ready” Crops in Bid to Become Biomassters”

I think the use of GMO crops to produce soy based foam and biobased polymers cannot be marketed as being made from a renewable resource because of the presence of these patented GMO crops – which are largely sterile. They cannot be renewed without human input – in other words, new crops cannot be grown unless the farmer purchases new seed from the corporation.  And the danger is that these genetic mutations will spread to non GMO crops.

This goes entirely against the intent  in defining a renewable resource.  These crops cannot be “created again”.  So to say that soy based polyols (or soy based foam) is made from a “renewable resource” is false.

Another objection I have to GMOs as they are being implemented is that the basic motivation for almost every introduction thus far is profit-driven rather than need-driven – but that’s nit picking.

For more information on Terminator Technology visit:

www.banterminator.org – the Ban Terminator Campaign

www.etcgroup.org – Action Group on Erosion, Technology, and Concentration

• Also see www.seedsofchangefilm.org for information on the film, “Seeds of Change,” which looks at genetically modified crops and how they are changing the face of agriculture in western Canada. This film was made back in 2002 but hidden from the public by the administration at the University of Manitoba until 2005. Click here for a review of this documentary.





Reasons for concern regarding GMO’s

29 09 2009

From last week’s post, you’ll remember we explained that GMO crops (to date) do not fulfill their promise:

  1. They do not decrease hunger and poverty;
  2. Data shows that GMO crops actually increase pesticide and herbicide use;
  3. They do not yield more; in a new report from the Union of Concerned Scientists, Failure to Yield, data shows that despite 20 years of research and 13 years of commercialization, genetic engineering has failed to significantly increase U.S. crop yields.   In fact data points to possibly lower yields than would have been achieved by NOT using GMO seed.

But I still didn’t understand  what the fuss is all about.  After all, companies have been making claims for products forever.  Shouldn’t the product just die by way of non-purchase?  Why should governments get involved and prohibit the use of GMO seeds?  Why are the organic trade associations around the world in such an uproar?

After all, the promise of genetic engineering  is very powerful –  to be able to feed the world as populations increase and agricultural land gets squeezed.   James McWilliams, an associate professor at Texas State University, says that genetic engineering is “a hidden realm of opportunity to feed the world’s impending 9 billion a diet produced in an environmentally responsible way.” Time Magazine reported in September, 2009 that a scientist at Texas A & M University has discovered a way to remove the gossypol (a naturally occurring toxic chemical that protects the plant from infestation) from cottonseeds.  Today cottonseeds can be used for humans only after an extensive refining process to remove the gossypol.  Also in the works are crops that can produce higher yields with less water; a dust from genetically modified ferns that can remove heavy metals from the soil;  crops that can withstand drought or high salt content in soil; and other GM technologies that “have the potential not only to streamline production, but to play a meaningful role in reducing their carbon footprint.”(1)  Sounds pretty good to me.

In the United States, we haven’t heard much about genetic engineering, because in 1992, the
FDA unilaterally decided (in its opinion) that as long as a GM food is no more toxic, allergenic, or any less “substantially equivalent” than its standard counterpart, it need not be labeled to show the process that created it. That is quite different from the European labeling laws, introduced in 1997, which required that any food containing residues of engineered DNA or protein must be recorded as GM.

So what is it about genetic engineering that has these other governments and organizations so concerned?  Part of the problem may be that the scientific community does not like the unknown, and it seems to have not reached a consensus on the safety of these products for our health or for the environment, although it’s hard to determine what interests are behind which studies.

These areas of concern, in addition to those of the plants developing increasing tolerances to pesticides and herbicides, include :

  1. The concept of “drift”:   that is,  pollen from genetically engineered plants will spread by insects and the winds to affect non-GMO plants.  (After all, a bee can travel up to 30 km or more.)  This contaminates both conventional and organic fields.  And farmers or food processors lose money because of unwanted contamination.   The  Organic Trade Association of Canada recently reported the discovery of contaminated flax seed in some German food products;  native corn in Mexico (where it is illegal to plant genetically engineered corn) was reported to have new GM genes found in the genome, where they could interfere with the plant’s normal genes.(2)   “It’s time for biotech companies to be good parents and take responsibility for their children. The owners of GE crops need to assume the liability for loss of market access due to their technologies appearing in countries or products in which they are not wanted. As GE products are not permitted under organic standards, the organic sector in Canada is extremely concerned by the prospect of losing access to its essential markets in Europe, Asia and around the world,” said Matthew Holmes, managing director of OTA in Canada.  According to the U.S. Organic Trade Association,  “Bt contamination is  a trespass, a nuisance, unwanted, and can lead to significant economic losses for organic farmers.  This is a clear example of potentially disastrous environmental degradation, with the added problem that consumers seeking products that contain no genetically engineered materials may be denied this choice because of inadvertent contamination.”
  2. Concerns regarding human health: These are classed into those that fall under “unknown effect on human health” and allergenicity.   With regard to unknown effects, a study published by the Austrian government found that mice fed a type of genetically engineered corn produced fewer offspring and more females with no offspring, than mice fed conventional corn.  The effects were particularly pronounced in the third and fourth litters, after the mice had eaten the GE corn for a longer period of time.  Another study published in Lancet claimed that there are appreciable differences in the intestines of rats fed genetically engineered potatoes and those fed unmodified potatoes.(3)  The milk from cows injected with genetically engineered  bovine growth hormone rBGH  (sometimes called rBST)  has been found to have much higher levels of IGF-1, a hormone considered to be a high risk factor for breast, prostate, colon, lung and other cancers – and the milk has lowered nutritional value! (4). “This … should serve as a wake-up call to governments around the world that genetically engineered foods could cause long-term health damage,” said Andrew Kimbrell, Executive Director of the Center for Food Safety.       With regard to allergenicity, there is the possibility that introducing a gene into a plant may cause a new allergen or cause an allergic reaction in susceptible individuals. When DNA from one organism is spliced into another, can it turn a non-allergenic food into one that will cause an allergic reaction in some people?
  3. Concerns regarding agricultural diversity:  The 1st conference on animal and plant breeding of the International Federation of Organic Agricultural Movements (IFOAM) was held in August, 2009.  Speakers at the conference made it clear that we are in a battle to save the diversity of today’s food in order to have future food.  According to Vandana Shivam,  who spoke at the conference, unprecendented weather is occurring in India with the disruption of life-giving monsoons which used to appear as regularly as clockwork.  Farmers growing GMO rice could not plant their seedlings because of lack of rain, while farmers who had access to heirloom drought-tolerant varieties were able to plant and get a crop.  Traditional farming used to include over 250 crops.  Now there are a mere 2 crops.  Community seed banks are springing up around India to preserve traditional varieities, and “freedom villages” are forming to prohibit GMOs because of their threat to traditional seeds.  You can learn more about the situation in India by reading “Stop the Biopiracy of Climate Resilient Crops” by clicking here. The Wall Street Journal ran an article on how organic farming, even with reduced yields, is more profitable for Indian farmers than conventional crops, because the farmers  no longer are subjected to high up front costs for chemical fertilizers and insecticides, and they can save  seeds from year to year.
  4. Concerns regarding the safety of wildlife in the surrounding areas of GM crops: A major study performed by the British government and published by the Royal Society,   found that GM crops had 33% fewer seeds for birds to eat at the end of the season, and even two years later there were still 25% fewer seeds.  As the study puts it: “While reduction or removal of the visible flora temporarily reduces the food available to farmland animals, the key to longer-term impacts is the ‘seed rain’ (seeds falling from weeds) and its contribution to the seedbank (weed seeds left in soil).” (5)  They concluded that over time this would have a dramatic impact on the bird populations which are dependent on these seeds.  There are also fewer bees, beetles, butterflies and other insects in the GM crops. Such invertebrates are food for mammals, birds and other animals, and many are important for controlling pests or recycling nutrients within the soil.
  5. Concerns regarding the use of Bt crops and organic agriculture:  Bt is often used in organic agriculture;  it is an excellent biological control for corn and cotton insect pests.  It is the most widely used biological control in organic agriculture.    But Bt engineered plants will lead quickly to significant insect resistance, depriving organic farmers of one of their most useful tools.
  6. Concerns regarding the business of corporate agriculture: Many are concerned that farmers are turning dependent on large multinational corporations (MNCs) for seeds, fertilizers, pesticides and other inputs while also becoming more vulnerable to pressures to produce genetically engineered crops.   They fear the predatory nature of corporate agriculture and its attempts to corner the entire chain of food production from seeds to sales of food products.  Three companies — Cargill, Archer Daniels and Bunge — control nearly 90 per cent of global grain trade while DuPont and Monsanto dominate the global seed market. Eleven firms account for about half the world sales of seeds, of which about a quarter are sales of genetically engineered seeds. (6)  And agrichemical sales are concentrated in 6 firms which together control 85% of the annual pesticide market. (7)   The research into GMO crops is very expensive, meaning only large, well funded companies can afford the research.  It’s this last concern, that of “vertical integration” (i.e., a corporation taking over the entire food production cycle from the development of proprietary strains of DNA and the sales of seeds to farmers down to contracts with farmers that determine what is produced, how and for whom, and at what price and quality), that I want to focus on.

In an equity research paper done by Deutsche Banc of DuPont in 1999, they stated that they were willing to believe that GMOs were safe and “may provide a benefit for the environment” but that the perception wars are being lost by the industry.     “Not a day goes by lately where concerns and/or rebuttals are not in the press somewhere in the world. Domestic concerns regarding agbiotechnology are clearly on the rise, with the Monarch butterfly but one example of negative press causing a rethink of the future. For the most part, though, it has not yet gotten the attention of the ordinary U.S. citizen, but when it does – look out.”

The corporations which have so much at stake here know that they need a more aggressive marketing technique to promote the impression that GMOs are good and safe to use.  Agrichemical lobbyists are trying to convince the public that the industry is “science-based”.  A new global federation of agrichemical multinational corporations, Crop Life International, is the new representative of the “plant science industry”.  Crop Life’s annual report for 2007 makes the breathtaking claim that pesticides are actually good for the environment for a host of reasons, including “lower carbon dioxide emissions associated with the switch to no-till/reduced tillage farming systems, and less frequent pesticide applications made possible by biotech crops fuel savings.”

The agrichemical companies are vertically integrated, based on the law of efficiency similar to economies of scale which favors big corporations.  Antonio Tujan, Jr., international director of the Ibon Foundation Inc. (a research and educational institution specializing in socio-economic issues) says that “integration destroys the free market as it becomes increasingly dominated by the giants, which are able to dictate profits and what is produced.”  This turns the market into a sellers’ market, and farmers have little or no choice.  Farmers are forced to accept whatever they are asked to use such as seeds and pesticides.  A democratic market, in contrast, is a consumers’ market.

The big companies have a lot at stake, and the squabbling and double dealing – not to mention lawsuits and counter suits –  are worthy of a good thriller.   Monsanto, after years of acquiring seed companies while trying to become the major seed producer in the world,  filed a lawsuit in the spring accusing DuPont of patent infringement; DuPont countersued saying Monsanto wanted to protect its franchise at the expense of giving farmers access to better technology.   But in June, DuPont sued BASF over the same kind of alleged violations Monsanto sued it for in the spring – and of course, BASF countersued!

A more disturbing set of statistics is the number of lawsuits that Monsanto has filed against farmers who are accused of violating its patents.  It has built a department of 75 employees and set aside an annual budget of $10 million for the sole purpose of investigating and prosecuting farmers for patent infringement. For cases with recorded judgments, farmers have paid a mean of $412,259.54.  (Click here to read the entire report.) The table below gives the number of cases by year:

Number of Lawsuits by Year

Source:  The Center for Food Safety,  January 2005

According to Tom Wiley, a North Dakota farmer, farmers are being sued for having GMOs on their property that they “did not buy, do not want,  will not use and cannot sell.”

This just in:   Monsanto announced on  August 13 that it would be raising prices for its genetically modifed seeds from 17% to 42% – saying that these new seeds will boost yields; this is part of the company’s drive to double profits by 2012. (8)

(1) Brandon, Hembree, “GMO rejection – ‘Fatal rush to judgment'”, June 3, 2009, Southeast Farm Press

(2) “Chapala Vindicated”, Organic Consumers Association, March 5, 2009, http://www.organicconsumers.org/articles/article_17133.cfm

(3) “Effect of diets containing genetically mofidied potatoes expressing Galanthus nivalis lectin on rat small intestine”, Lancet, Vol 354, No 9187, pp 1353-1354, Oct 1999

(4) http://www.preventcancer.com/consumers/general/milk.htm

(5) http://www.i-sis.org.uk/GMCHW.php

(6) Netto, Anil, “GMO Seeds:  “MNCs Gaining Total Control Over Farming”, December 12, 2007, Center for Research on Globalization

(7) Ibid.

(8) “A Seed Company Some Love to Hate”, Jim Jubak blog on MSN Money, http://blogs.moneycentral.msn.com/topstocks/archive/2009/08/14/a-seed-company-some-love-to-hate.aspx





GMO cotton

23 09 2009

gmo1The Global Organic Textiles Standard (GOTS) prohibits all “genetically modified organisms (GMO’s) and their derivatives”.  According to the Organic Exchange, none of the organic growing standards established by any government allows for GMO crops.  In April, 2009, Germany announced a plan to ban all GMO crops in the country, citing concerns of the environmental impact, making Germany the latest in a string of EU countries to outlaw GMO crops.  And during a public comment period in 2000, the Organic Trade Association generated 275,000 letters against GMOs being included in the National Organic Program (NOP).

Why the fuss?  After all, GMO crops were developed to help us meet the demands our burgeoning population makes on our limited resources.  How can that be bad?

Genetically modified organisms (GMO) are plants, animals and microorganisms which have been altered genetically.  Here’s how the National Orgtanic Standards Board puts it:  “Genetically engineered is defined as:  made with techniques that alter the molecular or cell biology of an organism by means that are not possible under natural conditions or processes.   Genetic engineering includes recombinant DNA, cell fusion, micro-and macro-encapsulation, gene deletion and doubling, introducing a foreign gene, and changing the positions of genes.”(1)

The benefits of genetic engineering in the agriculture sector is great, according to its proponents.  GMO crops have been hailed as a way to increase yields by protecting against pests, drought and disease.  The Food and Agriculture Organization (FAO) of the United Nations has put forward the arguments for GMOs in agriculture, (such as increased yields and better resistance to pests and other stresses – which reduces dependence on chemicals needed for crop protection.   They also list the arguments against GMO crops. There is great debate about the pros and cons of this relatively new product.

But before looking at some of the reasons so many are opposed to genetic engineering,  let’s look at the issues pertaining to fiber crops only – and to cotton specifically:

Shortly after GMO cotton was introduced, GMO cotton producers, citing advances based on new GMO cotton  and supported by a series of Cotton Incorporated conferences on sustainable cotton,  portrayed conventional cotton as the new “sustainable” choice and organic cotton as an old and inadequate solution that is “as out-dated as last year’s fashions.”  (Editor’s note:  They also redefined the term “sustainable” to include “growing profitability.”)

GMO cotton was quickly adopted by cotton farmers, and millions of hectares of GMO modified cotton has been planted worldwide since its introduction in 1996.

Why did so many farmers pay for GMO seed – which cost more – and plant this new crop?  Bottom line: they were told that there was more money to be made from GMO cotton.    GMO cotton was supposed to have higher yields at the same time it was helping to reduce costs.  Cost savings in chemicals and manual labor was estimated at between 15 – 30%.   How did it reduce dependence on chemicals:

  • GMO cotton was engineered to reduce insect pests so farmers could reduce their chemical dependence on pesticides, and buy less of them.  The gene coding for Bacillus Thuringiensis (Bt) was inserted into the cotton.  Bt is a protein that acts as a natural toxin to the larvae of certain moths, butterflies, beetles and flies (including the dred bollworm) and is harmless to other forms of life.  When the larvae feed on the cotton they are killed by the Bt protein – thereby eliminating the need for a broad spectrum insecticide.
  • GMO cotton was designed to be resistant to herbicides so that weed killers could be liberally sprayed on crops without worrying about killing the cotton plants.  It was genetically modified to be resistant to glyphosate (marketed as Roundup in the USA and manufactured by Monsanto – remember this fact) which is a broad-spectrum herbicide, and toxic to humans at concentrations far below the recommended agricultural use levels. (2)  Studies link glyphosate to spontaneous abortions, non-Hodgkins lymphoma, and multiple myeloma.

Not only could they make more money, but  GMO cotton crops were also promoted as helping tackle world hunger and poverty, and helping small farmers. If you were a cotton farmer, how could you resist?  They didn’t:  Today 86% of all United States cotton, 68% of all Chinese cotton, and 76% of all Indian cotton (three of the major cotton growing countries) is now GMO cotton. (3)

Initial results seemed that all they promised was true – early studies in 2002/2003 reported that pesticide and herbicide use was down and yields were up (by as much as 80%)  for GMO cotton (4).  But these results were short lived.   Recent reports are full of data on GMO crops requiring ever more doses of chemical pesticides and herbicides to control pests which are mutating faster than even their worse case scenarios had envisioned,  and becoming resistant to the genetic modifications found in GMO cotton.  A study published by the Institute for Science in Society reports that Bt cotton fields rarely have studies done on what the crops do to the soil itself; they found that soil growing Bt cotton had significantly fewer beneficial soil enzymes in the soil (which makes nutrients available to plants) and total biomass was reduced 8.9%.  This, they conclude, could even lead to dead soils, unable to produce food.

What about the promise of reduced chemical dependence on pesticides and herbicides?

It was always thought that pests would eventually evolve and develop a resistance to Bt.  It wasn’t a question of whether resistance would happen, but how quickly it would evolve.  The Central Institute for Cotton Research (CICR) in India published the (then currently held) opinion that, “with the current rate of increase in the area under Bt cotton, it is likely to take about 11 – 12 years for the pest to develop resistance to Bt cotton.  However, with implementation of proper strageties as suggested by CICR, it is possible to delay resistance by at least 30 – 40 years if not more.”  Worse case scenario was thought to be three years.

Yet in 2008 the University of Arizona published some of the first documented cases of bollworm resistance to Bt. Professor Bruce Tabashnik, a renowed insect researcher and the primary researcher of this study, said “our results contradict the worse-case scenarios of some experts under which resistance to Bt plants was expected in three years.  It is no surprise that, after a while, pests can develop biological strategies against insecticidal agents and become thereby insensitive:  as  a rule, even advantages that have been established in a plant by conventioinal breeding methods only have a limited time span of effectiveness.”

According to a 2008 study  by Friends of the Earth, independent studies have demonstrated not only that pesticide reduction claims are unfounded, but that GM crops have substantially increased pesticide use, particularly since 1999.  Dr. Charles Benbrook, a leading U.S. agricultural sicentist, conducted an “exhaustive analysis of USDA data on pesticide use in agriculture from 1996 to 2004.  His conclusion is that over this 9 year period, adoption of GM soy, corn and cotton crops has led to use of 122 million more pounds of pesticides than would have been used had GM crops not been introduced.”(4)

With regard to herbicides, GM cotton crops were engineered to have a resistance to glyphosate – the primary component in Monsanto’s patented week killer called Roundup.  Roundup is Montsanto’s biggest product, accounting for about 40% of their estimated 2002 revenue of $4.6 billion.  Monsanto sold its GMO seeds under the brand name, “Roundup Ready” because farmers could spray the herbicide directly onto their fields and not have to worry about killing their crop.  The popularity of Roundup Ready crops skyrocketed, and the use of Roundup also skyrocketed.  In the U.S. alone, glyphosate use jumped by a factor of 15 between 1994 and 2005, according to the Center for Food Safety.  That led to a host of  “superweeds” developing a resistance to Roundup.   Farmers were told that in order to combat glyphosate-resistant weeds they’d have to apply other chemicals, often in combination with higher rates of glyphosate.   In 2005, Monsanto recommended farmers use several additional herbicides with Roundup, including Prowl (pendimethalin), metolachlor, diuron and others.    In fact, recent data shows resistance to herbicides in general, and herbicides used in GMO crops in particular, has escalated at exponential rates, according to the International Survey of Herbicide Resistant Weeds.

According to the Friends of the Earth study, cited above: ” When forced to admit that herbicide-tolerant crops increase overall pesticide use, biotech industry apologists quickly fall back on a second claim: the increasing use of glyphosate has reduced use of more toxic herbicides, and so is a benefit to the environment. While this was true in the first few years of Roundup Ready crops, a look at recent trends in herbicide use undermines this claim.”  For instance, 2,4-D is the second most heavily used herbicide on soybeans; it is a herbicide that formed part of the defoliant Agent Orange, and has been associated with health risks such as increased risk of  both cancer and birth defects – and use of 2,4-D more than doubled from 2002 to 2006.  Likewise, use of atrazine (which is linked to endocrine disruption, neuropathy, breast and prostate cancer and low sperm counts) rose by nearly 7 million lbs (a 12% increase).

And according to the Friends of the Earth study,  “It is important to understand two key facts about weed  resistance. First, resistance is defined as a weed’s ability to  survive more than the normal dose of a given herbicide rather than absolute immunity. Higher doses of the herbicide will often still kill the resistant weed, at least in the short term. The  second fact follows from the first. Weed resistance is not only the result of using an herbicide excessively, it often leads to still
greater use of that herbicide.”

And the promised yield increases?  Often, the answer depends on weather and growing conditions rather than types of seed planted.  Average cotton yields in the United States  were stagnant from 1996 (when GM cotton was introduced) to 2002 (when it made up 76% of cotton acerage);  there was a record yield in 2004 and 2005 but these increases were chiefly attributable to excellent weather conditions. (5)   In fact the question is really whether the yield for U.S. cotton is lower than it would have been had it not been Roundup Ready seed! (6)  Other parts of the world had similar or worse results.

Another facet of this discussion should include the fact that GMO seeds are expensive:  in India, Monsanto’s Roundup Ready cotton seed was selling  for twice the price of non-GMO seeds.    GMO seeds cannot be saved and used for next season’s crop.   The high price for the seed led to farmers in India often having to take out loans from moneylenders who charged exorbitant interest rates.  In a poignant article in the New York Times,  Somini Sengupta published a discussion about the rash of suicides by Indian farmers – 17,107 farmers committed suicide in 2003 – and lays the blame on a combination of rural despair and American multinational companies peddling costly, genetically modified seeds.

According to the Friends of the Earth, GM crops do not fulfill their promise.

  1. GM crops do not tackle hunger or poverty.
  2. GM crops increase pesticide use and foster the spread of resistant “superweeds”.
  3. GM crops do not yield more and often yield less than other crops. (7)
  4. GM crops benefit the biotech industry and some large growers, but not small farmers.

But why is the Organic Trade Association and GOTS so adamantly opposed to GMO crops?  Why are European countries like Germany banning the sale and planting of GMO crop?  And why did the American Academy of Environmental Medicine (AAEM) release a position  paper calling for a moratorium on genetically modified foods?  That’s next week’s post.

(1) Organic Materials Review Institute, http://www.omri.org/OMRI_GMO_policy.html

(2) Benachour N and Séralini G-E.. Glyphosate formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells Chem. Res. Toxicol. , 2009, 22 (1), pp 97–105

(3)  GMO Compass; http://www.gmo-compass.org/eng/agri_biotechnology/gmo_planting/343.genetically_modified_cotton_global_area_under_cultivation.html

(4)  Qaim, Matin and Zilberman, David, “Yield Effects of Genetically Modified Croops in Dveloping Countries”, Science, 2.7.03

(4) “Who Benefits From GM Crops?”, Friends of the Earth,  issue 112 Agriculture and Food; January 2008, page 7.

(5) Meyer, L., S., MacDonald & L. Foreman, March 2007.  Cotton Backgrounder.  USDA Economic Research Service Outlook Report.

(6) Friends of the Earth, op cit.

(7) “Corn, Soy Yields Gain Little From Genetic Engineering”, Agence France Presse, April 14, 2009








Follow

Get every new post delivered to your Inbox.

Join 1,220 other followers