The new bioeconomy

15 05 2012

Last week we explored using biomass as fuel, and some of the implications in doing that.  Previously we looked at using biomass in the world of fabrics and furnishings,  which include the new biotech products polylactic acid (PLA) (DuPont’s Ingeo and Sorona fibers) and soy-based foam for upholstery  (click  here and here to see our posts).  The ideas being presented by new bio technologies are not new – in the 19th century Rumpelstiltskin spun straw into gold – and the idea has always held a fascination for humans.

There is a new report called “The New Biomassters – Synthetic Biology and The Next Assault on Biodiversity and Livelihoods” (click here to download the report) published by The ETC Group, which focuses on the social and economic impacts of new bio technologies.  This report paints an even more troubling picture than what I’ve been able to uncover to date, and the information contained in this post comes from that report:

“Under the pretext of addressing environmental degredation, climate change and the energy and food crisis, and using the rhetoric of the “new” bioeconomy  (“sustainability”, “green economy”, “clean tech”, “clean development”) industry is talking about  solving these problems by substituting fossil carbon for that of living matter.    The term “bioeconomy” is based on the notion that biological systems and resources can be harnessed to maintain current industrial systems of production, consumption and capital accumulation.” 

Sold as an ecological switch from a ‘black carbon’ (i.e. fossil) economy to a ‘green carbon’ (plant-based) – and therefore a “clean” form of development –  this emerging bioeconomy is in fact, according to ETC,  “a red-hot resource grab of the lands, livelihoods, knowledge and resources of peoples in the global South” (because 86% of that biomass is located in the tropics and subtropics).

What does a new bioeconomy look like?  According to the ETC:   “as the DNA found in living cells is decoded into genetic information for use in biotechnology applications, genetic sequences  acquire a new value as the building blocks of designed biological production systems. By hijacking the ‘genetic instructions’ of cells … to force them to produce industrial products, industry transforms synthetic organisms into bio-factories that can be deployed elsewhere on the globe – either in private vats or plantations.  Nature is altered to meet business interests.”

They go on to say that as ecosystems collapse and biodiversity declines, new markets in ecosystem “services” will enable the trading of ecological ‘credits.’   The declared aim is to “incentivize conservation” by creating a profit motive in order to justify interventions in large-scale natural systems such as hydrological cycles, the carbon cycle or the nitrogen cycle.[1] Like the ‘services’ of an industrial production system, these ‘ecosystem services,’ created to privatize natural processes, will become progressively more effective at serving the interests of business.

It seems to be all about profit.

The ETC report states that concerted attempts are already underway by many industrial players to shift industrial production feedstocks from fossil fuels to the 230 billion tons of ‘biomass’ (living stuff) that the Earth produces every year -not just for liquid fuels but also for production of power, chemicals, plastics and more.

The visible players involved in commodifying the 76% of terrestrial living material that is not yet incorporated in the global economy include BP, Shell, Total, Exxon, Cargill, DuPont, BASF, Syngenta and Weyerhaeuser.   Enabling this attempt is the adoption of synthetic biology techniques (extreme genetic engineering) by these well-funded companies.

“We have modest goals of replacing the whole petrochemical industry and becoming a major source of energy.”

– J. Craig Venter, founder Synthetic Genomics, Inc.[2]

There is lots more in the ETC report, here’s just a summary of some other issues:

  • The report examines the next generation biofuels, including algal biofuels and synthetic hydrocarbons, and establishes the case for why this generation may be as ecologically and socially dangerous as the first.  Even leading companies and scientists involved in synthetic biology agree that some oversight is necessary – currently it’s being mostly ignored and is not on the agenda for the Rio+20 summit to be held in Brazil in June.
  • Today’s synthetic biology is unpredictable, untested and poorly understood.  Could open a Pandora’s box of consequences.  See:  http://www.cbd.int/doc/emerging-issues/foe-synthetic-biology-for-biofuels-2011-013-en.pdf
  • The “green” credentials of current bio-based plastics and chemicals are called into question.  (See our posts on biopolymers – click here and here).
  • How much biomass is enough?  “Attempting to set an ‘acceptable level’ of biomass extraction is as inappropriate as forcing a blood donation from a hemorrhaging patient. Already struggling to maintain life support, the planet simply does not have any biomass to spare. Human beings already capture on-fourth of land based biomass for food, heat and shelter; attempts to define a limit beyond which ecosystems lose resilience and begin to break down reveal that we consumed past such limits 20 years ago.”
  • Biomass is considered a “renewable resource” – and it is true that while plants may be renewable in a short period of time, the soils and ecosystem that they depend on may not be.  Industrial agriculture and forest biomass extraction rob soils of nutrients, organic matter, water and structure, decreasing fertility and leaving ecosystems more vulnerable or even prone to collapse. Associated use of industrial chemicals and poor land management can make things worse. In practice, therefore, biomass is often only truly renewable when extracted in such small amounts that they are not of interest to industry.
  • The claim that biomass technology will be a stepping stone to a new mix of energy sources misses the whole point – that we are facing a crisis of overproduction and consumption.  Reducing our overall energy demands is critical, as it boosting support for decentralized peasant agriculture.

[1] See for example, The Economics of Ecosystems and Biodiversity:

Ecological and Economic Foundations. Edited By Pushpam Kumar. An

output of TEEB: The Economics of Ecosystems and Biodiversity,

Earthscan Oct. 2010

[2] Michael Graham Richard, “Geneticist Craig Venter Wants to Create Fuel from CO2,” Treehugger, 29 February 2008. Available online at: http://www.treehugger.com/files/2008/02/craig-venter-fuel-co2-tedconference.php





Bioplastics

9 04 2012

The first plastic garbage bag was invented by Harry Waslyk in 1950.

1950!  Mr. Waslyk could not have predicted how much havoc his plastic child would wreck in a mere 62 years.[1]

We’ve all seen the pictures of birds stomachs filled with plastic detritus and read about the Great Pacific Gyre, but I just read a new twist to that story:    the Emirates News Agency reported that decomposed remains of camels in the desert region of the United Arab Emirates revealed that 50% of the camels died from swallowing and choking on plastic bags.  “Rocks of calcified plastic weighing up to 60 kilograms are found in camel stomachs every day,” said Dr. Ulrich Wernery, Scientific Director, Central Veterinary Research Laboratory in Dubai, whose clinic conducts hundreds of post-mortems on camels, gazelles, sheep and cows in the UAE.  He adds that one in two camels die from plastic.[2]

Plastic has become so ubiquitous, in fact, that plastics are among the debris orbiting our planet. Unfortunately, our wildlife and domestic animals are paying the price now; I think we ourselves will see changes in future generations.

It’s no wonder we’re scrambling to find alternatives to plastic, and one hot topic in the research area is that of bioplastics.

Bioplastics are made (usually) from plant materials.  Enzymes are used to break starch in the plant into glucose, which is fermented and made into lactic acid.  This lactic acid is polymerized and converted into a plastic called polylactic acid (PLA), which can be used in the manufacture of products  ( PLA is about 20% more expensive than petroleum-based plastic)  or into a plastic  called polyhydroxyalkanoate, or PHA (PHA biodegrades more easily but is more than double the price of regular plastic).

The bioplastic market is expanding rapidly and by 2030, according to some estimates, could account for 10% of the total plastics market.   In the world of fabrics and furnishings, the new biotech products which are being heavily promoted are Ingeo and Sorona, both PLA based fibers with a growing share of the fabric market; and soy-based foam for upholstery.    Toray Industries has announced that they will have the first functional performance nylon and polyester textiles based on biomass ready for the 2013/14 season.  They are 100% bio-based fabrics [3] based on the castor plant, which is very robust, growing in dry farming areas and requiring significantly fewer pesticides and herbicides than other crops.

So it’s no wonder that there has been much discussion about bioplastics, and about whether there are ecological advantages to using biomass instead of oil.

The arguments in favor of bioplastics are:

  • They are good for the environment because there is no harm done to the earth when recovering fossil fuels. Also, in this process there are very few greenhouse gas and harmful carbon emissions. Regular plastics need oil for their manufacturing, which pollutes the environment.
  • They require less energy to produce than petroleum-based plastics.
  • They are recyclable.
  • They are non toxic.
  • They reduce dependence on foreign oil.
  • They are made from renewable resources.

These arguments sound pretty good – until you begin to dig  and find out that once again, nothing is ever as simple as it seems.

Regarding the first two arguments (they are good for the environment because they produce significantly fewer CO2 emissions and less energy) –  there have not been many studies which support  this argument until recently.  Recently,  several  studies have been published which seems to support that  this is indeed the case:

  1. Ramani Narayan of Michigan State University found that “the results for the use of fossil energy resources and GHG emissions are more favorable for most bio based polymers than for oil based. As an exception, landfilling of biodegradable polymers can result in methane emissions (unless landfill gas is captured) which may make the system unattractive in terms of reducing greenhouse gas emissions.”[4]
  2. University of Pittsburgh researchers did an LCA on the environmental impacts of both petroleum and bio derived plastics, assessing them using metrics which included  economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. They found that  biopolymers are the more eco-friendly material in terms of energy use and emissions created.  However, they also concluded that traditional plastics can actually be less environmentally taxing to produce when taking into account such things as acidification, carcinogens, ecotoxicity, eutrophication, global warming, smog, fossil fuel depletion, and ozone depletion.[5]
  3. A study done by the nova-Institut GmbH on behalf of Proganic GmbH & Co.[6]showed unambiguously positive eco advantages (in terms of energy use and CO2 emissions) for bio based polymers PLA and PHA/PHB over petrochemical based plastics.  According to the report, “the emission of greenhouse gases and also the use of fossil raw materials are definitely diminished. Therefore the substitution of petrochemical plastics with bio-based plastics yields positive impacts in the categories of climate change and depletion of fossil resources.”  The results include:
    1. Greenhouse gas emissions of bio-based plastics amount to less than 3 KG of CO2 equivalents per KG of plastic, less than that of petrochemical based plastics which produce an average of 6 KG of CO2 equivalents per KG of plastic..
    2. the production of bio-based polymers, in comparison to all petrochemical plastics examined, leads to savings in fossil resources. The biggest savings potential can be found in comparison with polycarbonate (PC). The average savings potential in the production of PLA amounts to 56 ± 13 megajoules per kilogram of plastics here.
    3. The production of bio-based polymers in comparison with the production of petrochemical plastics in most cases also leads to greenhouse gas emission savings. The biggest greenhouse gas emission savings can be found again when comparing bio-based polymers to polycarbonate (PC). For PLA, the average savings potential in this case amounts to 4.7 ± 1.5 kilograms of CO2 equivalents per kilogram of plastics. For PHA, the average savings potential in this case amounts to 5.8 ± 2.7 kilograms of CO2 equivalents per kilogram of plastics. In comparison with PET and Polystyrene (PS), considerable savings potentials ranging between 2.5 and 4.2 kilograms of CO2 equivalents per kilogram of plastics are to be found in the production of bio-based polymers. The lowest savings potential are to be found when comparing bio-based polymers with polypropylene (PP).

So I will accept the arguments that biobased plastics produce fewer  greenhouse gases and harmful carbon emissions and require less energy to produce than petroleum-based plastics .  They also certainly reduce our dependence on foreign oil.

But are they better for the environment?  Are they recyclable or biodegradeable?  Are they safe?  Are plastics producers aware of the impact of promoting bioplastics as a replacement for plastics? We think that  bioplastics are useful for certain purposes, such as medical sutures or strewing foil for mulching in agriculture – but as a replacement for all plastics?

Next week we’ll take a look at the arguments against bioplastics.


[1] Laylin, Tafline, “Half of UAE’s Falaj Mualla Camels Choked on Plastic Bags”, Green Prophet blog, June 11, 2010.

http://www.greenprophet.com/2010/06/camels-choke-on-plastic/

[2] Ibid.

[4] Narayan, Ramani, “Review and Analysis of Bio-based Product LCA’s”, Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824

[5] Tabone, Michaelangelo D., et al; “Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers”, Enviornmental Science and Technology, September 2, 2010.








Follow

Get every new post delivered to your Inbox.

Join 1,324 other followers