What kind of fabric for your new sofa?

26 09 2013

We’ve looked at the frame, suspension system and cushioning on a sofa;  next up:  fabric.  We consider fabric to be a very important, yet certainly misunderstood, component of furniture.  It can make up 40 – 45% of the price of a sofa.    So we’ll be breaking this topic up into several smaller bite size portions:  after a general discussion of what kind of fabric to choose for your lifestyle,  we’ll look at the embodied energy in your fabric choice, and then why an organic fabric is better for you as well as the rest of us.

One thing to remember is that there is much  more fabric used in constructing an  upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind.  A fabric with densely woven yarns tends to be more durable than a loosely woven fabric.  Often people assume leather is the best choice for a busy family.  We did a post about leather – if you’re at all considering leather, please read this first (http://oecotextiles.wordpress.com/2012/05/22/leather-furniture-what-are-you-buying/ ).  Another choice  widely touted is to use Ultrasuede.  Please see our post about this fabric: http://oecotextiles.wordpress.com/2010/09/08/is-ultrasuede%c2%ae-a-green-fabric/.

Equally important in evaluating durability as the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable – no matter how durable it appears on the showroom floor.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.

2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.

3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[2]  http://www.globalhemp.com/Archives/Magazines/historic_fiber_remains.html

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.





How to buy a quality sofa – part 4: So which fabric should it be?

17 10 2012

So for the past two weeks we’ve discussed the differences between synthetic and natural fibers. But there’s more to consider than just the fiber content of the fabric you buy. There is the question of whether a natural fiber is organically grown, and what kind of processing is used to create the fabric.

First, by substituting organic natural fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits. Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers)[1], which helps to mitigate climate change, but it also:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity;
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • ensures sustained biodiversity;
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles. As such it can be seen as more than a set of agricultural practices, but also as a tool for social change [2] . For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But if you start with organic natural fibers (a great choice!) but process those fibers conventionally, then you end up with a fabric that is far from safe. Think about making applesauce: if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stablizers and who knows what else – do you end up with organic applesauce? The US Department of Agriculture would not let you sell that mixture as organic applesauce, but there is no protection for consumers when buying fabric. And the same issues apply, because over 2000 chemicals are used routinely in textile processing.[4] Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates, benzenes and others). In fact, one yard of fabric made with organic cotton fiber is about 25% by weight synthetic chemicals – many of which are proven toxic to humans. [5]

I know you’re saying that you don’t eat those fabrics, so what’s the danger? Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body). Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in. Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern? Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis, for example, which are linked to many of the chemicals used in textile processing) are reaching epidemic rates, and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t [6];
  • We know formaldehyde is bad for us, but in fabric? A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths. [7] Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.[9]
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.[10]

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops. [11]
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys. They are ubiquitous – and are also found in most textile inks.[12] So parents careful not to bring toxic toys into their homes for can be nevertheless unknowingly putting their kids to sleep on cute printed sheets full of phthalates.
  • Greenpeace did a study of children’s wear sold by the Walt Disney Company - you know, like those cute Tinkerbell pajamas? Turns out that of the 5 chemicals they tested for, most items tested had far more than is considered safe.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re less prepared because we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum. And our children are the pawns in this great experiment. And if you think artifical pathogens  are  not main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the maximum has replaced bacteria and viruses as the major cause of human illness. We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized – certainly not the darling of venture capatalists who look for the next big thing. So not many research dollars are going into new ways of producing fabrics. Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible: in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge [13].


[1] Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf Also see: Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

[4] See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

[5] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609

[6] Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

[7] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

[8] Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817 SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[9] Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

[12] “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week, September 22, 2008 SEE ALSO: Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

[13] Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.





How to buy a quality sofa – part 4: natural fibers

10 10 2012

Since the 1960s, the use of synthetic fibers has increased dramatically,  causing the natural fiber industry to lose much of its market share. In December 2006, the United Nations General Assembly declared 2009 the International Year of Natural Fibres (IYNF); a year-long initiative focused on raising global awareness about natural fibers with specific focus on increasing market demand to help ensure the long-term sustainability for farmers who rely heavily on their production.

                       International Forum for Cotton Promotion

Natural fibers  have a history of being considered the fibers that are easiest to live with, valued for their comfort, soft hand and versatility.  They also carry a certain cachet:  cashmere, silk taffeta and 100% pure Sea Island cotton convey different images than does 100% rayon,  pure polyester or even Ultrasuede, don’t they?  And natural fibers, being a bit of an artisan product, are highly prized especially in light of campaigns by various trade associations to brand fiber:    “the fabric of our lives” from Cotton, Inc. and merino wool with the pure wool label are two examples.                                                              

Preferences for natural fibers seem to be correlated with income; in one study, people with higher incomes preferred natural fibers by a greater percentage than did those in lower income brackets.   Cotton Incorporated funded a study that demonstrated that  66% of all women with household incomes over $75,000 prefer natural fibers to synthetic.

What are the reasons, according to the United Nations, that make natural fibers so important?  The UN website, Discover Natural Fibers lists the following reasons why natural fibers are a good choice.  Please remember that this list does not include organic natural fibers, which provide even more benefits (but that’s another post):

  1. Natural fibers are a healthy choice.
    1. Natural fiber textiles absorb perspiration and release it into the air, a process called “wicking” that creates natural ventilation. Because of their more compact molecular structure, synthetic fibers cannot capture air and “breathe” in the same way. That is why a cotton T-shirt is so comfortable to wear on a hot summer’s day, and why polyester and acrylic garments feel hot and clammy under the same conditions. (It also explains why sweat-suits used for weight reduction are made from 100% synthetic material.) The bends, or crimp, in wool fibers trap pockets of air which act as insulators against both cold and heat – Bedouins wear thin wool to keep them cool. Since wool can absorb liquids up to 35% of its own weight, woollen blankets efficiently absorb and disperse the cup of water lost through perspiration during sleep, leaving sheets dry and guaranteeing a much sounder slumber than synthetic blankets.
    2. The “breathability” of natural fiber textiles makes their wearers less prone to skin rashes, itching and allergies often caused by synthetics. Garments, sheets and pillowcases of organic cotton or silk are the best choice for children with sensitive skins or allergies, while hemp fabric has both a high rate of moisture dispersion and natural anti-bacterial properties.   Studies by Poland’s Institute of Natural Fibers have shown that 100% knitted linen is the most hygienic textile for bed sheets – in clinical tests, bedridden aged or ill patients did not develop bedsores. The institute is developing underwear knitted from flax which, it says, is significantly more hygienic than nylon and polyester. Chinese scientists also recommend hemp fiber for household textiles, saying it has a high capacity for absorption of toxic gases.
  2. Natural fibers are a responsible choice.
    1. Natural fibers production, processing and export are vital to the economies of many developing countries and the livelihoods of millions of small-scale farmers and low-wage workers. Today, many of those economies and livelihoods are under threat: the global financial crisis has reduced demand for natural fibers as processors, manufacturers and consumers suspend purchasing decisions or look to cheaper synthetic alternatives.
    2. Almost all natural fibers are produced by agriculture, and the major part is harvested in the developing world.
      1. For example, more than 60% of the world’s cotton is grown in China, India and Pakistan. In Asia, cotton is cultivated mainly by small farmers and the sale of cotton provides the primary source of income for some 100 million rural households.
      2. In India and Bangladesh, an estimated 4 million marginal farmers earn their living – and support 20 million dependents – from the cultivation of jute, used in sacks, carpets, rugs and curtains. Competition from synthetic fibers has eroded demand for jute over recent decades and, in the wake of recession, reduced orders from Europe and the Middle East could cut jute exports even further.
      3. Silk is another important industry in Asia. Raising silkworms generates income for some 700 000 farm households in India, while silk processing provide jobs for 20 000 weaving families in Thailand and about 1 million textile workers in China.
      4. Each year, developing countries produce around 500 000 tonnes of coconut fiber – or coir – mainly for export to developed countries for use in rope, nets, brushes, doormats, mattresses and insulation panels. In Sri Lanka, the single largest supplier of brown coir fiber to the world market, coir goods account for 6% of agricultural exports, while 500 000 people are employed in small-scale coir factories in southern India.
      5. Across the globe in Tanzania, government and private industry have been working to revive once-booming demand for sisal fiber, extracted from the sisal agave and used in twine, paper, bricks and reinforced plastic panels in automobiles. Sisal cultivation and processing in Tanzania directly employs 120 000 people and the sisal industry benefits an estimated 2.1 million people.
  3. Natural fibers are a sustainable choice.
    1. Natural fibers will play a key role in the emerging “green” economy based on energy efficiency, the use of renewable feed stocks in bio-based polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste.  Natural fibers are a renewable resource, par excellence – they have been renewed by nature and human ingenuity for millennia. During processing, they generate mainly organic wastes and leave residues that can be used to generate electricity or make ecological housing material. And, at the end of their life cycle, they are 100% biodegradable.
    2. An FAO study estimated that production of one ton of jute fiber requires just 10% of the energy used for the production of one ton of synthetic fibers (since jute is cultivated mainly by small-scale farmers in traditional farming systems, the main energy input is human labor, not fossil fuels).
    3. Processing of some natural fibers can lead to high levels of water pollutants, but they consist mostly of biodegradable compounds, in contrast to the persistent chemicals, including heavy metals, released in the effluent from synthetic fiber processing. More recent studies have shown that producing one ton of polypropylene – widely used in packaging, containers and cordage – emits into the atmosphere more than 3 ton of carbon dioxide, the main greenhouse gas responsible for global warming. In contrast, jute absorbs as much as 2.4 tonnes of carbon per tonne of dry fiber.
    4. The environmental benefits of natural fiber products accrue well beyond the production phase. For example, fibers such as hemp, flax and sisal are being used increasingly as reinforcing in place of glass fibers in thermoplastic panels in automobiles. Since the fibers are lighter in weight, they reduce fuel consumption and with it carbon dioxide emissions and air pollution.
    5. But where natural fibers really excel is in the disposal stage of their life cycle. Since they absorb water, natural fibers decay through the action of fungi and bacteria – this releases the fixed CO2 in the fibers and closes the cycle; it also improves soil structure.  Synthetics present society with a range of disposal problems. In land fills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants and, in the case of high-density polyethylene, 3 tonnes of carbon dioxide emissions for every tonne of material burnt. Left in the environment, synthetic fibers contribute, for example, to the estimated 640 000 tonnes of abandoned fishing nets and gear in the world’s oceans.
  4. Natural fibers are a high-tech choice.
    1. Natural fibers have intrinsic properties – mechanical strength, low weight and low cost – that have made them particularly attractive to the automobile industry.
      1. In Europe, car makers are using mats made from abaca, flax and hemp in press-molded      thermoplastic panels for door liners, parcel shelves, seat backs, engine shields and headrests.
        1. For consumers, natural fiber composites in automobiles provide better thermal and acoustic insulation than fiberglass, and reduce irritation of the skin and respiratory system. The low density of plant fibers also reduces vehicle weight, which cuts fuel consumption.
        2. For car manufacturers, the moulding process consumes less energy than that of fibreglass and produces less wear and tear on machinery, cutting production costs by up to 30%. The use of natural fibres by Europe’s car industry is projected to reach 100 000 tonnes by 2010. German companies lead the way. Daimler-Chrysler has developed a flax-reinforced polyester composite, and in 2005 produced an award-winning spare wheel well cover that incorporated abaca yarn from the Philippines. Vehicles in some BMW series contain up to 24 kg of flax and sisal. Released in July 2008, the Lotus Eco Elise (pictured above) features body panels made with hemp, along with sisal carpets and seats upholstered with hemp fabric. Japan’s carmakers, too, are “going green”. In Indonesia, Toyota manufactures door trims made from kenaf and polypropylene, and Mazda is using a bioplastic made with kenaf for car interiors.
    1. Worldwide, the construction industry is moving to natural fibres for a range of products, including light structural walls, insulation materials, floor and wall coverings, and roofing. Among recent innovations are cement blocks reinforced with sisal fibre, now being manufactured in Tanzania and Brazil. In India, a growing shortage of timber for the construction industry has spurred development of composite board made from jute veneer and coir ply – studies show that coir’s high lignin content makes it both stronger and more resistant to rotting than teak. In Europe, hemp hurd and fibres are being used in cement and to make particle boards half the weight of wood-based boards. Geotextiles are another promising new outlet for natural fibre producers. Originally developed in the Netherlands for the construction of dykes, geotextile nets made from hard natural fibres strengthen earthworks and encourage the growth of plants and trees, which provide further reinforcement. Unlike plastic textiles used for the same purpose, natural fibre nets – particularly those made from coir – decay over time as the earthworks stabilize.
  1. Natural fibers are a fashionable choice.
    John Patrick Organic Fall/Winter 2010
    1. Natural fibers are at the heart of a fashion movement that goes by various names: sustainable, green, uncycled, ethical, eco-, even eco-environmental. It focuses fashion on concern for the environment, the well-being of fiber producers and consumers, and the conditions of workers in the textile industry. Young designers now offer “100% carbon neutral” collections that strive for sustainability at every stage of their garments’ life cycle – from production, processing and packaging to transportation, retailing and ultimate disposal. Preferred raw materials include age-old fibres such as flax and hemp, which can be grown without agrochemicals and produce garments that are durable, recyclable and biodegradable. Fashion collections also feature organic wool, produced by sheep that have not been exposed to pesticide dips, and “cruelty-free” wild silk, which is harvested – unlike most silk – after the moths have left their cocoons.
    2. The Global Organic Textile Standard (GOTS)   sets strict standards on chemicals permitted in processing, on waste water treatment, packaging material and technical quality parameters, on factory working conditions and on residue testing.
    3. Sustainable fashion intersects with the “fair trade” movement, which offers producers in developing countries higher prices for their natural fibres and promotes social and environmental standards in fibre processing. Fair trade fashion pioneers are working with organic cotton producers’ cooperatives in Mali, hand-weavers groups in Bangladesh and Nepal, and alpaca producers in Peru. A major UK chain store launched in 2007 a fair trade range of clothing that uses cotton “ethically sourced” from farmers in the Gujarat region of India. It has since sold almost 5 million garments and doubled sales in the first six months of 2008.
    4. Another dimension of sustainable fashion is concern for the working conditions of employees in textile and garment factories, which are often associated with long working hours, exposure to hazardous chemicals used in bleaching and dyeing, and the scourge of child labor. The  Global Organic Textile Standard (GOTS), widely accepted by manufacturers, retailers and brand dealers, includes a series of “minimum social criteria” for textile processing, including a prohibition on the use of child labor, workers’ freedom of association and right to collective bargaining, safe and hygienic working conditions, and “living wages”.




How to buy a quality sofa – part 4: synthetic fibers

3 10 2012

So from last week’s post, you  know that you want a durable, colorfast fabric that will be lovely to look at and wonderful to live with.  What’s the best choice?  I’m so glad you asked.

You have basically two choices in fibers:  natural (cotton, linen, wool, hemp, silk)  or synthetic (polyester, acrylic, nylon, etc.).  Many fabrics today are made from blends of natural and synthetic fibers – it has been said that most sheet sets sold in the U.S. are cotton/poly blends.

Natural fibres breathe, wicking moisture from the skin, providing even warmth and body temperature;  they are renewable, and decay at end of life.  On the other hand, synthetics do not breathe,  trapping body heat and perspiration; they are based on crude oil, definitely a non-renewable resource and they do not decompose at end of life, but rather remain in our landfills, leaching their toxic monomers into our groundwater.  They are, however, cheap and durable.

I like to think that even without the health issues involved I’d choose to live with natural fibers, since they work so well with humans!  The fibers themselves present no health issues and they’re comfortable.  But they simply don’t last as long as synthetics. But I have begun to see the durability of synthetics as their Dorian Grey aspect, in other words they last so long that they’ve become a huge problem.  By not decomposing, they just break into smaller and smaller particles which leach their toxic monomers into our groundwater.

The impact on health (ours the the planet’s) is an issue that’s often overlooked when discussing the merits of natural vs. synthetic.   And it’s a complex issue, so this week we’ll explore synthetic fibers, and next week we’ll look at natural fibers.

The most popular synthetic fiber in use today is polyester.

At this point, I think it would be good to have a basic primer on polyester production, and I’ve unabashedly lifted a great discussion from Marc Pehkonen and Lori Taylor, writing in their website diaperpin.com:

Basic polymer chemistry isn’t too complicated, but for most people the manufacture of the plastics that surround us is a mystery, which no doubt suits the chemical producers very well. A working knowledge of the principles involved here will make us more informed users.

Polyester is only one compound in a class of petroleum-derived substances known as polymers. Thus, polyester (in common with most polymers) begins its life in our time as crude oil. Crude oil is a cocktail of components that can be separated by industrial distillation. Gasoline is one of these components, and the precursors of polymers such as polyethylene are also present.

Polymers are made by chemically reacting a lot of little molecules together to make one long molecule, like a string of beads. The little molecules are called monomers and the long molecules are called polymers.

Like this:

O + O + O + . . . makes OOOOOOOOOOOOOOOO

Depending on which polymer is required, different monomers are chosen. Ethylene, the monomer for polyethylene, is obtained directly from the distillation of crude oil; other monomers have to be synthesized from more complex petroleum derivatives, and the path to these monomers can be several steps long. The path for polyester, which is made by reacting ethylene glycol and terephthalic acid, is shown below. Key properties of the intermediate materials are also shown.

The polymers themselves are theoretically quite unreactive and therefore not particularly harmful, but this is most certainly not true of the monomers. Chemical companies usually make a big deal of how stable and unreactive the polymers are, but that’s not what we should be interested in. We need to ask, what about the monomers? How unreactive are they?

We need to ask these questions because a small proportion of the monomer will never be converted into polymer. It just gets trapped in between the polymer chains, like peas in spaghetti. Over time this unreacted monomer can escape, either by off-gassing into the atmosphere if the initial monomers were volatile, or by dissolving into water if the monomers were soluble. Because these monomers are so toxic, it takes very small quantities to be harmful to humans, so it is important to know about the monomers before you put the polymers next to your skin or in your home. Since your skin is usually moist, any water-borne monomers will find an easy route into your body.

Polyester is the terminal product in a chain of very reactive and toxic precursors. Most are carcinogens; all are poisonous. And even if none of these chemicals remain entrapped in the final polyester structure (which they most likely do), the manufacturing process requires workers and our environment to be exposed to some or all of the chemicals shown in the flowchart above. There is no doubt that the manufacture of polyester is an environmental and public health burden that we would be better off without.

What does all of that mean in terms of our health?  Just by looking at one type of cancer, we can see how our lives are being changed by plastic use:

  • The connection between plastic and breast cancer was first discovered in 1987 at Tufts Medical School in Boston by research scientists Dr. Ana Soto and Dr. Carlos Sonnenschein. In the midst of their experiments on cancer cell growth, endocrine-disrupting chemicals leached from plastic test tubes into the researcher’s laboratory experiment, causing a rampant proliferation of breast cancer cells. Their findings were published in Environmental Health Perspectives (1991)[1].
  • Spanish researchers, Fatima and Nicolas Olea, tested metal food cans that were lined with plastic. The cans were also found to be leaching hormone disrupting chemicals in 50% of the cans tested. The levels of contamination were twenty-seven times more than the amount a Stanford team reported was enough to make breast cancer cells proliferate. Reportedly, 85% of the food cans in the United States are lined with plastic. The Oleas reported their findings in Environmental Health Perspectives (1995).[2]
  • Commentary published in Environmental Health Perspectives in April 2010 suggested that PET might yield endocrine disruptors under conditions of common use and recommended research on this topic. [3]

These studies support claims that plastics are simply not good for us – prior to 1940, breast cancer was relatively rare; today it affects 1 in 11 women.  We’re not saying that plastics alone are responsible for this increase, but to think that they don’t contribute to it is, we think, willful denial.  After all, gravity existed before Newton’s father planted the apple tree and the world was just as round before Columbus was born.

Polyester fabric is soft, smooth, supple – yet still a plastic.  It contributes to our body burden in ways that we are just beginning to understand.  And because polyester is highly flammable, it is often treated with a flame retardant, increasing the toxic load.  So if you think that you’ve lived this long being exposed to these chemicals and haven’t had a problem, remember that the human body can only withstand so much toxic load – and that the endocrine disrupting chemicals which don’t seem to bother you may be affecting generations to come.

And then there is acrylic.  The key ingredient of acrylic fiber is acrylonitrile, (also called vinyl cyanide). It is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system.  According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  So could the acrylic fibers in our acrylic fabrics be a contributing factor to these results?

Acrylic fibers are just not terrific to live with anyway.  Acrylic manufacturing involves highly toxic substances which require careful storage, handling, and disposal. The polymerization process can result in an explosion if not monitored properly. It also produces toxic fumes. Recent legislation requires that the polymerization process be carried out in a closed environment and that the fumes be cleaned, captured, or otherwise neutralized before discharge to the atmosphere.(4)

Acrylic is not easily recycled nor is it readily biodegradable. Some acrylic plastics are highly flammable and must be protected from sources of combustion.

Just in case you missed the recent report which was published in Occupational and Environmental Medicine [5], a Canadian study found that women who work with some common synthetic materials could treble their risk of developing breast cancer after menopause. The data included women working in textile factories which produce acrylic fabrics – those women have seven times the risk of developing breast cancer than the normal population, while those working with nylon fibers had double the risk.

What about nylon?  Well, in a nutshell, the production of nylon includes the precursors benzene (a known human carcinogen) and hydrogen cyanide gas (extremely poisonous); the manufacturing process releases VOCs, nitrogen oxides and ammonia.  And finally there is the addition of those organophosphate flame retardants and dyes.

[1] http://www.bu-eh.org/uploads/Main/Soto%20EDs%20as%20Carcinogens.pdf

[2] http://ehp03.niehs.nih.gov/article/fetchArticle.action?articleURI=info:doi/10.1289/ehp.95103608

[3] Sax, Leonard, “Polyethylene Terephthalate may Yield Endocrine Disruptors”,
Environmental Health Perspectives, April 2010, 118 (4): 445-448

(4) ) http://www.madehow.com/Volume-2/Acrylic-Plastic.html

(5) Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817 (abstract: http://oem.bmj.com/content/67/4/263.abstract) SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321





How to buy a “quality” sofa – part 4, fabric

26 09 2012

This week we’ll begin to talk about the fabric used in your sofa – which we (of course) think is a very complicated and important topic! One thing to remember is that there is much more fabric used in constructing an upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind. But more important in evaluating durability than the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

And of course, any company can skew results in their favor.  This is an image I found on Google images, with abrasion test results from a company selling leather motorcycle clothing.  They did say that “leather will sometimes score up to 100,000 cycles or so on the Wyzenbeek test, but testing to destruction (over 50k cycles) doesn’t always prove much.”  No comment on these results !

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

  1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or      fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.
  2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.
  3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.





The case for natural fibers

26 06 2012

I’m going to be taking a few weeks off,  and thought I’d recycle some of our old posts.  So if you think you’ve seen these before – you have.   But the issues remain important and it doesn’t hurt to remind you.    I’ve updated the topics a bit if necessary.

Since the 1960s, the use of synthetic fibers has increased dramatically,  causing the natural fiber industry to lose much of its market share.  Polyester – especially recycled polyester - became the fabric of choice in the United States.   It was cheap, and oil was plentiful.  But with with dawning realization that the party might be over, polyester prices – and those of other synthetics – will reflect climbing oil prices, so the price of synthetics may equal those of natural fibers.

International Forum for Cotton Promotion

Natural fibers  have a history of being considered the highest quality fibers, valued for their comfort, soft hand and versatility.  They also carry a certain cachet:  cashmere, silk taffeta and 100% pure Sea Island cotton convey different images than does 100% rayon,  pure polyester or even Ultrasuede, don’t they?  And natural fibers, being a bit of an artisan product, are highly prized especially in light of campaigns by various trade associations to brand its fiber:   “the fabric of our lives” from Cotton, Inc. and merino wool with the pure wool label are two examples. 

Preferences for natural fibers seem to be correlated with income; in one study, people with higher incomes preferred natural fibers by a greater percentage than did those in lower income brackets.   Cotton Incorporated funded a study that demonstrated that  66% of all women with household incomes over $75,000 prefer natural fibers to synthetic.

What are the reasons, according to the United Nations, that make natural fibers so important?  As  the UN website, Discover Natural Fibers says:

  1. Natural fibers are a healthy choice.
    1. Natural fiber textiles absorb perspiration and release it into the air, a process called “wicking” that creates natural ventilation. Because of their more compact molecular structure, synthetic fibers cannot capture air and “breathe” in the same way. That is why a cotton T-shirt is so comfortable to wear on a hot summer’s day, and why polyester and acrylic garments feel hot and clammy under the same conditions. (It also explains why sweat-suits used for weight reduction are made from 100% synthetic material.) The bends, or crimp, in wool fibers trap pockets of air which act as insulators against both cold and heat – Bedouins wear thin wool to keep them cool. Since wool can absorb liquids up to 35% of its own weight, woollen blankets efficiently absorb and disperse the cup of water lost through perspiration during sleep, leaving sheets dry and guaranteeing a much sounder slumber than synthetic blankets.
    2. The “breathability” of natural fiber textiles makes their wearers less prone to skin rashes, itching and allergies often caused by synthetics. Garments, sheets and pillowcases of organic cotton or silk are the best choice for children with sensitive skins or allergies, while hemp fabric has both a high rate of moisture dispersion and natural anti-bacterial properties.   Studies by Poland’s Institute of Natural Fibers have shown that 100% knitted linen is the most hygienic textile for bed sheets – in clinical tests, bedridden aged or ill patients did not develop bedsores. The institute is developing underwear knitted from flax which, it says, is significantly more hygienic than nylon and polyester. Chinese scientists also recommend hemp fiber for household textiles, saying it has a high capacity for absorption of toxic gases.
  2. Natural fibers are a responsible choice.
    1. Natural fibers production, processing and export are vital to the economies of many developing countries and the livelihoods of millions of small-scale farmers and low-wage workers. Today, many of those economies and livelihoods are under threat: the global financial crisis has reduced demand for natural fibers as processors, manufacturers and consumers suspend purchasing decisions or look to cheaper synthetic alternatives.
    2. Almost all natural fibers are produced by agriculture, and the major part is harvested in the developing world.
      1. For example, more than 60% of the world’s cotton is grown in China, India and Pakistan. In Asia, cotton is cultivated mainly by small farmers and its sale provides the primary source of income of some 100 million rural households.
      2. In India and Bangladesh, an estimated 4 million marginal farmers earn their living – and support 20 million dependents – from the cultivation of jute, used in sacks, carpets, rugs and curtains. Competition from synthetic fibers has eroded demand for jute over recent decades and, in the wake of recession, reduced orders from Europe and the Middle East could cut jute exports by 20% in 2009.
      3. Silk is another important industry in Asia. Raising silkworms generates income for some 700 000 farm households in India, while silk processing provide jobs for 20 000 weaving families in Thailand and about 1 million textile workers in China. Orders of Indian silk goods from Europe and the USA are reported to have declined by almost 50% in 2008-09.
      4. Each year, developing countries produce around 500 000 tonnes of coconut fiber – or coir – mainly for export to developed countries for use in rope, nets, brushes, doormats, mattresses and insulation panels. In Sri Lanka, the single largest supplier of brown coir fiber to the world market, coir goods account for 6% of agricultural exports, while 500 000 people are employed in small-scale coir factories in southern India.
      5. Across the globe in Tanzania, government and private industry have been working to revive once-booming demand for sisal fiber, extracted from the sisal agave and used in twine, paper, bricks and reinforced plastic panels in automobiles. Sisal cultivation and processing in Tanzania directly employs 120 000 people and the sisal industry benefits an estimated 2.1 million people. However, the global slowdown has cut demand for sisal, forced a 30% cut in prices, and led to mounting job losses.
  3. Natural fibers are a sustainable choice.
    1. Natural fibers will play a key role in the emerging “green” economy based on energy efficiency, the use of renewable feed stocks in bio-based polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste.  Natural fibers are a renewable resource, par excellence – they have been renewed by nature and human ingenuity for millennia. They are also carbon neutral: they absorb the same amount of carbon dioxide they produce. During processing, they generate mainly organic wastes and leave residues that can be used to generate electricity or make ecological housing material. And, at the end of their life cycle, they are 100% biodegradable.
    2. An FAO study estimated that production of one ton of jute fiber requires just 10% of the energy used for the production of one ton of synthetic fibers (since jute is cultivated mainly by small-scale farmers in traditional farming systems, the main energy input is human labor, not fossil fuels).
    3. Processing of some natural fibers can lead to high levels of water pollutants, but if the processing is done to Global Organic Textile Standards, it consists mostly of biodegradable compounds, in contrast to the persistent chemicals, including heavy metals, released in the effluent from synthetic fiber processing.
    4. The environmental benefits of natural fiber products accrue well beyond the production phase. For example, fibers such as hemp, flax and sisal are being used increasingly as reinforcing in place of glass fibers in thermoplastic panels in automobiles. Since the fibers are lighter in weight, they reduce fuel consumption and with it carbon dioxide emissions and air pollution.
    5. But where natural fibers really excel is in the disposal stage of their life cycle. Since they absorb water, natural fibers decay through the action of fungi and bacteria. Natural fiber products (processed organically)  can be composted to improve soil structure, or incinerated with no emission of pollutants and release of no more carbon than the fibers absorbed during their lifetimes. Synthetics present society with a range of disposal problems. In land fills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants and, in the case of high-density polyethylene, 3 tonnes of carbon dioxide emissions for every tonne of material burnt. Left in the environment, synthetic fibers contribute, for example, to the estimated 640 000 tonnes of abandoned fishing nets and gear in the world’s oceans.
  4. Natural fibers are a high-tech choice.
    1. Natural fibers have intrinsic properties – mechanical strength, low weight  – that have made them particularly attractive to the automobile industry.
      1. In Europe, car makers are using mats made from abaca, flax and hemp in press-molded      thermoplastic panels for door liners, parcel shelves, seat backs, engine shields and headrests.
        1. For consumers, natural fiber composites in automobiles provide better thermal and acoustic insulation than fiberglass, and reduce irritation of the skin and respiratory system. The low density of plant fibers also reduces vehicle weight, which cuts fuel consumption.
        2. For car manufacturers, the moulding process consumes less energy than that of fibreglass and produces less wear and tear on machinery, cutting production costs by up to 30%.  German companies lead the way. Daimler-Chrysler has developed a flax-reinforced polyester composite, and in 2005 produced an award-winning spare wheel well cover that incorporated abaca yarn from the Philippines. Vehicles in some BMW series contain up to 24 kg of flax and sisal. Released in July 2008, the Lotus Eco Elise (pictured above) features body panels made with hemp, along with sisal carpets and seats upholstered with hemp fabric. Japan’s carmakers, too, are “going green”. In Indonesia, Toyota manufactures door trims made from kenaf and polypropylene, and Mazda is using a bioplastic made with kenaf for car interiors.
    1. Worldwide, the construction industry is moving to natural fibres for a range of products, including light structural walls, insulation materials, floor and wall coverings, and roofing. Among recent innovations are cement blocks reinforced with sisal fibre, now being manufactured in Tanzania and Brazil. In India, a growing shortage of timber for the construction industry has spurred development of composite board made from jute veneer and coir ply – studies show that coir’s high lignin content makes it both stronger and more resistant to rotting than teak. In Europe, hemp hurd and fibres are being used in cement and to make particle boards half the weight of wood-based boards. Geotextiles are another promising new outlet for natural fibre producers. Originally developed in the Netherlands for the construction of dykes, geotextile nets made from hard natural fibres strengthen earthworks and encourage the growth of plants and trees, which provide further reinforcement. Unlike plastic textiles used for the same purpose, natural fibre nets – particularly those made from coir – decay over time as the earthworks stabilize.
  1. Natural fibers are a fashionable choice.
    John Patrick Organic Fall/Winter 2010
    1. Natural fibers are at the heart of a fashion movement that goes by various names: sustainable, green, uncycled, ethical, eco-, even eco-environmental. It focuses fashion on concern for the environment, the well-being of fiber producers and consumers, and the conditions of workers in the textile industry. Young designers now offer “100% carbon neutral” collections that strive for sustainability at every stage of their garments’ life cycle – from production, processing and packaging to transportation, retailing and ultimate disposal. Preferred raw materials include age-old fibres such as flax and hemp, which can be grown without agrochemicals and produce garments that are durable, recyclable and biodegradable. Fashion collections also feature organic wool, produced by sheep that have not been exposed to pesticide dips, and “cruelty-free” wild silk, which is harvested – unlike most silk – after the moths have left their cocoons.
    2. The Global Organic Textile Standard (GOTS)   sets strict standards on chemicals permitted in processing, on waste water treatment, packaging material and technical quality parameters, on factory working conditions and on residue testing.
    3. Sustainable fashion intersects with the “fair trade” movement, which offers producers in developing countries higher prices for their natural fibres and promotes social and environmental standards in fibre processing. Fair trade fashion pioneers are working with organic cotton producers’ cooperatives in Mali, hand-weavers groups in Bangladesh and Nepal, and alpaca producers in Peru. A major UK chain store launched in 2007 a fair trade range of clothing that uses cotton “ethically sourced” from farmers in the Gujarat region of India. It has since sold almost 5 million garments and doubled sales in the first six months of 2008.
    4. Another dimension of sustainable fashion is concern for the working conditions of employees in textile and garment factories, which are often associated with long working hours, exposure to hazardous chemicals used in bleaching and dyeing, and the scourge of child labor. The recently approved (November 2008) Global Organic Textile Standard, widely accepted by manufacturers, retailers and brand dealers, includes a series of “minimum social criteria” for textile processing, including a prohibition on the use of child labor, workers’ freedom of association and right to collective bargaining, safe and hygienic working conditions, and “living wages”.




Eucalyptus fiber by any other name

2 03 2012

Fibers are divided into three main categories:

  • Natural – like flax, wool, silk and cotton
  • Manufactured – made from cellulose or protein
  • Synthetic – made from synthetic chemicals

The difference between “manufactured” and “synthetic” fibers is that the manufactured fibers are derived from naturally-occurring cellulose or protein, while synthetic fibers are not.  And  manufactured fibers are unlike  natural fibers because they require extensive processing (or at least more than is required by natural fibers) to become the finished product.  The category of “manufactured” fibers is often called “regenerated cellulose” fibers.  Cellulose is a carbohydrate and the chief component in the walls of plants.

Rayon is the oldest manufactured fiber, having been in production since the 1880s in France, where it was originally developed as a cheap alternative to silk.   Most rayon production begins with wood pulp, though any plant material with long molecular chains is suitable.

There are several chemical and manufacturing techniques to make rayon, but the most common method is known as the viscose process. In the viscose process, cellulose is treated with caustic soda (aka: sodium hydroxide) and carbon disulfide, converting it into a gold, highly viscous  liquid about the color and consistency of honey.  This substance gives its name to the manufacturing process, called the viscose process.

The viscous fluid is allowed to age, breaking down the cellulose structures further to produce an even slurry, and is then filtered to remove impurities.  Then the mixture is forced through fine holes, called a spinerette, directly into a chemical bath where it hardens into fine strands. When washed and bleached these strands become rayon yarn.

Although the viscose process of making rayon from wood or cotton has been around for a long time, it wasn’t until 2003 that a method was devised for using bamboo for this process.(3)  Suddenly, bamboo was the darling of marketers, and the FTC had to step in to remind manufacturers to label their products as “bamboo viscose” rather than simply bamboo.

Now we hear about fabrics made from  eucalyptus, or soy.  But it’s the same story – the fibers are created using the viscose process.  Because the FTC did not specifically name these two substances in their proclamation regarding bamboo,   marketers can claim fabrics are  “made from eucalyptus”.    The reality is that the viscose process can produce fibers from any cellulose or protein source – chicken feathers, milk and even bacteria have been used (rayon comes specifically from wood or cotton).  But those inputs are not nearly as exciting to the marketers as eucalyptus or soy, so nobody has been advertising fibers made from bacteria.

After the brouhaha about bamboo viscose hit the press, many people did a quick scan of viscose and declared it “unsafe” for the environment.  The reason the viscose process is thought to be detrimental to the environment is based on the process chemicals used. Though sodium hydroxide is routinely used in the processing of organic cotton, and is approved by the Global Organic Textile Standard (GOTS), carbon disulfide can cause nervous system damage with chronic exposure.  And that “chemical bath” to harden the threads?  Sulfuric acid.  But these chemicals do not remain as a residue on the fibers – the proof of this is that almost all of the viscose produced can be (and often is) Oeko Tex certified (which certifies that the finished fiber has been tested for any chemicals which may be harmful to a person’s health and contains no trace of these chemicals.)

The environmental burden comes in disposing of these process chemicals: the sodium hydroxide (though not harmful to humans) is nevertheless harmful to the environment if dumped into our rivers as untreated effluent. Same with carbon disulfide  and, certainly, sulfuric acid.  And there are emissions of these chemicals as well, which contribute to greenhouse gasses.  And the reason that these fibers can be Oeko Tex certified:  Oeko Tex certifies only the final product, i.e.,the fibers or the fabric.  They do not look at the production process, which is where the majority of the environmental burden is found.  And then of course there is the weaving of these viscose fibers into fabric – if done conventionally, the environmental burden is devastating (in terms of chemical and water use) and the fabric itself probably contains many chemicals known to be harmful to our health.

Certainly the standard viscose production process is definitely NOT environmentally friendly, but then there is Tencel ® and Modal ®.   These fibers are manufactured by the Austrian company Lenzing, which  advertises its environmentally friendly production processes, based on closed loop systems.  Lyocell is the generic name for the fibers produced by Lenzing, which are not produced by the traditional viscose process but rather by solvent spinning.

According to Lenzing:

  • There is an almost complete recovery of the solvent, which both minimizes emissions and conserves resources.  Lenzing uses  a new non-toxic solvent (amine oxide) and the cellulose is dissolved in N-Methylmorpholine N-oxide rather than sulfuric acid. Water is also evaporated, and the resulting solution filtered and extruded as filaments through spinnerets into an aqueous bath. Over 99% of the solvent can washed from the fiber and purified for re-use. The water is also recycled.
  •  The by products of production, such as acetic acid, xylose and sodium sulphate are key ingredients in the food and glass industry. Remaining materials are used as energy for the Lenzing process.
  • Tencel ® is made from eucalyptus, which is grown on marginal land unsuitable for food crops; these trees are grown with a minimum of water and are grown using sustainable forestry initiatives.
  • The final fibers are biodegradable and can decompose in soil burial or in waste water treatment plants.

So Lenzing fibers can be considered a good choice if you’re looking for a sustainable fiber – in fact there is a movement to have Lenzing Tencel® eligible for GOTS certification, which we support, because the production of these fibers conforms with the spirit of GOTS.  They already have the EU Flower certification.

But Lenzing does not make fabrics – it sells yarns to mills and others which use the yarns to make fabric and other goods.

So  we’re back to the beginning again, because people totally forget about the environmental impact in the weaving of fibers into fabric, where the water and chemical use is very high –  if done conventionally, the environmental burden is devastating  and the finished fabric itself probably contains many chemicals which are outlawed in other products.

It’s critically important to look at both the fiber as well as the weaving in order to make a good choice.





Why use organic fabrics for your new baby?

5 10 2011

Illnesses — including remarkable combinations of symptoms — are on the rise.

  • Over the past 50 years, there has been a steady increase in the incidence of children developing cancer[1], asthma[2], attention deficit disorders[3], allergies[4], autoimmune disorders[5],  and others.

So too are the numbers of chemicals getting mixed inside us (studies have shown that babies are born pre-polluted)[6].   Chemicals accumulate, interact within the body, cause illness.

  • This is due to industrial chemicals being used in products that weren’t even formulated prior to about 1950.  Our children are subjected to an endless barrage of artificial pathogens that tax their systems to the max.

Is there a connection between the rise in illnesses and products you use in your home?

Yes.

  • But inadequate data exists regarding the chronic (long term, low level) health risks of most chemicals, and proving an absolute link between chemicals and these disorders isn’t easy, because in most cases it’s a slow-brewing condition that can smolder for decades before symptoms appear.  Furthermore, the timing of toxic exposure plays a much more significant role than previously recognized – babies exposed during critical periods of development often have a more severe reaction than those exposed at other times.

The chemicals used in textile processing are among the most toxic known, yet the fabrics themselves are often overlooked as a source of pollution.

Using organic products (like fabrics) is especially important for children, because children tend to be more influenced by their environment than adults.  Children are still developing, and many of these developmental processes are very sensitive to environmental contaminants, which can easily disrupt development.  Also, children take in much more of their environment relative to their body weight.   This amount, called the dose, has a much greater effect on children than on the adults around them, because children’s bodies are much smaller.  And finally, children tend to come in contact with environmental contaminants more often than adults do, simply because of their habits – like the two year olds who put everything in their mouths, or toddlers who spend a lot of time in the dust on the floor, where contaminants collect.

In outfitting your nursery, you see lots of information about baby products – lotions, powders, foods.  But please remember that there are other products that impact your child’s health, such as mattresses and fabrics.  You almost never hear somebody mention fabrics as a source of pollution – are they really so important?  Remembering that new studies are demonstrating that even nano doses of chemicals can contribute to disease over time, there are also many studies which specifically linked diseases to chemicals found in textiles:

  • In 2007, The National Institutes of health and the University of Washington released the findings of a 14 year study that demonstrates those who work with textiles were significantly more likely to die from an autoimmune disease than people who didn’t.[7]
  • A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[8]
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[9]
  • Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[10] Note:  lead is a common component in textile dyestuffs.
  • Many of the chemicals found in fabrics (which are, after all, about 27% synthetic chemicals, by weight) are known to have negative health effects, such as:
    • Disruptions during development (including autism, which now occurs in 1 of every 110 births in the US); attention deficit disorders (ADD) and hyperactivity (ADHD).   Chemicals commonly used in textiles which contribute:
  • Breathing difficulties, including asthma ( in children under 5 asthma has increased 160%  between 1980-1994[11])  and allergies. Chemicals used in textiles which contribute:
    • Formaldehyde, other aldehydes
    • Benzene, toluene
    • phthalates
  • Cancer  –  all childhood cancers have grown at about 1% per year for the past two decades[12]; the environmental attributable fraction of childhood cancer can be between 5% and 90%, depending on the type of cancer[13].  Chemicals linked to cancers, all of which are used in textile processing:
    • Formaldehyde
    • Lead, cadmium
    • Pesticides
    • Benzene
    • Vinyl chloride

So how do you try to limit your child’s exposure to this chemical contamination?

  • Our #1 recommendation is to use only natural fiber fabrics, rather than synthetics (including those ubiquitous cotton/poly blends), which are petroleum based and made entirely of toxic chemicals.   On top of that, synthetics are highly flammable.  So ditch the synthetics.
  • And don’t think that a fabric made of “organic cotton” is safe, because that doesn’t address the question of processing, where all the chemical contamination occurs.  If you use natural fibers, try to find GOTS  or Oeko Tex certified fabrics.
  • Don’t buy clothing or bedding (or anything made of fabric) that has a stain resistant or wrinkle resistant finish on it:  stain resistant finishes contain perfluorochemicals (Teflon, Scotchguard, Stainmaster, Crypton, Nanotex, Gore-Tex) and wrinkle resistant finishes use formaldehyde.
  • Crib mattresses are often made of polyurethane foam enclosed in vinyl covers.  These plastic products are made by combining highly toxic chemicals together to form the final material. When your child is asleep, every breath pulls in air that is literally inches away from the petroleum chemical materials used in the manufacturing of the bed itself.  With each breath, these chemical molecules are pulled across the child’s airways and then transferred to the blood from deep within the lungs. This process is repeated with each breath 365 nights a year.[14]
    Best choice:  Buy a natural latex core covered in organic GOTS or Oeko Tex certified fabric.
  • Sleepwear, bedding, even curtains and upholstery fabric – because they’re  made of fabric!  Why should you use organic fabrics – not just fabrics made with organic fibers –  for your baby?  The skin is the largest organ of the body and the skin allows many chemicals to pass into your baby through absorption.  Also, a baby’s skin is thinner and more permeable than an adult’s skin.  Not to mention the fact that many chemicals evaporate, to be breathed in.   Best choice:  GOTS or Oeko Tex certified fabrics.
  • Diapers – first choice would be organic diapers made of natural fibers (GOTS or Oeko Tex certified) – even though it probably means you’ll have to do the diaper laundering.   Hey, there are worse things.

[1] Reinberg,
“US Cancer Rates Continue to Fall”, Business Week, March 31, 2011; all
childhood cancers have grown at about 1% per year for the past two decades[1]

[5]
Type 1 diabetes has increased fivefold in past 40 years, in children 4 and
under, it’s increasing 6% per year. http://www.washingtonpost.com/wp-dyn/content/article/2008/03/14/AR2008031403386.html

[6]
Goodman, Sarah,  “Tests Find More than
200 Chemicals in Newborn Umbilical Cord Blood”, Scientific American, December,
2009.

[7]
Nakazawa, Donna Jackson, “Diseases Like Mine Are a Growing Hazard”, Washington
Post
, March 16, 2008.

[8]
Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[9]
Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817  SEE ALSO:  http://www.breastcancer.org/risk/new_research/20100401b.jsp  AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[10]
Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead
Exposure”, PLoS Med 2008 5(5): e112.

[13] Gouveia-Vigeant,
Tami and Tickner, Joel,  “Toxic Chemicals
and Childhood Cancer:  a review of the
evidence”, U of Massachusetts, May 2003

[14] http://www.chem-tox.com/beds/frame-beds.htm.  See also “Respiratory Toxicity of mattress
emissions in mice”, Archives of Environmental health, 55 (1): 38-43, 2000.





Global Organic Textile Standard

2 09 2011

In the 1980’s, producers of eco-friendly textiles generally worked under the umbrella of  organic food associations.  However, they found that the food association was impractical for textile producers because  although the growing and harvesting of food and fiber crops were similar, the processing of fibers in preparation to make fabric varied widely.  The organic food associations were concerned primarily with food related issues.   In addition, organic fabrics and fashion was being shown in specialized stores rather than in organic food markets.

In 2002, at the Intercot Conference in Dusseldorf, Germany, a workshop with representatives of organic cotton producers, the textile industry, consumers, standard organizations and certifiers discussed the need for a harmonized and world-wide recognized organic textile standard.  The many different standards, they felt, was causing confusion and acting as a obstacle to international exchange and recognition of organic fabrics.  As a result of this workshop, the  “International Working Group on Global Organic Textile Standard“ (IWG) was founded, with an aim to work on the codification of various regional approaches and to develop a set of global standards.  Members of this group included Internationale Verband der Naturtextilwirtschaft e. V.“ (IVN),  the  Organic Trade Association (United States), the Soil Association (England)  and Japan Organic Cotton Association  (Japan).

In 2006, their work was published as the Global Organic Textile Standard (GOTS) , which has since evolved into the leading set of criteria in the field of organic textile processing.  A main achievement of this group was the ability to compromise and to find even consensus for points that were considered to be ‘non-negotiable’.   Not all standard organizations that participated the process ended up with signing the agreement of the Working Group.

From the GOTS website:  “Since its introduction in 2006 by the International Working Group on Global Organic Textile Standard, the GOTS has gained universal recognition, led to abolishment of numerous previous similar standards of limited application and has become – with more than 2750 certified textile processing, manufacturing and trading operators in more than 50 countries and an abundance of certified products – the leading standard for the processing of textile goods using organic fibers, including environmentally oriented technical as well as social criteria.”  This is a major accomplishment, especially given the global nature of the textile supply chain.

Beside the technical requirements a certifier has to meet to become approved by the IWG for GOTS certification, it is also a prerequisite that he discontinues use of any other certification. This measure was chosen to support the goal of a harmonized Global Standard and related certification system that allows certified suppliers to export their organic textiles with one certificate recognized in all relevant sales markets in order to strengthen the awareness and market for organic textiles.

The following standards have become completely harmonized with GOTS:

  • North American Fiber Standard – Organic Trade Association (USA)
  • Guidelines ‘Naturtextil IVN Zertifiziert’ – International Association Natural Textile Industry (Germany)
  • Standards for Processing and Manufacture of Organic Textiles – Soil Association (England)
  • EKO Sustainable Textile Standard – Control Union Certifications (formerly SKAL)
  • Standards for Organic Textiles – Ecocert (France)
  • Organic Textile Standard – ICEA (Italy)
  • Standards for Organic Textiles – ETKO (Turkey)
  • Organic Fiber Standards – Oregon Tilth (USA)
  • Standards for Processing of Organic Textile Products – OIA (Argentina)

One member of the IWG offers beside GOTS as their basic standard one further standard for certification that complies with GOTS but contains some additional requirements:

  • Guidelines ‘Naturtextil IVN Zertifiziert BEST’ – International Association Natural Textile Industry (Germany)

GOTS aims to define a universal standard for organic fabrics—from harvesting the raw materials, through environmentally and socially responsible manufacturing, to labeling—in order to provide credible assurance to consumers. Standards apply to fiber products, yarns, fabrics and clothes and cover the production, processing, manufacturing, packaging, labeling, exportation, importation and distribution of all natural fiber products.   GOTS provides a continuous quality control and certification system from field to shelf.  A GOTS certified fabric is therefore much more than just a textile which is made from organic fibers.

Why is this a big deal?  As we’ve said before, it’s like taking organic apples, and cooking them with Red Dye #2, preservatives, emulsifiers, and stabilizers -  you can’t call the finished product organic applesauce.  Same is true with fabrics, which contain as much as 27% (by weight) synthetic chemicals.

And in today’s world, with the complex supply chain that multinational companies like Wal-Mart, Nordstrom and Levi’s use, this is a very big deal.   As companies attempt to get a handle on their suppliers and maintain quality control, the list of universally understood environmental criteria in GOTS  is coming in handy. While consumers probably won’t see a GOTS tag on conventional cotton jeans, some companies are asking suppliers to use only GOTS-certified dyes and chemicals on conventional cotton clothing.  In fact, the companies mentioned above, along with Banana Republic, H&M and Target are just some of the companies that plan to use GOTS certification for their organic products.

The GOTS standard includes:

  • Harvesting criteria which requires the use of from 70% to 95% organic fiber.
    • As the GOTS website explains, “As it is to date technically nearly impossible to produce any textiles in an industrial way without the use of chemical inputs, the approach is to define criteria for low impact and low residual natural and synthetic chemical inputs.   So in addition to requiring that   all inputs have to meet basic requirements on toxicity and biodegradability GOTS also  prohibits entire classes of chemicals, rather than calling out specific prohibited chemicals.  What that means is that instead of prohibiting, for example lead and cadmium (and therefore allowing other heavy metals by default), GOTS prohibits ALL heavy metals.  Here’s the Version 3.0 list:
SUBSTANCE GROUP CRITERIA
Aromatic solvents Prohibited
Chlorophenols (such as TeCP, PCP) Prohibited
Complexing agents and surfactants Prohibited are: All APEOS, EDTA, DTPA, NTA, LAS, a-MES
Fluorocarbons Prohibited (i.e., PFOS, PFOA)
Formaldehyde and short-chain aldehydes Prohibited
GMO’s Prohibited
Halogenated solvents Prohibited
Heavy Metals Prohibited
Inputs containing functional nanoparticles Prohibited
Inputs with halogen containing compounds Prohibited
Organotin compounds Prohibited
Plasticizers (i.e., Phthalates, Bisphenol A and all others with endocrine disrupting potential) Prohibited
Quaternary ammonium compounds Prohibited: DTDMAC, DSDMAC and DHTDM
  • Environmental manufacturing practices, with a written environmental policy, must be in place.
  • Environmentally safe processing requirements, which includes wastewater treatment internally before discharge to surface waters, must be in place.  This pertains to pH and  temperature as well as to biological and chemical residues in the water.
  • Environmentally sound packaging requirements are in place; PVC in packaging is prohibited, paper must be post-consumer recycled or certified according to FSC or PEFC.
  • Labor practices are interpreted in accordance with the International Labor Organization (ILO – no forced, bonded, or slave labor; workers have the right to join or form trade unions and to bargain collectively; working conditions are safe and hygienic; there must be no new recruitment of child labor (and for those companies where children are found to be working, provisions must be made to enable him to attend and remain in quality education until no longer a child);  wages paid must meet, at a minimum, national legal standards or industry benchmarks, whichever is higher; working hours are not excessive and inhumane treatment is prohibited.
  • GOTS has a dual system of quality assurance consisting of on-side annual inspection (including possible unannounced inspections based on risk assessment of the operations) and residue testing.
  • There are requirements surrounding exportation, importation and distribution of all natural fibers.

In June, 2011, The Global Organic Textile Standard launched an open comment period on it’s first revision draft of the new GOTS version 3.0.  Following this announcement, IFOAM collected comments from its members and related stakeholders in order to shape the position of the movement towards the Global Organic Textile Standard.

A total of 36 persons and/or organizations sent their comments to IFOAM.  Two important issues were raised:  90% of the respondents were against the use of nanotechnologies in organic textiles (5% abstention, 5% in favor),  and 86 % were in principle against the use of synthetic chemicals in textiles labeled as organic (3% abstention, 11% in favor). Based on the feedback provided, IFOAM submitted detailed comments to GOTS and proposed:

  • to further restrict the use of synthetic substances, possibly switching to a positive list of allowed substances, instead of a list of forbidden ones.
  • to add requirements to ban the deliberate use of nano-technologies in the textile processing.

GOTS is a positive ethical choice among both consumers and producers and is the most comprehensive in terms of addressing environmental issues.  Although it is difficult to obtain, it can lead to important strategic business benefits.

However, the GOTS certification applies to only natural fibers, so it cannot be applied to polyester or other synthetic fibers, which are by far the most popular fiber choice in the U.S. today.  In addition, it does not directly address the carbon footprint of an organization or its production practices.  (Please note: the choice of a fabric made of organically raised natural fibers has been shown to have a much lower carbon impact than any fabric made of synthetic fibers.  We touched on that in our some of our blog posts; click here and here to read them.)





Food vs. Fiber

2 03 2011

We’ve often been asked where we stand on the question of growing fiber crops on agricultural land when so many people go to bed hungry each night.  In today’s world, you must add another “F” to the equation:  fuel, because there is such a growing interest in biomass as energy. In fact, the picture is even more complicated than the phrase “food, fuel or fiber” suggests, because of the increasingly complex interactions between agriculture and industry.

One facet of the complexity of the situation is that most of these crops have multiple uses.  Sixty-five percent of the cotton crop, the world’s most popular natural fiber, is used for products other than fiber.  Or, put another way, we eat more of the cotton crop than we wear.  Other natural fibers also have multiple uses:

  • Cottonseed, flaxseed and hempseed are all used in food products
  • Biomass from hemp is much greater than that of any other natural fiber crop, and made hemp a darling of the biofuel industry.  All fiber crops can be used for biofuels
  • Many crops are used in livestock feed, pet food, and animal bedding and litter
  • They are all components of biobased polymers and other biocomposits

There was a wonderful explanation of the Food v. Fuel and Fiber argument made on Wordchanging.com, in December 2008, “Food, Fuel and Fiber? The Challenge of Using the Earth to Grow Energy” by Alan Atkisson.  We have summarized the major points below:

The question is, do we have enough land to grow all the food, fuel and fiber that we’re likely to need?  The answer to that question appears to be yes — but only in theory. The International Energy Agency notes that estimates on the potential for growth in biofuel production “vary considerably,” and that the most optimistic numbers “are based on the assumption of no water shortage and increased food agriculture yields in the coming decades, partly due to genetically modified crops.” This is a controversial assumption, to say the least.

Surveys from space show that there is still quite a lot of natural-plant-covered Earth remaining, which could be used for producing food, fuel, and fiber for human use. NASA recently studied how much of the Earth’s total land-based “Net Primary Productivity” — that is, the amount of solar energy captured by plants — is being used by humans, and it amounts to only 20% at the global scale. In other words, we could theoretically grow a lot more of everything on the productive land that remains.  Theoretically.

But of course, “growing more of everything” means converting more natural ecosystems into human agricultural and industrial systems. According to the Millennium Ecosystem Assessment, humans have already used up about half of the earth’s ecosystems, by converting them not just into agricultural land, but into houses, roads, cities, industrial installations, and even (unfortunately) deserts. To make matters still more complicated, draw-downs in things like ecosystems and other forms of “natural capital” are not a predictable, linear processes. There are “tipping points” in those systems, points of no return beyond which gradual change switches to sudden, irreversible change. As an example, while the IUCN, the world’s largest conservation organization, was preparing its report that a quarter of the world’s mammals face extinction, a scientist for energy giant BP was being quoted as saying that his company was interested in “the green parts” of the entire globe for possible development into biofuel production.

In systems-thinking terms, this change in energy technology, policy, and markets has greatly expanded and complexified a system that was not exactly simple to start with. The growth of biofuel and fiber demand has created new couplings, new feedback loops, and new, unpredictable complexities in the global agro-economic system. The global energy/food/fiber market has become the very definition of a “wicked problem,” which is a term invented by design theorist Horst Rittel. Wicked problems are “messy, circular, and aggresive” — a very apt summary of how the food-fuel-fiber system is behaving.

Wicked problems, said Rittel and his co-theorist Webber, are a special breed of problem. There is no way to get complete information about them. There is no “best” solution to them. Trial-and-error is the only strategy; better or worse is the only way to characterize the results. In the coming years, the world economy will be involved in a vast trial-and-error effort to “balance the books” between fuel, food, and fiber, while also trying to solve the other wicked problem that triggered the increase in biofuel production in the first place: climate change.

So is it possible to find evidence of the possibility of success now?  Fortunately, yes. Worldchanging pointed to a small farm in Italy which aims to be the world’s first carbon neutral farm – in just one year.  This optimism makes it possible to imagine the entire global farming sector following a similar stragety, guided by sustainability principles.  And new research is constantly being done which changes the expected parameters.  For example,  it’s possible, through biotechnology and other agricultural improvements, to increase yields of fiber and fuel crops using marginal lands.  For example:

  • We can grow fiber/fuel crops on barren land, brownfields, and  salt marshes.  A recent study has found that we can even grow fiber crops on radioactively contaminated arable land.
  • We can irrigate and fertilize with wastewater

As a result, we can have schemes for biomass energy plants, sugar plantations growing both sugar and ethanol, and wastewater-treating algae harvested for fuel.

Flat statements about fuel and fiber competing with food are ultimately products of limited imaginations.








Follow

Get every new post delivered to your Inbox.

Join 1,199 other followers