Textiles and water use

24 02 2010

Water.  Our lives depend on it.  It’s so plentiful that the Earth is sometimes called the blue planet – but freshwater is a remarkably finite resource that is not evenly distributed everywhere or to everyone.  The number of people on our planet is growing fast, and our water use is growing even faster.  About 1 billion people lack access to potable water, and about 5 million people die each year from poor drinking water, or poor sanitation often resulting from water shortage[1] – that’s 10 times the number of people killed in wars around the globe.[2] And the blues singers got it right: you don’t miss your water till the well runs dry.

I just discovered that the word “rival” comes from the Latin (rivalis) meaning those who share a common stream.  The original meaning, apparently, was closer to our present word for companion, but as words have a way of doing, the meaning became skewed to mean competition between those seeking a common goal.

This concept – competition between those seeking a common goal – will soon turn again to water, since water, as they say, is becoming the “next oil”;  there’s also talk of “water futures” and “water footprints”  – and both governments and big business are looking at water (to either control it or profit from it).  Our global water consumption rose sixfold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.  The pressure is on.

Note: There are many websites and books which talk about the current water situation in the world, please see our bibliography which is at the bottom of this post.

What does all this have to do with fabrics you buy?

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, bleaching and mercerizing, use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used in that step before moving on to the next step.  The water used is usually returned to our ecosystem without treatment – meaning that the wastewater which is returned to our streams contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

When we say the textile industry uses a lot of water, just how much is a lot?  One example we found:  the Indian textile industry uses 425,000,000 gallons of water every day [3] to process the fabrics it produces.  Put another way, it takes about 20 gallons of water to produce one yard of upholstery weight fabric.  If we assume one sofa uses about 25 yards of fabric, then the water necessary to produce the fabric to cover that one sofa is 500 gallons.  Those figures vary widely, however, and often the water footprint is deemed higher.  The graphic here is from the Wall Street Journal, which assigns 505 gallons to one pair of Levi’s 501 jeans [4]:

The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

The process chemicals used by the mills are used on organic fibers just as they’re used on polyesters and conventionally produced natural fibers.  Unless the manufacturer treats their wastewater – and if they do they will most assuredly let you know it, because it costs them money – then we have to assume the worst.  And the worst is plenty bad.  So just because you buy something made of “organic X”, there is no assurance that the fibers were processed using chemicals that will NOT hurt you or that the effluent was NOT discharged into our ecosystem, to circulate around our planet.

You might hear from plastic manufacturers that polyester has virtually NO water footprint, because the manufacturing of the polyester polymer uses very little water – compared to the water needed to grow or produce any natural fiber.  That is correct.  However, we try to remind everyone that the production of a fabric involves two parts:

  • The production of the fiber
  • The weaving of the fiber into cloth

The weaving portion uses the same types of process chemicals – same dyestuffs, solubalisers and dispersents, leveling agents, soaping, and dyeing agents, the same finishing chemicals,  cationic and nonionic softeners, the same FR, soil and stain, anti wrinkling or other finishes – and the same amount of water and energy.  And recycled polyesters have specific issues:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[5]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.

So water treatment of polyester manufacturing should be in place also.  In fact there is a new standard called the Global Recycle Standard, which was issued by Control Union Certifications.   The standard has strict environmental processing criteria in place in addition to percentage content of recycled  product – it includes wastewater treatment as well as chemical use that is based on the Global Organic Textile Standard (GOTS) and the Oeko-Tex 100.

And to add to all of this, Maude Barlow, in her new book, Blue Covenant (see bibliography below) argues that water is not a commercial good but rather a human right and a public trust.  These mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water a a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

BIBLIOGRAPHY:

The World’s Water:  http://www.worldwater.org/

Water.org:    http://water.org/learn-about-the-water-crisis/facts/

Ground water and drinking water:  http://www.epa.gov/ogwdw000/faq/faq.html

New York Times series, Toxic Waters:  http://projects.nytimes.com/toxic-waters

Barlow, Maude, “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008

Water Footprint Network:  http://www.waterfootprint.org/?page=files/home


[1]Tackling the Big Three (air and water pollution, and sanitation), David J. Tenenbaum, Environmental Health Perspectives, Volume 106, Number 5, May 1998.

[2] Kirby, Alex, “Water Scarcity: A Looming Crisis?”, BBC News Online

[3] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment, New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur, South India”, Prakash Nelliyat, Madras School of Economics.

[4] Alter, Alexandra, “Yet Another Footprint to worry about: Water”, Wall Street Journal, February 17, 2009

[5] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008





Will the antimony in polyester fabric hurt me?

17 02 2010

Synthetic fibers are the most popular fibers in the world with 65% of world production of fibers being synthetic and  35%  natural fibers. (1)  Fully  70% of that synthetic fiber production is polyester. There are many different types of polyester, but the type most often produced for use in textiles is polyethylene terephthalate, abbreviated PET.   Used in a fabric, it’s most often referred to as “polyester” or “poly”.  It is very cheap to produce, and that’s a primary driver for its use in the textile industry.

The majority of the world’s PET production – about 60% – is used to make fibers for textiles; and about  30% is used to make bottles.   Annual PET production requires 104 million barrels of oil  – that’s 70 million barrels just to produce the virgin polyester used in fabrics.(2)  That means most polyester – 70 million barrels worth -  is manufactured specifically to be made into fibers, NOT bottles, as many people think.  Of the 30% of PET which is used to make bottles, only a tiny fraction is recycled into fibers.  But the idea of using recycled bottles – “diverting waste from landfills” – and turning it into fibers has caught the public’s imagination.  There are many reasons why using recycled polyester (often called rPET) is not a good choice given our climate crisis, but today’s post is concentrating on only one aspect of polyester: the fact that antimony is used as a catalyst to create PET.  We will explore what that means.

Antimony is present in 80 – 85% of all virgin PET.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  The industry will say that  although antimony is used as a catalyst in the production process, it  is “locked” into the finished polymer, and not a concern to human health.  And that’s correct:   antimony used in the production of  PET fibers becomes chemically bound to the PET polymer  so your PET fabric does contain antimony but it isn’t available to your living system. (2)

But wait!  Antimony is leached from the fibers during the high temperature dyeing process.  The antimony that leaches from the fibers  is expelled with the wastewater into our rivers (unless the fabric is woven at a mill which treats its wastewater).  In fact, as much as 175ppm of antimony can be leached from the fiber during the dyeing process. This seemingly insignificant amount translates into a burden on water treatment facilities when multiplied by 19 million lbs each year -  and it’s still a hazardous waste when precipitated out during treatment. Countries that can afford technologies that precipitate the metals out of the solution are left with a hazardous sludge that must then be disposed of in a properly managed landfill or incinerator operations. Countries who cannot or who are unwilling to employ these end-of-pipe treatments release antimony along with a host of other dangerous substances to open waters.

But what about the antimony that remains in the PET fabric?  We do know that antimony leaches from PET bottles into the water or soda inside the bottles.  The US Agency for Toxic Substances and Disease Registry says that the antimony in fabric is very tightly bound and does not expose people to antimony, (3) as I mentioned earlier.    So if you want to take the government’s word for it,  antimony in  PET  is not a problem for human health  -  at least directly in terms of exposure from fabrics which contain antimony.  (Toxics crusader William McDonough has been on antimony’s case for years, however, and takes a much less sanguine view of antimony. (4) )

Antimony is just not a nice thing to be eating or drinking, and wearing it probably won’t hurt you, but the problem comes up during the production process  – is it released into our environment?  Recycling PET is a high temperature process, which creates wastewater tainted with antimony trioxide – and  the dyeing process for recycled PET is problematic as I mentioned in an earlier post.   Another problem occurs when the PET (recycled or virgin) is finally incinerated at the landfill – because then the antimony is released as a gas (antimony trioxide).  Antimony trioxide  has been classified as a carcinogen in the state of California since 1990, by various agencies in the U.S. (such as OSHA, ACGIH and IARC)  and in the European Union.  And the sludge produced during PET production (40 million pounds in the U.S. alone) when incinerated creates 800,000 lbs of fly ash which contains antimony, arsenic and other metals used during production.(5)

Designers are in love with polyesters because they’re so durable – and cheap (don’t forget cheap!).  So they’re used a lot for public spaces.  Abrasion results are a function not only of the fiber but also the construction of the fabric, and cotton and hemp can be designed to be very durable, but they will never achieve the same abrasion results that some polyesters have achieved – like 1,000,000 rubs.  In the residential market, I would think most people wouldn’t want a fabric to last that long – I’ve noticed sofas which people leave on the streets with “free” signs on them, and never once did I notice that the sofa was suffering from fabric degredation!  The “free” sofa just had to go because it was out of style, or stained, or something – I mean, have you even replaced a piece of furniture because the fabric had actually worn out?  Hemp linens have been known to last for generations.

But I digress.   Synthetic fibers can do many things that make our lives easier, and in many ways they’re the true miracle fibers.  I think there will always be a place for (organic) natural fibers, which are comfortable and soothing next to human skin.  And they certainly have that cachet: doesn’t  silk damask sound better than Ultrasuede? The versatile synthetics have a place in our textile set – but I think the current crop of synthetics must be changed so the toxic inputs are removed and the nonsustainable feedstock (oil) is replaced.  I have great hope for the biobased polymer research going on, because the next generation of miracle fibers just might come from sustainable sources.

(1) “New Approach of Synthetic Fibers Industry”, Textile Exchange,  http://www.teonline.com/articles/2009/01/new-approach-of-synthetic-fibe.html

(2) Polyester, Absolute Astronomy.com: http://www.absoluteastronomy.com/topics/Polyester and Pacific Institute, Energy Implications of Bottled Water, Gleick and Cooley, Feb 2009, http://www.pacinst.org/reports/bottled_water/index.htm)

(3)  Shotyk, William, et al, “Contamination of Canadian and European Bottled waters with antimony from PET containers”, Journal of Environmental Monitoring, 2006.   http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=EM&Year=2006&ManuscriptID=b517844b&Iss=2

(4)   http://www.atsdr.cdc.gov/toxprofiles/phs23.html

(5)  http://www.victor-innovatex.com/doc/sustainability.pdf

(3) http://www.greenatworkmag.com/gwsubaccess/02mayjun/eco.html





Embodied energy needed to make one sofa

6 01 2010

I just read the article by Team Treehugger on Planet Green on what to look for if you’re interested in green furniture. And sure enough, they talked about the wood (certified sustainable – but without any  explanation about why Forest Stewardship Council (FSC) certified wood should be a conscientious consumers only choice), reclaimed materials, design for disassembly, something they call “low toxicity furniture”, buying vintage…the usual suspects.  Not once did they mention your fabric choice.

Of course, all these are important considerations and like most green choices, there are tradeoffs and degrees of green.  But if we look at the carbon footprint of an average upholstered sofa and see what kind of energy requirements are needed to produce that sofa, we can show you how your fabric choice is the most important choice you can make in terms of embodied energy.  Later on (next week’s post) we’ll take a look at what your choices mean in terms of toxicity and environmental degredation.

These are the components of a typical sofa:

  • Wood
  • Foam (most commonly) or other cushion filling
  • Fabric
  • Miscellaneous:
    • Glue
    • Varnish/paint
    • Metal springs
    • Thread
    • Jute webbing
    • Twine
  1. WOOD: A 6 foot sofa uses about 32 board feet of lumber (1) .  For kiln dried maple, the embodied energy for 32 board feet is 278 MJ.  But if we’re looking at a less expensive sofa which uses glulam (a laminated lumber product), the embodied energy goes up to 403 MJ.
  2. FOAM:  Assume 12 cubic feet of foam is used, with a density of 4 lbs. per cubic foot (this is considered a good weight for foam);  the total weight of the foam used is 48 lbs. The new buzz word for companies making upholstered furniture is “soy based foam” (an oxymoron which we’ll expose in next week’s post), which is touted to be “green” because (among other things)  it uses less energy to produce.  Based on Cargill Dow’s own web site for the BiOH polyol which is the basis for this new product, soy based foam uses up to 60% less energy than does conventional polyurethane foams.   Companies which advertise foam made with 20% soy based polyols  use 1888 MJ of energy to create 12 cubic feet of foam, versus 2027 MJ if conventional polyurethane was used.  For our purposes of comparison, we’ll use the lower energy amount of 1888 MJ and give the manufacturers the benefit of the doubt.
  3. FABRIC:  Did you know that the decorative fabric you choose to upholster your couch is not the only fabric used in the construction?  Here’s the breakdown for fabric needed for one sofa:
    1. 25 yards of decorative fabric
    2. 20 yards of lining fabric
    3. 15 yards of burlap
    4. 10 yards of muslin

TOTAL amount of fabric needed for one sofa:  70 yards!

Using data from various sources (see footnotes below), the amount of energy needed to produce the fabric varies between 291 MJ (if all components were made of hemp, which has the lowest embodied energy) and 7598 MJ (if all components were made of  nylon, which has the highest embodied energy requirements).  If we choose the most commonly used fibers for each fabric component, the total energy used is 2712 MJ:

fiber Embodied energy in MJ
25 yards decorative fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
TOTAL: 2712

I could not find any LCA studies which included the various items under “Miscellaneous” so for this example we are discounting that category.  It might very well impact results, so if anyone knows of a study which addresses these items please let us know!

So  we’re looking at three components (wood, foam and fabric), only two of which most people seem to think are important in terms of upholstered furniture manufacture.  But if we put the results in a table, it’s suddenly very clear that fabric is the most important consideration – at least in terms of embodied energy:

Embodied energy in MJ
WOOD: 32 board feet, kiln dried maple 278
FOAM: 12 cubic feet, 20% bio-based polyol 1888
SUBTOTAL wood and foam: 2166
FABRIC: FIBER:
25 yards uphl  fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
SUBTOTAL, fabric: 2712

If we were to use the most egregious fabric choices (nylon), the subtotal  for the energy used to create just the fabric would be 7598 MJ – more than three times the energy needed to produce the wood and foam!  This is just another instance where  fabric, a forgotten component,  makes a profound impact.

(1)  From: “Life Cycle Analysis of Wood Products: Cradle to Gate LCIof residential wood building material”, Wood and Fiber Science, 37 Corrim Special Issue, 2005, pp. 18 – 29.

(2)  Data for embodied energy in fabrics:

“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, Stockholm Environment Institute, 2005

Composites Design and Manufacture, School of Engineering, University of Plymouth UK, 2008, http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Study: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow.





Greenwashing and textiles

29 12 2009

I have been saying for years that fabric is the forgotten product.  People just don’t seem to care about what their fabric choices do to them or to the environment.  (Quick, what fiber is your shirt/blouse made of?  What kinds of fibers do you sleep on?)   They are too busy to do research, or they’re gullible – either way they decide to believe claims made by many product manufacturers.  And I can’t really blame them, because the issues are complex.

Green products are proliferating so quickly (the average number of “green” products per store almost doubled between 2007 and 2008, according to TerraChoice’s Greenwashing Report 2009) and adding so many new consumer claims that the term “greenwash” (verb: the act of misleading consumers regarding the environmental practices of a company or the environmental benefits of a product or service) has become part of most people’s vocabulary.    In the area of fabrics, the greenwashing going on has led the FTC to make the publication of its new Green Guide on textiles a priority.

Incidences of greenwashing are going up, and that means increased risk:

  • Consumers may be misled into purchases that do not deliver on their environmental promise.
  • Illigetimate environmental claims will take market share away from products that offer legitimate benefits, thereby slowing the spread of real environmental innovation.
  • Greenwashing will lead to cynicism and doubt about all environmental claims.  Consumers may just give up.
  • And perhaps worst of all – the sustainability movement will lose the power of the market to accelerate real progress towards sustainability.

The first step to cleaning up greenwashing is to identify it, and Kevin Tuerff (co-founder of the marketing consultancy EnviroMedia) and his partners have hit on an innovative way to spotlight particularly egregious examples. They’ve launched the Greenwashing Index,  a website that allows consumers to post ads that might be examples of greenwashing and rate them on a scale of 1 to 5–1 is a little green lie; 5 is an outright falsehood.  This hopefully teaches people to be a bit more cautious about the claims they hear.  Read more about greenwashing here.

TerraChoice published its six sins of greenwashing in 2007 but added a seventh sin in 2009.  Let’s look at these sins:

1)      The Sin of Worshiping False Labels:  a product that (through words or images) gives the impression of third-party endorsement or certification where none really exists; basically fake labels.  Examples:

  1. Using the company’s own in-house environmental program without further explanation.
  2. Using certification-like images with green jargon including “eco-safe”, “eco-preferred”.

I’ve begun to see examples of products which claim to be certified to the GOTS standard  (Global Organic Textile Standard) – but the reality is that the fiber is certified to the GOTS standard while the final fabric is not.  There is a big difference between the two.  And the GOTS-certifying agencies have begun to require retailers to be certified – to keep the supply chain transparent because there have been so many incidences of companies substituting non- GOTS products for those that actually received the certification.

2)      Sin of the Hidden Trade-off:  a claim suggesting that a product is “green” based on a narrow set of attributes without attention to other important environmental issues.  The most overused example of this is with recycled content of fabrics – a textile is advertised as “green” because it is made of x% recycled polyester.  Other important environmental issues such as heavy metal dyes used, whether the polyester is woven with other synthetics or even natural fibers  (thereby contributing to other environmental degredation), the fact that plastic is not biodegradeable and contains antimony or bisphenol A  may be equally important.  Cargill Dow introduced it’s new Ingeo fiber with much fanfare, saying that it is based on a renewable resource (rather than oil).  Missing entirely from Cargill Dow’s press materials is any acknowledgement of the fact that the source material for these products is genetically engineered corn, designed by one of Cargill Dow’s corporate parents, Cargill Inc., a world leader in genetic engineering.  (See our blog postings on genetic engineering dated 9.23 and 9.29.09) That’s a potentially huge problem, since millions of consumers around the world and several governments have rejected the use of genetically engineered (GE) products, because of the unforeseen consequences of unleashing genetically altered organisms into nature.

3)      Sin of No Proof:  An environmental claim that cannot be substantiated by easily accessible supporting information or by a reliable third-party certification.  Google organic fabric and you can find any number of companies offering “organic and natural fabrics” with no supporting documentation.   And the People for the Ethical Treatment of Animals really took exception to this claim:

4)      Sin of Vagueness:  a claim so poorly defined or broad that its real meaning is likely to be misunderstood by the consumer. ‘All-natural’ is an example. Arsenic,  mercury, and formaldehyde are all naturally occurring, used widely in textile processing,  and poisonous. ‘All natural’ isn’t necessarily ‘green’. Hemp is a fabric that has been expertly greenwashed, as most people have been led to focus on the fact that it grows in a manner that it is environmentally friendly. Few realize that hemp is naturally made into rope and that it requires a great deal of chemical softening to be suitable for clothing or bed linen.  Or this ad from Cotton Inc.:

5)      Sin of Irrelevance:  An environmental claim that may be truthful but is unimportant or unhelpful for consumers seeking environmentally preferable products.  The term “organic” is the most often used word in textile marketing – and what does it really mean?  Organic, by definition, means carbon-based, so unless the word “organic” is coupled with “certified” the term is meaningless.  But even “certified organic” fiber can cause untold harm during the processing and finishing of the fabric – think of turning organic apples into applesauce (adding Red Dye #2, stabalizers, preservatives, emulsifiers) where the final result cannot be considered organic APPLESAUCE even though the apples started out as organic. It is said that the amount of “organic cotton” supposedly coming out of India far outweighs the amount of organic cotton actually being grown. It is common practice for vendors to call a batch of cotton “organic”, if minimal or no chemicals have been used, even if no certification has been obtained for the fiber. It’s also generally understood that certification can be “acquired”, even if not earned.

6)      Sin of Lesser of Two Evils:  A claim that may be true within the product category, but that risks distracting the consumer from the greater environmental impacts of the category as a whole.  Again, the use of recycled polyester as a green claim distracts from the greater environmental impact that plastics have on the environment,  the much greater carbon footprint that any synthetic has compared to any natural fiber,  the antimony used in polyester production, the fact that polyesters are dependent on non renewable resources for feedstock…the list goes on.

7)      Sin of Fibbing:  just what it says – environmental claims that are simply false.

I’d like to add an additional sin which I think is specific to the textile industry: that of a large fabric company touting it’s green credentials because it has a “green” collection  (sometimes that “green” collection is anything but) – but if you look at the size of the green collection and compare it to conventional offerings, you’ll find that maybe only 10% of the company’s fabrics have any possible claim to “green”.  Is that company seriously trying to make a difference?





Is recycled polyester fabric RECYCLABLE?

11 11 2009

Is it true, as one of the leading fabric distributors says of its “green” fabrics made of recycled polyester, that after “years of enjoyable use, these fabrics are recyclable?”   Does buying that fabric really help reduce our dependence on a non renewable resource  and lessen the burden that plastic is inflicting on our environment?

I’d like to show you how this is a misleading statement.  It’s a bit complicated, but stick with me because the industry is depending on your confusion.  If you know what they’re really foisting on us, you might want to demand a better, cleaner, altogether different product!

Only recycle

But first I have to back up and point out that “recyclable” is one of those amorphous words that have no accepted definition.  We can “recycle” our fabrics by repurposing them, donating them, use them for quilting or in other ways…but somehow I think they really meant for us to believe that the plastic yarns could be recycled into new and equally beautiful new fabrics:  the ultimate “infinite closed loop”.

So, the first thing you must understand in order to grasp why this is a disingenuous statement is that there are two ways plastic can be recycled:  Mechanically and chemically.

Mechanical recycling is the kind that almost all recycling facilities use today. The first step in the process is to collect the plastics and then separate all the different types of plastic (“feedstock”) to avoid contamination – different plastics have different melting points and other characteristics; if they were thrown into the pot together the result would be an unuseable mess.  (Remember this fact: the recycling of plastics must always be done with like resins – this will come up later in textiles.)   So after separation, each type is melted down and then  re-formed into small “chips” or “pellets”.  These chips are what a widget manufacturer buys from the recycling facility to make its product – or what a yarn manufacturer buys to make the yarns to weave into cloth.

Common misconception about recycling:  you might think that if you throw your used drink bottle into the recycling container that it will be recycled into another new drink container.  Nope.  The melted resin contains contaminants and would not meet food grade requirements, so it is instead destined to go into a secondary product, such as yarn for the fabric we started talking about at the beginning of this blog.  A better name for the “recycling container” would be “collection container”.

recycl poly From  Help me! – the earth by Memo

A fabric made of “recycled material” has a certain percentage of polyester which comes from these chips that the recycling facility has manufactured.  Using these chips has several issues which are exclusive to the textile industry:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[1]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.
  • Many yarns made from recycled polyester are used in forgiving constructions such as polar fleece, where the construction of the fabric hides slight yarn variations.  For fabrics such as satins, there are concerns over streaks and stripes.

Most of the plastics in use today can be recycled but, because mechanical recycling produces a less stable polymer, the products which can be made from this recycled plastic are of “less value” than the original.  The products made from the “chips” must be a bit forgiving, such as carpet, plastic lumber, roadside curbs, truck cargo liners, waste receptacles (you get the idea).  William McDonough calls this “downcycling”.  No matter how many smiling people you see throwing their bottles into a recycling container and “preventing the plastic from entering our waste stream” as the media likes to put it – the reality is that the recycling can only be done mechanically a few times before the polymers break down and the plastic is no longer useful or useable – every time plastic is melted down, its molecular composition changes, its quality degrades, and the range of its usefulness shrinks.   So after going from a virgin PET bottle, to carpet fibers, to plastic lumber, to a speed bump – that’s when it enters our waste stream.  So recycling plastic doesn’t prevent this occurrence – it just postpones it.  Read more about “the seduction of plastic”  here.

To add insult to injury, if you had bought the fabric mentioned above and hoped the fabric would be recyclable as claimed:  probably not gonna happen, because remember how the recycling facility had to separate bottles to make sure each resin was melted with similar types?  Think of the fabric as similar to bottles with different plastic resins:  many fabrics are woven of different types of plastic (60% polyester, 40% nylon for example), or there is a chemical backing of some sort on the fabric.  These different chemicals, with different molecular weights, renders the fabric non-recyclable.  Period.

And even if the fabric we’re talking about is 100% polyester with NO chemical backings or finishes, there is a problem with recycling in the system itself.  Although bottles, tins and newspapers are now routinely collected for recycling, furniture and carpets still usually end up in landfill or incinerators, even if they have been designed to be recycled [2] because the fabric must be separated from other components if it’s part of an upholstered piece of furniture, for example.

Chemical recycling is the alternative technology and it does exist.  During chemical recycling, the materials are chemically dissolved into their precursor chemicals.  Polyester, for example, would be broken down into DMT (dimethyl terephthalate) and EG (ethylene glycol).  These chemicals are then purified and used to make new polyester fiber.  But the reality is that this is difficult and expensive to do.  Patagonia has made using recycled plastics a priority and gives a good overview of the process with interesting comments about the unique problems they’re encountering; read about it here.

Currently, fabrics identified as being “recyclable” really are not  - because the technology to recycle the fibers is either too expensive (chemical) or doesn’t exist (mechanical) and the infrastructure to collect the fabric is not in place.    Few manufacturers, such as Designtex (with their line of EL fabrics designed to be used without backings) and Victor Innovatex (who has pioneered EcoIntelligent™ polyester made without antimony),  have taken the time, effort and money needed to accelerate the adoption of sustainable practices in the industry so we can one day have synthetic fabrics that are not only recycled, but recyclable.

So when you buy a fabric made of recycled polyester, remember it’s at the end of its useful life as a plastic  – and you are contributing to our dependence on non renewable resources and to the overwhelming burden of non-degradeable plastic in our environment.

And lest you forget – or choose to ignore -  what that kind of degradation entails, Chris Jordan, a photographer based in Seattle, has documented it for us.   In a series of photographs entitled “Message from the Gyre”, he has documented what pieces of plastic are doing to albatross chicks on Midway Island.  In the interest of a faithful representation of their plight, not a single piece of plastic in any of the pictures was moved, placed or arranged in any way.  The images depict the actual stomach contents of baby birds in one of the world’s most remote marine sanctuaries, more than 2000 miles from the nearest continent.  See all the images and more of Chris Jordan’s work on his web site, www.chrisjordan.com

Chris-Jordan-Message-from-t_thumb


[1]“Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008

[2] “Taking Landfill out of the Loop”, Sarah Scott, Azure, 2006





Why is recycled polyester considered a sustainable textile?

14 07 2009

 

plastic_bottles

Synthetic fibers are the most popular fibers in the world – it’s estimated that synthetics account for about 65% of world production versus 35% for natural fibers.[1] Most synthetic fibers (approximately 70%) are made from polyester, and the polyester most often used in textiles is polyethylene terephthalate (PET).   Used in a fabric, it’s most often referred to as “polyester” or “poly”.

The majority of the world’s PET production – about 60% – is used to make fibers for textiles; about 30% is used to make bottles.   It’s estimated that it takes about 104 million barrels of oil for PET production each year – that’s 70 million barrels just to produce the virgin polyester used in fabrics.[2] That means most polyester – 70 million barrels worth –  is manufactured specifically to be made into fibers, NOT bottles, as many people think.  Of the 30% of PET which is used to make bottles, only a tiny fraction is recycled into fibers.  But the idea of using recycled bottles – “diverting waste from landfills” – and turning it into fibers has caught the public’s imagination.

The reason recycled polyester (often written rPET) is considered a green option in textiles today is twofold, and the argument goes like this:

  1. energy needed to make the rPET is less than what was needed to make the virgin polyester in the first place, so we save energy.
  2. And  we’re keeping bottles and other plastics out of the landfills.

Let’s look at these arguments.

1) The energy needed to make the rPET is less than what is needed to make the virgin polyester, so we save energy:

 

It is true that recycling polyester uses less energy that what’s needed to produce virgin polyester.  Various studies all agree that it takes  from 33%  to 53% less energy[3].  If we use the higher estimate, 53%,  and take 53% of the total amount of energy needed to make virgin polyester (125 MJ per KG of ton fiber)[4], the amount of energy needed to produce recycled polyester in relation to other fibers is:

Embodied Energy used in production of various fibers:

energy use in MJ per KG of fiber:

hemp, organic

2

flax

10

hemp, conventional

12

cotton, organic, India

12

cotton, organic, USA

14

cotton,conventional

55

wool

63

rPET

66

Viscose

100

Polypropylene

115

Polyester

125

acrylic

175

Nylon

250

rPET is also cited as producing far fewer emissions to the air than does the production of  virgin polyester: again estimates vary, but Libolon’s website introducing its new RePET yarn put the estimate at 54.6% fewer CO2 emissions.  Apply that percentage to the data from the Stockholm Environment Institute[5], cited above:

KG of CO2 emissions per ton of spun fiber:

crop cultivation

fiber production

TOTAL

polyester USA

0

9.52

9.52

cotton, conventional, USA

4.2

1.7

5.89

rPET

5.19

hemp, conventional

1.9

2.15

4.1

cotton, organic, India

2

1.8

3.75

cotton, organic, USA

0.9

1.45

2.35

Despite the savings of both energy and emissions from the recycling of PET, the fact is that it is still more energy intensive to recycle PET into a  fiber than to use organically produced natural fibers – sometimes quite a bit more energy.

2) We’re diverting bottles and other plastics from the landfills.

 

That’s undeniably true,  because if you use bottles then they are diverted!

But the game gets a bit more complicated here because rPET is divided into “post consumer” PET and “post industrial” rPET:  post consumer means it comes from bottles; post industrial might be the unused packaging in a manufacturing plant, or other byproducts of manufacturing.  The “greenest” option has been touted to be the post consumer PET, and that has driven up demand for used bottles. Indeed, the demand for used bottles, from which recycled polyester fibre is made, is now outstripping supply in some areas and certain cynical suppliers are now buying NEW, unused bottles directly from bottle producing companies to make polyester textile fiber that can be called recycled.[6]

Using true post consumer waste means the bottles have to be cleaned (labels must be removed because labels often contain PVC) and sorted.  That’s almost always done in a low labor rate country since only human labor can be used.   Add to that the fact that the rate of bottle recycling is rather low – in the United States less than 6% of all waste plastic gets recycled [7].  The low recycling rate doesn’t mean we shouldn’t continue to try, but in the United States where it’s relatively easy to recycle a bottle and the population is relatively well educated in the intricacies of the various resin codes, doesn’t it make you wonder how successful we might be with recycling efforts in other parts of the world?

pet-recycling-graph-2 SOURCE: Container Recycling Institute

There are two types of recycling:  mechanical and chemical:

    • Mechanical recycling is accomplished by melting the plastic and re-extruding it to make yarns.  However, this can only be done  few times before the molecular structure breaks down and makes the yarn suitable only for the landfill[8] where it may never biodegrade, may biodegrade very slowly, or may add harmful materials to the environment as it breaks down (such as antimony).  William McDonough calls this  “downcycling”.
    • Chemical recycling means breaking the polymer into its molecular parts and reforming the molecule into a yarn of equal strength and beauty as the original.  The technology to separate out the different chemical building blocks (called depolymerization) so they can be reassembled (repolymerization) is very costly and almost nonexistent.

Most recycling is done mechanically (or as noted above, by actual people). Chemical recycling does create a new plastic which is of the same quality as the original,  but the process is very expensive and is almost never done, although Teijin has a new program which recycles PET fibers into new PET fibers.

The real problem with making recycled PET a staple of the fiber industry is this:  recycling, as most people think of it, is a myth.  Most people believe that plastics can be infinitely recycled  – creating new products of a value to equal the old bottles or other plastics which they dutifully put into recycling containers to be collected. The cold hard fact is that there is no such thing as recycling plastic, because it is not a closed loop.  None of the soda and milk bottles which are collected from your curbside are used to make new soda or milk bottles, because each time the plastic is heated it degenerates, so the subsequent iteration of the polymer is degraded and can’t meet food quality standards for soda and milk bottles.  The plastic must be used to make lower quality products.  The cycle goes something like this:

  • virgin PET can be made into soda or milk bottles,
  • which are collected and recycled into resins
    • which are appropriate to make into toys, carpet, filler for pillows, CD cases, plastic lumber products,  fibers or a million other products. But not new soda or milk bottles.
  • These second generation plastics can then be recycled a second time into park benches, carpet, speed bumps or other products with very low value.
  • The cycle is completed when the plastic is no longer stable enough to be used for any product, so it is sent to the landfill
    • where it is incinerated (sometimes for energy generation, which a good LCA will offset)  -
    • or where it will hold space for many years or maybe become part of the Great Pacific Garbage Patch![9]

And there is another consideration in recycling PET:  antimony, which is present in 80 – 85% of all virgin PET[10], is converted to antimony trioxide at high temperatures – such as are necessary during recycling, releasing this carcinogen from the polymer and making it available for intake into living systems.

Using recycled PET for fibers also creates some problems specific to the textile industry:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[11]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.
  • Many rPET fibers are used in forgiving constructions such as polar fleece, where the construction of the fabric hides slight yarn variations.  For fabrics such as satins, there are concerns over streaks and stripes.

Once the fibers are woven into fabrics, most fabrics are rendered non-recyclable  because:

  • the fabrics almost always have a chemical backing, lamination or other finish,
  • or they are blends of different synthetics (polyester and nylon, for example).

Either of these renders the fabric unsuitable for the mechanical method of recycling, which cannot separate out the various chemicals in order to produce the recycled yarn; the chemical method could  -   if we had the money and factories to do it.

One of the biggest obstacles to achieving McDonough’s Cradle-to-Cradle vision lies outside the designers’ ordinary scope of interest – in the recycling system itself. Although bottles, tins and newspapers are now routinely recycled, furniture and carpets still usually end up in landfill or incinerators, even if they have been designed to be  recycled [12] because project managers don’t take the time to separate out the various components of a demolition job, nor is collection of these components an easy thing to access.

Currently, the vision that most marketers has led us to believe, that of a closed loop, or cycle, in which the yarns never lose their value and recycle indefinitely is simply that – just a vision.  Few manufacturers, such as Designtex (with their line of EL fabrics designed to be used without backings) and Victor Innovatex (who has pioneered EcoIntelligent™ polyester made without antimony),  have taken the time, effort and money needed to accelerate the adoption of sustainable practices in the industry so we can one day have synthetic fabrics that are not only recycled, but recyclable.


[1]“New Approach of Synthetic Fibers Industry”, Textile Exchange,  http://www.teonline.com/articles/2009/01/new-approach-of-synthetic-fibe.html

[2] Polyester, Absolute Astronomy.com: http://www.absoluteastronomy.com/topics/Polyester and Pacific Institute, Energy Implications of Bottled Water, Gleick and Cooley, Feb 2009, http://www.pacinst.org/reports/bottled_water/index.htm)

[3] Website for Libolon’s RePET yarns:  http://www.libolon.com/eco.php

[4] Data compiled from:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,                                                                       http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm and  “Ecological Footprint and Water

Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[5] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[6] The Textile Dyer, “Concern over Recycled Polyester”,May 13, 2008,

[7] Watson, Tom, “Where can we put all those plastics?”, The Seattle Times, June 2, 2007

[8] William McDonough and Michael Braungart, “Transforming the Textile Industry”, green@work, May/June 2002.

[9] See http://www.greatgarbagepatch.org/

[10] Chemical Engineering Progress, May 2003

[11] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008

[12] “Taking Landfill out of the Loop”, Sarah Scott, Azure, 2006





Elephants Among Us

29 06 2009

 

Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[1]

The textile industry is huge, and it is a huge producer of greenhouse gasses.  Today’s textile industry is one of the largest sources of greenhouse gasses (GHG’s) on Earth, due to its huge size.[2] In 2008,  annual global textile production was estimated at  60 billion kilograms (KG) of fabric.  The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of electricity  or 132 million metric tons of coal and
  • between 6 – 9 trillion liters of water[3]

Fabrics are the elephant in the room.  They’re all around us  but no one is thinking about them.  We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous:  sheets, blankets, sofas, curtains, and of course clothing.  Textiles, including clothing,  accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [4] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[5]

Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.

How do you evaluate the carbon footprint in any fabric?  Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric.  To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

(1)  Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn.  The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.

(2) Next, add the energy used to weave those yarns into fabric.  Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton, nylon or polyester.[6]

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

For synthetics, a crucial fact is that the fibers are made from fossil fuels.   Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:

crop cultivation

fiber production

TOTAL

polyester USA

0.00

9.52

9.52

cotton, conventional, USA

4.20

1.70

5.89

hemp, conventional

1.90

2.15

4.10

cotton, organic, India

2.00

1.80

3.75

cotton, organic, USA

0.90

1.45

5

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester [7] and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [8] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[9] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

Embodied Energy used in production of various fibers:

energy use in MJ per KG of fiber:
flax fibre (MAT)

10

cotton

55

wool

63

Viscose

100

Polypropylene

115

Polyester

125

acrylic

175

Nylon

250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional  benefits:

  1. being able to be degraded by micro-organisms and composted (improving soil structure); in this way the fixed CO2 in the fiber will be released and the cycle closed.   Synthetics do not decompose: in landfills they release heavy metals and other additives into soil and groundwater.  Recycling requires costly separation, while incineration produces pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[10] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned fishing nets in the world’s oceans.
  2. sequestering carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.  Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[11]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:  uses less energy for production, emits fewer greenhouse gases and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques (2009) found that 43% less GHG are emitted per unit area under organic agriculture than under conventional agriculture.[12] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[13] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton.   So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time.   Best of all is an organic natural fiber.

 

And next let’s look at #2, the energy needed to weave those yarns into fabric.

There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type..[14] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:   thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [15] This translates into huge quantities of fossil fuels  -  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

 

But there is an additional dimension to consider during processing:  environmental pollution.  Conventional textile processing is highly polluting:

  • Up to 2000 chemicals are used in textile processing, many of them known to be harmful to human (and animal) health.   Some of these chemicals evaporate, some are dissolved in treatment water which is discharged to our environment, and some are residual in the fabric, to be brought into our homes (where, with use, tiny bits abrade and you ingest or otherwise breathe them in).  A whole list of the most commonly used chemicals in fabric production are linked to human health problems that vary from annoying to profound.
  • The application of these chemicals uses copious amounts of water. In fact, the textile industry is the #1 industrial polluter of fresh water on the planet.[16] These wastewaters are discharged (largely untreated) into our groundwater with a high pH and temperature as well as chemical load.

Concerns in the United States continue to mount about the safety of textiles and apparel products used by U.S. consumers.  Philadelphia University has formed a new Institute for Textile and Apparel Product Safety, where they are busy analyzing clothing and textiles for a variety of toxins.  Currently, there are few regulatory standards for clothing and textiles in the United States.  Many European countries,  as well as Japan and Australia, have much stricter restrictions on the use of chemicals in textiles and apparel than does the United States, and these world regulations will certainly impact world production.

There is a bright spot in all of this:  an alternative to conventional textile processing does exist.  The new Global Organic Textile Standard (GOTS) is a  tool for an international common understanding of environmentally friendly production systems and social accountability in the textile sector; it covers the production, processing, manufacturing, packaging, labeling, exportation, importation and distribution of all natural fibers; that means, specifically, for example:  use of certified organic fibers, prohibition of all GMOs and their derivatives; and prohibition of a long list of synthetic chemicals (for example: formaldehyde and aromatic solvents are prohibited; dyestuffs must meet strict requirements (such as threshold limits for heavy metals, no  AZO colorants or aromatic amines) and PVC cannot be used for packaging).

A fabric which is produced to the GOTS standards is more than just the fabric:

It’s a promise to keep our air and water pure and our soils renewed; it’s a fabric which will not cause harm to you or your descendants.  Even though a synthetic fiber cannot be certified to  GOTS, the synthetic mill could adopt the same production standards and apply them.   So for step #2, the weaving of the fiber into a fabric, the best choice is to buy a GOTS certified fabric or to apply as nearly as possible the GOTS parameters.

At this point in time, given the technology we have now, an organic fiber fabric, processed to GOTS standards, is (without a doubt) the safest, most responsible choice possible in terms of both stewardship of the earth, preserving health and limiting toxicity load to humans and animals, and reducing carbon footprint – and emphasizing rudimentary social justice issues such as no child labor.

And that would be the end of our argument, if it were not for this sad fact:  there are no natural fiber fabrics made in the United States which are certified to the Global Organic Textile Standard (GOTS).  The industry has, we feel, been flat footed in applying these new GOTS standards.  With the specter of the collapse of the U.S. auto industry looming large, it seems that the U.S. textile industry would do well to heed what seems to be the global tide of public opinion that better production methods, certified by third parties, are the way to market fabrics in the 21st Century.


[1] Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

[2] Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html

[3] Rupp, Jurg, “Ecology and Economy in Textile Finishing”,  Textile World,  Nov/Dec 2008

[4] Rose, Coral, “CO2 Comes Out of the Closet”,  GreenBiz.com, September 24, 2007

[5] U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.

[6] Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint.  The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings.  We do not take this component into consideration because

  • it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
  • is biodegradeable detergent used?
  • Is the washing machine used a new low water machine?  Is the water treated by a municipal facility?
  • Synthetics begin to smell if not treated with antimicrobials, raising the energy score.

Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome.  Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.

[7] Ibid.

[8] “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

[9] Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13

[10] “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html

[11] Ibid.

[12] Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

[13] International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL);    Organic Farming and Climate Change; Geneva: ITC, 2007.

[14] 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

[15] “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296

[16] Cooper, Peter, “Clearer Communication,” Ecotextile News, May 2007.





More reasons to find a replacement for polyester.

22 06 2009

plastic trap The mass of  debris in the photo is, apparently, a tiny part of what the Wall Street Journal reports is afloat in the Pacific.   Nobody really knows how big it is:   “Some say it is about the size of Quebec, or 600,000 square miles — also described as twice the size of Texas. Others say this expanse of junk swept together by currents is the size of the U.S. — 3.8 million square miles. Or, it could be twice that size.”

Called The Great Pacific Garbage Patch, it’s a mass of floating plastic.  Nobody seems to be able to agree on the size, or even whether the plastic is dangerous or serving a function.   Plastics can harm ocean birds and mammals who eat it, because they carry toxins, can pierce internal organs and can trick animals into thinking they are full. But hard numbers are tough to come by. “It’s so hard to say a bird died due to plastic in its stomach,” says Holly Bamford, director of the National Oceanic and Atmospheric Administration’s marine-debris program. “We have seen birds mature and live out their whole life, and necropsies show plastic in their stomach.”  On the other hand, David Karl, an oceanographer at the University of Hawaii, says that the plastics have a high concentration of microorganisims clinging to them which are producing oxygen.

Polyester, or PET, is  a major component of this trash because PET is the major component of beverage containers (like bottled water).  But most PET (60% of global production) is used to make fibers and textiles.  In addition to the fact that this polyester remains in our oceans and landfills for around 1,000 years, it’s a very expensive way to spend our energy resources:

Polyester production, running at around 50 million tons  per year, consumes about 104 million barrels of oil for production (and that doesn’t include the energy needed for transportation).

We have called for research into substitutes for polyester fabrics and still insist that we  (a people which have sent men to the moon, after all) should be able to find a substitute for our plastic obsession.  Recycled polyester seems to have been crowned the Queen of Green by decorative fabrics distributors because it is claimed that by recycling the polyester we can have a lighter footprint.  I’ve outlined our arguments against that in other posts, not least of which is the fact that there are no workable takeback programs in place.

The argument in favor of recycling is that if consumers have an “easy” way to recycle their plastic, and are educated and reminded on the need to do so, most will, resulting in a cleaner environment.   However, Americans recycle only about 20% of their plastic bottles – and this in a nation where it’s relatively easy to throw a used bottle into a recycling container.   What percentage of fabrics do you think will be torn off sofas or delivered to a recycling facility?  How many project managers will tear out banquettes and order the separation of the fabric from the wooden frame?

Add to those arguments the fact that there has been a history of corporations collecting plastics and sending them overseas to be processed, such as the famous case of Pepsi Cola exporting tons of PET bottles to India in the 1990s.  This case amounts to an indictment of much of what passes for recycling in the United States and elsewhere – putting the plastic waste out of sight, out of mind.  The plastics industry is exporting their waste to less industrialized countries, avoiding domestic regulations, avoiding community opposition to waste handling facilities, paying their workers pennies a day, and maintaining a “green” image at home.  People in developed countries can lower their ecological guilt by depending on environmental injustice in Asia.  This is not recycling; this is, at best, a type of reprocessing that delays the eventual dumping of the plastic.  And at worst it encourages consumers to buy more plastic because their environmental concerns are lessened by the promise that the goods are being recycled.





What is the energy profile of the textile industry?

16 06 2009

carbon_footprint

If you’ve been following along you’ll know we haven’t even reached the point where we begin weaving – everything up till now dealt only with producing the raw materials (the fiber) and spinning into yarn!

So, the yarns are at the mill.  And that’s the kicker: we’ve been talking about how much energy it takes to produce the various fibers – and it varies dramatically – but there is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[1] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:

  • thermal energy required per meter of cloth is 4,500-5,500 Kcal and
  • electrical energy required per meter of cloth is 0.45-0.55 kwh. [2]

This translates into huge quantities of fossil fuels  -  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

So let’s go with the energy used to produce one KG of fabric (which is 92 MJ per KG as the New Zeland Merino Wool LCA study found).   Keeping  the energy needed for production as a  constant the synthetic fabrics still top the list:

Embodied Energy in production of various fibers + processing:
energy use in MJ per KG of fiber: energy use in MJ per KG of fabric TOTAL energy use in MJ per KG of fabric to produce fiber + weave into cloth
flax 10 92 102
Cotton, convt’l. 55 92 147
wool 63 92 155
Viscose 100 92 192
Polypropylene 115 92 207
Polyester 125 92 217
acrylic 175 92 267
Nylon 250 92 342

 

That means that it takes 3,886 MJ of energy to produce 25 yards of nylon fabric, which is  about enough to cover one average sofa.  That compares to 1,158 MJ if the fiber you used was flax (linen).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(4)

Textile_total_energy_input

In addition to the energy requirements for textile production,  there is an additional dimension to consider during processing:  environmental pollution.  Conventional textile processing is highly polluting:

  • Up to 2000 chemicals are used in textile processing, many of them known to be harmful to human (and animal) health.   Some of these chemicals evaporate, some are dissolved in treatment water which is discharged to our environment, and some are residual in the fabric, to be brought into our homes (where, with use, tiny bits abrade and you ingest or otherwise breathe them in).  A whole list of the most commonly used chemicals in fabric production are linked to human health problems that vary from annoying to profound.  And new research is linking many diseases and disorders to exposure to chemicals.  Through the new science of environmental health science, we are learning that exposure to toxic chemicals (at levels once thought to have been safe) is increasing the  chronic disease burden for millions of us.  For more information about this disturbing concept,  check out the National Institute of Environmental Health Sciences, part of the National Institutes of Health.
  • The application of these chemicals uses lots  of water. In fact, the textile industry is the #1 industrial polluter of fresh water on the planet.[3] These wastewaters are discharged (largely untreated) into our groundwater with a high pH and temperature as well as chemical load.  I wrote about a documentary which catalogues the ravages brought on by water pollution and how it impacts those downstream, called (interestingly enough), DOWNSTREAM.

We are all downstream.


[1] 24thsession of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

[2] “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296

[3] Cooper, Peter, “Clearer Communication,” Ecotextile News, May 2007.

(4)  from Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

Embodied Energy in production of various fibers + processing:
beach image energy use in MJ per KG of fiber: energy use in MJ per KG of fabric TOTAL energy use in MJ per KG of fabric to produce fiber + weave into cloth
flax 10 92 102
Cotton, convt’l. 55 92 147
wool 63 92 155
Viscose 100 92 192
Polypropylene 115 92 207
Polyester 125 92 217
acrylic 175 92 267
Nylon 250 92 342




What about using organic fabrics in the carbon footprint calculation?

9 06 2009

I’m so glad you asked!

From the previous post I hope I made it clear that natural fibers (whether organic or conventionally produced) have a lighter footprint than do synthetics – both in terms of emissions of greenhouse gasses and in terms of energy needed to manufacture the fibers.  And natural fibers have the added benefits of being able to be degraded by microorganisims and composted,  and  also of sequestering carbon.  According to the United Nations, they’re also a responsible choice, because by buying natural fibers you’re supporting the economies of many developing countries and supporting the livelihoods of many low-wage and subsistence workers.  The United Nations has declared 2009 the Year of Natural Fibers and they have a great website if you’re looking for more information:  http://www.naturalfibres2009.org/en/index.html

Substituting ORGANIC fibers for conventionally grown natural fibers is not just a little better but lots better in all respects:  uses less energy for production, emits fewer greenhouse gases, and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques  (http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009) found that fully 43% less greenhouse gasses are emitted per unit under organic agriculture than under conventional agriculture.  A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.  Further, it was found in controlled long term trials that organic farming adds between 100-400KG of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint calculation, it reduces total greenhouse gasses even further. The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Slide1

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is not only an improvement in human health and agrobiodiversity but also for the associated off farm biotic communities
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. (http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

So just how much CO2 can organic farming take out of the air each year?  According to data from the Rodale Institute Farming Systems Trial (FST) :

  • If only 10,000 medium sized farms in the US converted to organic production, they would store so much carbon in the soil it would be equivalent to taking 1,174,400 cars off the road.
  • If we converted the U.S.’s 160 million acres of corn and soybeans to organic, we could sequester enough carbon to satisfy 73% of the Koyoto targets for CO2 reduction in the U.S.
  • Converting U.S. agriculture to organic would actually  wipe out the 1.5 trillion pounds of CO2 emitted annually and give us a net increase in soil carbon of 734 billion pounds.

carbon sequestratioon image 1

Paul Hepperly says that organic farming is a no brainer:  “Organic farming is not a technological fix, not an untried experiment that could have its own unforeseen consequences.” Instead, it may well be one of the most powerful tools we have in our fight against global warming that brings with it a wealth of other environmental benefits.








Follow

Get every new post delivered to your Inbox.

Join 1,101 other followers