Sofa shopping

17 04 2015

We did a series of posts on how to evaluate a quality sofa about two years ago, and judging from the questions we get from people, we thought it might be time to re-post these!  The 3-part series is divided into evaluating a sofa frame, cushioning materials and fabric (of course!).  Herewith, the first post:

So you’re shopping for a sofa, and you see this one in a store.

camille 1

In a different store, you see the one below.

blue sofa

One sofa (the one on top) costs $3000;  the other costs $1500.  Why the wide disparity in price?

Shopping for a sofa is fraught with anxiety – we don’t do it often (for most people it’s every 7 – 10 years) so we don’t know how to shop for it.  Knowing what to look for, and how to evaluate a sofa, might take some of the anxiety away.  And knowing a bit about the components and how they’re put together will explain some of the difference in price.  It’s important to keep that in mind while you’re being seduced by the alluring upholstery, svelte arms and come-hither cushions.  But if your darling’s joints are weak, springs loose and cushions flat, you’ll quickly lose that lovin’ feeling.  Not to mention the additional chemical guests you’ll be inviting into your home with the sofa.

Start by asking yourself questions such as who will use the sofa  – will the kids dump themselves and their bags on it right after school or is it in a room that’s just used for entertaining?  How long do you want it to last?  Do you want to sink into the cushions or sit up straight?  Nap on the sofa?

One of the first things you should do – really before doing anything else –  is look at the sticker price and concentrate on the amortized cost  (cost per day) of buying each one.  There is a reason for the price disparity – they have to cut corners someplace, so lower quality materials are used

And construction is …  well let’s just say it’s not built to last.  “Quality” translates into “useful life”.  For simplicity, let’s assume the top sofa will last 20 years while the bottom sofa will last just 5.  That would mean the top sofa costs $0.41/day while the bottom sofa costs $0.82/day = exactly double.  The cost of owning the top sofa is half as much as the cost of owning the bottom sofa.

Dr. Thomas J. Stanley, in his book The Millionaire Mind, observed: “By definition, millionaires tend to be accumulators, a trait they inherited from their parents who were collectors.  Their parents and grandparents held on to things that had value. So the majority of millionaires have a family legacy of collecting, saving, and preserving.  Waste not, want not is a theme acted out by first-generation millionaires today”.[1]

With regard to how this trait applies to buying furniture: They deliberately purchase furniture they can pass on to the younger generation.  This, in essence, is their definition of quality furniture.  It will outlive a person’s normal adult life span, will never lose its appeal, and will probably appreciate in value.[2] A good quality sofa is an investment, like any other quality purchase that you expect to last.

For the next few weeks I’ll break a sofa down into component parts and talk about each one separately, starting this week with the frame and suspension system:

FRAME:

A very low cost sofa is probably made of engineered wood – such as plywood, particleboard, Medium Density Fiberboard (MDF) or glulam  –  all of which can legally be referred to as “solid wood products”.   Engineered wood (or composite, man-made or manufactured wood) are made by binding the strands, particles, fibers or veneers of wood with adhesives – most often that means urea formaldehyde (a known carcinogen) and finished with polyurethane or aluminum oxide.  In laymans terms, MDF (for example) is sawdust held together with glue.  MDF has a life span of 1/10th to 1/4th that of solid wood, properly constructed – and costs about 1/10th to 1/4th that of solid wood.  Cutting, sanding, or releasing particles of MDF into the air might be a high risk and should be avoided.  If the MDF isn’t properly sealed, it can leak formaldehyde for years, pumping it into your home or office.

Often manufacturers use wood veneers over MDF cores, and consumers have no idea that they’re not buying real wood.  Veneers are also used on solid wood (usually a less expensive wood) –that has a similar property as the veneer, allowing them to swell and contract together with changes in humidity.  They also respond similarly to stain and finish products. The bond between manufactured wood (MDF) and the veneer is not as strong or stable as that of the solid wood because MDF tends to respond more dramatically to changes in humidity and temperature, and is more rigid than solid wood, making the bond less durable.

Recognizing solid wood veneer furniture is fairly simple. Look to the bottom and back edges of tabletops, drawers and shelves. Solid wood always has grain, whereas MDF and particleboard do not. These unexposed edges will not typically be veneered.

Another thing which is often cited as a way to evaluate quality is to pick up the sofa – if it’s really heavy, it’s probably made of solid wood – or so the saying goes.  However MDF is also very heavy – so weight alone cannot really be used as a test.

At the next step up, soft woods (like pine) may be used.  The highest quality furniture uses kiln dried hard wood, like ash, maple or poplar, which offer greater strength and stability.  But not all wood is created equal: we think that it’s important to choose a wood that did not come from an endangered forest (such as a tropical forest), and preferably one that is sustainably managed, because forests, according to the National Resources Defense Council, are critical to maintaining life on Earth.  And that’s something we should pay attention to!   (See our post about wood used in furniture at https://oecotextiles.wordpress.com/2012/08/23/how-to-buy-a-quality-sofa-part-2-wood/ )  Wood certified by the Forest Stewardship Council (FSC) ensures that the wood used in your sofa was from a managed forest. SFI, an alternative certification created by the American Forest & Paper Association, allows such things as clearcuts, use of toxic chemicals, and conversion of old-growth forests to tree plantations. So the certifying body matters!

How the wood is connected is important too.  Lower cost sofas are often stapled together, or you’ll get plastic legs screwed into the frame instead of wooden legs that are part of the posts or bolted into the frame.   Give it a year or two and the arms get loose or the frame wobbles.  Higher cost sofas are held together with glue and dowels or tongue-and-groove joints, making the joints even stronger than the wood itself.  Corner blocks (in each corner of the frame, near the legs, an extra piece of wood joins the two side rails) are important.

Finally, the wood is often stained or varnished – both of which emit harmful VOC’s of various kinds, depending on the stains or varnishes used.  A safe alternative is to ensure that the stains/varnishes used don’t emit harmful VOC’s such as formaldehyde, and are formulated without aromatic solvents, heavy metals in the pigments, toluene solvents or other harmful chemicals.

SUSPENSION SYSTEM:

The suspension system determines the bounce in the cushions, and how they support your weight when you sit on them.   The differing degrees of pressure your body puts on the cushions causes the coils to respond, giving what is known as “ride”.  Generally, the higher the number of coils, the better the ride.  The gold standard has always been the labor-intensive, 8-way hand-tied spring system. It’s expensive to do it right, and few companies do. When done correctly each spring is set into the deck webbing and attached, with various spring rates depending on what portion of the seat deck its located. They are then tied together (8 strings per piece) and knotted at each juncture (not looped! – only knotting keeps the spring deck together if a string breaks). Much has been said about how eight-way hand-tied spring-up systems are superior to any other kind. “It’s a sacred cow in the industry,” says Professor C. Thomas Culbreth, director of the furniture manufacturing and management center at North Carolina State University [3].

But not all eight-way hand-tied spring-ups are built the same way, and the sinuous spring – or S –  system,  will last just as long, and for most people the comfort level is the same.  Sinuous springs are “S” shaped and run from the front of the seat to the back. These springs are supported by additional wires that cross from side to side.  The S springs lack the localized response of a coil system but gives a firm ride that some people prefer, and it has less potential for sagging over time.   It also makes for a strong seat, and it might be the preferred option in a sleeker style as it requires less space.

Next week we’ll tackle cushions, because that’s, as they say, a whole ‘nother ballgame.

[1] Stanley, Thomas J., The Millionaire Mind, Andrews McMeel Publishing, 2001, p.294

[2] Ibid.

[3] http://money.cnn.com/magazines/moneymag/moneymag_archive/2003/03/01/337933/

 

 





The Environmental Working Group’s recent post about “five couches without flame-retardants”

27 03 2015

In a  post dated March20, 2015, the EWG’s Enviroblog had a list of five sofas without flame-retardants that you can buy right now. It is, of course, wonderful that the State of California has revised their antique law requiring flame-retardants in furniture, but shame on the Environmental Working Group for failing to point out the many other components of sofas which are impacting our health. By not pointing out the effects that these components have on our health, people believe that a fire retardant-free sofa is safe. Yes, we have a broken federal law that purports to protect us, and yes, fire retardants are finally getting the recognition as the bad guys they deserve. But having a flame retardant-free sofa doesn’t mean you’re home safe!

Of the five sofas on the list, West Elm stands out as giving no information at all on the components – a sure sign of concern. Of the remaining four, all use polyurethane for cushioning (Crate and Barrel tries to up the ante by using “soy-based polyurethane foam”, one of Terrachoice’s “Six Sins of Greenwashing”). Room & Board uses “engineered hardwood” (i.e., glulam or other manufactured wood glued together) and Ikea uses fiberboard. And none offer an Oeko-Tex or GOTS certified fabric! Those components, in terms of your health, mean:

FRAME:

  • If you have chosen a sofa which uses “engineered hardwood” or fiberboard, then you will also be living with formaldehyde emissions. See our blog post: https://oecotextiles.wordpress.com/2013/09/05/sofa-shopping-frame-and-suspension/
  • For the sofas made with hardwood, no mention is made of the glue, varnish or paints used. The hardwood itself used by Crate and Barrel and Design Within Reach is not FSC certified (despite Crate and Barrel’s use of “USA certified sustainable hardwood” – by not mentioning the certification by name I assume it is self-certified). That means you’ve chipped away at your children’s inheritance of this Earth by supporting practices which don’t support healthy forests, which are critical to maintaining life: forests filter pollutants from the air, purify the water we drink, and help stabilize the global climate by absorbing carbon dioxide, the main greenhouse gas. See our blog post about the importance of FSC certified wood: https://oecotextiles.wordpress.com/2010/01/13/what-kind-of-wood-is-best-for-your-new-green-sofa/

CUSHIONS:

  • Even high-density polyurethane foam – as well as soy foam, the new media darling – emits methyloxirane, which causes cancer and genetic mutations, and toluene, a neurotoxin. Polyurethane/soy foams oxidize over time, sending these chemicals into the air, where you can breathe them in.  Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development. It is one of the components of furniture that the University of Saskatchewan (among others) suggests be avoided in furniture.[1]  A study (the first of its kind) published last year by the Cockrell School of Engineering at the University of Texas at Austin, found over 30 chemicals which are emitted from polyurethane foam, including phenol, neodecanoic acid and linalool.(2)  See our blog post about soy based foam: https://oecotextiles.wordpress.com/2013/09/12/sofa-cushions-foam-soy-foam-or-latex/ and about the components of polyurethane foam: https://oecotextiles.wordpress.com/2012/09/04/how-to-buy-a-quality-sofa-part-3-foam/

DECORATIVE FABRIC:

  • Produced without regard to the kinds of chemicals used in dyestuffs, processing or finishes – because none of these sofas offer Oeko-Tex or GOTS certified fabrics. Fabrics are, by weight, about 25% synthetic chemicals[3], and textile processing uses some of the most dangerously toxic chemicals known – among them, lead, mercury, arsenic, formaldehyde, Bisphenol A (BPA), PFOA, NPA’s. There are no requirements that manufacturers disclose the chemicals used in processing – chemicals which remain in the finished fabrics. Often the chemicals are used under trade names, or are protected by legislation as “trade secrets” in food and drug articles – but fabrics don’t even have a federal code to define what can/cannot be used  –  because fabrics are totally unregulated in the U.S., except in terms of fire retardancy or intended use. That’s why a third party certification such as Oeko-Tex or GOTS can provide assurance that the chemicals which are known (or suspected) to harm human health are not in the fabric you’re living with.  See one (of many) blog posts we have done on the subject: https://oecotextiles.wordpress.com/2011/03/09/what-effects-do-fabric-choices-have-on-you/

GLUE, VARNISH, PAINT

  • Finally, glues, varnishes, paint all contribute to the toxic load of evaporating chemicals if conventional products have been used on the sofa.

It was sad that EWG chose to ignore the many small manufacturers who produce what is being called “organic sofas”, for lack of a better word. These manufacturers use natural latex (sometimes GOLS certified), FSC certified hardwoods and Oeko-Tex or GOTS certified fabrics – and have not been using flame retardants for years!  They vet all the products they use to conform to their requirements.     Instead, my heroes, the EWG, have supported business as usual.

[1]http://www.usask.ca/fsd/resources/documents/puchasing/sustainability/Furniture.pdf

(2) http://www.utexas.edu/news/2014/04/02/crib-mattresses-emit-chemicals/

[3] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609.





Why are “endocrine disruptors” a concern?

6 03 2015

 

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals. Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often and in vast quantities in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[1] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, his/her pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[2], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

endocrine disruptor

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. They have become a part of our indoor environment, found in cosmetics, cleaning compounds, baby and children’s toys, food storage containers, furniture and carpets, computers, phones, and appliances. We encounter them as plastics and resins every day in our cars, trucks, planes, trains, sporting goods, outdoor equipment, medical equipment, dental sealants, and pharmaceuticals. Without fire retardants we would not be using our computers or lighting our homes. Instead of steel and wood, plastics and resins are now being used to build homes and offices, schools, etc. A large portion of pesticides are endocrine disruptors.

What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development. In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”

  1. Age at time of exposure is critical. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  2. The developmental basis of adult disease also has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. In other words, the consequences of exposure may not be apparent early in life.
  3. Exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[3]
  4. Even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window[4]. Surprisingly, low doses may even exert more potent effects than higher doses.

    Carol Kwiatkowski, director of TEDX

    Carol Kwiatkowski, director of TEDX

  5. EDCs may affect not only the exposed individual but also the children and subsequent generations.[5]

TEDX (The Endocrine Disruption Exchange, Inc.) is the only organization that focuses primarily on the human health and environmental problems caused by low-dose and/or ambient exposure to endocrine disrupting chemicals.

TEDX’s work is prevention driven, and it is the only environmental organization that focuses on the problems associated with endocrine disruption attributable to synthetic chemicals found in the general environment. While there are other national, international, and local organizations that address the public health and environmental consequences of toxic chemicals in the environment, none of them expressly emphasize endocrine disruption. By mainly focusing on substances in the environment that interfere with development and function throughout all life stages, TEDX has one of the most complete databases in the world on this topic, available for those concerned about public health and environmental quality. This database was developed because traditional toxicological protocols have used high doses on fully developed tissues and individuals that heretofore missed the consequences of chemical substances on developing tissues.

TEDX is unique because it focuses on the damaging activity of chemicals on biological systems from an entirely new approach. This new approach focuses on the effects of very low and ambient levels of exposure on developing tissue and resulting function before an individual is born, which can lead to irreversible, chronic disorders expressed at any time throughout the individual’s life.

Endocrine disruption takes into consideration the vulnerability of every individual in the population during their most vulnerable life stages. By providing this unique perspective on the actions of endocrine disruptors, TEDX fills in the very large gap in public health protection that traditional toxicology and government regulatory agencies do not fill. Drawing upon its computerized databases on endocrine disruption and coordination with researchers in the field of endocrine disruption, TEDX provides the very latest summaries of the state of knowledge and its meaning for human health and the environment.

 As the TEDX website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects.. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken. TEDX provides concerned persons and organizations with a science-based foundation for individuals to act and promote responsive public policy-making. Moreover, as federal government resources devoted to research on endocrine disruption have diminished due to budget cuts, TEDX must assume an even more prominent role in developing and disseminating information on the human and environmental impacts of endocrine disruption.”

To date, no chemical in use has been thoroughly tested for its endocrine disrupting effects. Traditional toxicological testing protocols were not designed to test for endocrine disruption and to test at ambient or low exposure levels.

 

 

[1] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[2] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Tyupe 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

[3] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K 2003 Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals. Pure and Applied Chem- istry, SCOPE/IUPAC Project Implications of Endocrine Ac- tive Substances for Humans and Wildlife 75:2305–2320

[4] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D 1999 No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect 107:155–159

[5] Anway MD, Skinner MK 2006 Epigenetic transgenera- tional actions of endocrine disruptors. Endocrinology 147: S43–S49

 





Subtle effects of climate change

18 02 2015

I’m becoming anxious about climate change, and in particular what that means to my life. We humans are still in denial about climate change, and even though I’ve been told that climate change could  destroy ecosystems and economies within a generation – I like to look at the little changes that overpopulation and climate change bring about. Because the textile industry is a major contributor to the emissions which bring about these changes, I thought the topic was apt!

I was visiting a friend in Virginia recently. She and her friends were complaining about hiking conditions and how it’s so important to check for ticks after a hike because Lyme disease is so prevalent – complete with lots of stories of friends who had contracted the disease.

Less than four decades ago, scientists identified a spiral-shaped bacteria transmitted by the bite of a tiny hard-bodied tick as the cause of an arthritis outbreak among children in southern Connecticut. Since then, Lyme disease has emerged from obscurity to become the leading vector-borne (i.e., transmitted by mosquitos, ticks and/or fleas) disease in the United States. The 27,203 confirmed new cases reported to federal health authorities in 2013 marked nearly a 25 percent jump over the previous year,[1] and the total number of cases of Lyme disease has doubled since 1991. The CDC estimates that the number of infections is likely 10 times higher than reported, nearly 300,000 new cases per year based on lab test data.  Yale University researchers say that 10 percent of the population of southern New England has evidence of a previous Lyme disease infection. Why is this happening?

annual-cases-lyme-disease-us copy

While the disease is reported coast-to-coast, it is highly concentrated on the Eastern Seaboard, with a range expanding north into Canada and south through Virginia. Tick habitat and populations are influenced by many factors, but one of them is climate. This spring the U.S. Environmental Protection Agency added Lyme disease to its list of climate change indicators.

Scientists from Yale University have determined that climate impacts the severity of Lyme disease by influencing the feeding patterns of deer ticks that carry and transmit it.[2]  Deer ticks live for two years and have three stages of life – larval, nymphal and adult. They obtain one blood meal during each stage in order to survive. If the source of the first meal (a mouse, bird or other small animal) is infected with the bacterium that causes Lyme disease, the tick also becomes infected and passes it on to its next meal source – be it wildlife or human – in its second life stage as a nymph.

The researchers found that this cycle is heavily influenced by climate, which has the following effects on Lyme disease: An acceleration of the tick’s developmental cycle, a prolonged developmental cycle, increased egg production, increased population density, and a broader range of risk areas. Once the larvae have molted into the nymphal stage, the winter forces them to remain dormant until spring. An adult tick no longer needs to hibernate during the winter, so these ticks may become active on warm winter days, yielding a larger nymph population the following year. With an earlier winter thawing, nymphal-staged ticks will become active sooner. The warmer winters will also allow for a higher survival rate of the white-footed mouse, a popular host for the ticks, meaning an increased tick population in the spring and summer.

In the Midwest, where there are greater extremes of temperature, there is a shorter window of opportunity for tick feeding, and therefore a shorter gap between nymphal and larval feedings. Because of this, report the scientists, Midwestern wildlife and ticks are infected with less persistent strains, which correlates with fewer cases of Lyme disease reported in the Midwest.

The clear implication of this research, say the researchers, is that, as the planet warms, the Upper Midwest could find itself in the same situation as the Northeast: longer gaps between nymphal and larval feeding, and therefore, stronger, more persistent strains of Lyme disease.

Deer have been the main suspect in being the carrier of Lyme disease, but research shows that the new suspect is the white-footed mouse. Both deer and white-footed mouse populations have exploded recently – largely due to forest fragmentation. Forest fragments generally have fewer species than larger forest tracts, including the predators of deer and white-footed mice, which have allowed both of these populations to explode. “Our results suggest that efforts to reduce the risk of Lyme disease should be directed toward decreasing fragmentation of deciduous forests of the northeastern United States, particularly in areas with a high incidence of Lyme disease,” says Felicia Keesing of Bard College in Annandale, New York. “The creation of forest fragments smaller than five acres should especially be avoided.”

 

[1] Lavelle, Marianne, “Has Climate Change Made Lyme Disease worse?”, Scientific American, September 22, 2014

[2] Gatewood et al, “Climaate and Tick Seasonality are Predictors of Borrelia burgdorferl Genotype Distribution”, Applied and Environmental Microbiology, 2009; 75 (8): 2476 DOI: 10.1128/AEM.02633-08





Phthalate concerns for pregnant women

29 01 2015

Three pregnant women

As if we needed something else to worry about, a peer-reviewed study from the Mailman School of Public Health at Columbia University, published in December 2014, found evidence that chemicals called phthalates can impact the children of pregnant women who were exposed to those chemicals. Children of moms who had the highest levels of phthalates during pregnancy had markedly lower IQs at age 7. [1] Phthalates had previously been linked to effects ranging from behavioral disorders and cancers to deformations of the sex organs.

Why are we talking about this in a blog about fabrics?

Because phthalates are in the fabrics we use.  Generally, phthalates are used to make plastic soft: they are the most commonly used plasticizers in the world and are pretty much ubiquitous. They’re found in perfume, hair spray, deodorant, almost anything fragranced (from shampoo to air fresheners to laundry detergent), nail polish, insect repellent, carpeting, vinyl flooring, the coating on wires and cables, shower curtains, raincoats, plastic toys, and your car’s steering wheel, dashboard, and gearshift. (When you smell “new car,” you’re smelling phthalates.) Medical devices are full of phthalates — they make IV drip bags and tubes soft, but unfortunately, DEHP is being pumped directly into the bloodstream of ailing patients. Most plastic sex toys are softened with phthalates.

Phthalates are found in our food and water, too. They are in dairy products, possibly from the plastic tubing used to milk cows. They are in meats (some phthalates are attracted to fat, so meats and cheeses have high levels, although it’s not entirely clear how they are getting in to begin with). You’ll find phthalates in tap water that’s been tainted by industrial waste, and in the pesticides sprayed on conventional fruits and vegetables.

And fabrics. People just don’t think to even mention fabrics, which we continue to identify as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% by weight of the fabric.[2] Phthalates are one of the main components of plastisol screen printing inks used on fabrics. These plasticizers are not chemically bound to the PVC, so they can leach out. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Phthalates are what is termed an “endocrine disruptor” – which means they interfere with the action of hormones. Hormones do a lot more than just make the sexual organs develop. During the development of a fetus, they fire on and off at certain times to affect the brain and other organs.

“The developing brain relies on hormones,” Dr. Factor-Litvak, the lead scientist of the study, said. Thyroid hormones affect the development of neurons, for example. There might be a window of vulnerability during pregnancy when certain key portions of the brain are forming, she said, and kids whose moms take in a lot of the chemicals during those times might be at risk of having the process disrupted somehow.

“These findings further suggest a potential role for phthalates on neurodevelopment,” said Dr. Maida P. Galvez, who did not work on the study but has a specialty in environmental pediatrics. The associate professor is in the Department of Preventive Medicine and Pediatrics at the Icahn School of Medicine at Mount Sinai. “While this requires replication in other study populations for confirmation, it underscores the fact that chemicals used in everyday products need to be rigorously evaluated for their full potential of human health impacts before they are made widely available in the marketplace.”[3]

In the United States, the new Consumer Product Safety Improvement Act of 2008 (CPSIA) banned certain phthalates from use in toys or certain products marketed to children. In order to comply with this law, a product must not contain more than 0.1% of any of six banned phthalates. But just these six – the class of phthalates includes more than 25 different chemicals.

Gwynne Lyons, policy director of the campaign group, CHEM Trust, said: “The number of studies showing that these substances can cause harm is growing, but efforts by Denmark to try and get EU action on some phthalates had run into difficulties, largely because of concerns about the costs to industry.” [4] (our highlight!)

[1] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[2] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[3] Christensen, “Exposure to common household chemicals may cause IQ drop”, CNN, December 11, 2014 http://www.cnn.com/2014/12/11/health/chemical-link-to-lower-iq/

[4] Sample, Ian, “Phthalates risk damaging children’s IQs in the womb, US researchers suggest”, The Guardian, December 10, 2014





The problem with down jackets

8 01 2015

I love my down jacket –  especially now in the cold and dark – it’s light and warm, both really important considerations whenever I’m stuffing a backpack for a few nights in the backcountry (which, o.k., I admit doesn’t happen often) – or even when I’m walking the neighborhood.

Nothing is quite as good as down, the original fill for jackets and sleeping bags, and still the super hero of insulation. Down comes from waterfowl, which have down clusters under their waterproof feathers to keep them warm in the cold, wet conditions in which they live.  Unlike feathers, which have a stiff shaft with barbs sticking out on either side, down clusters have a soft, fine stalk crowned with a puff of very fine fibers at the top.  High quality down is so light that if you closed your eyes and someone dropped a pile of it into your hand, you wouldn’t even feel it (until it started to get warm). Down comes in a range of qualities (low quality down, for example, is usually mixed with a certain percentage of feathers): duck down tends to be lower quality than goose down (with the exception of down from the arctic eider duck, which is very high quality). Hungarian goose down is generally regarded as the best source of down.

But one thing is for sure: pound for pound, nothing insulates like good down.

Down keeps us warm by trapping the maximum amount of air (for warmth) with the minimum amount of material (for light weight and packability). That means that a down jacket will be lighter weight than a comparably warm synthetic. It will also be easier to pack and will stuff down smaller.

Down also has the advantage of durability: Properly cared for down gear can handle being stuffed and unstuffed hundreds of times, and can last a lifetime. Last but not least, down is comfortable; it is hard to beat the feeling of being enveloped in the light, soft warmth of down, and down’s higher breathability gives down gear a little broader comfort range than synthetics.

But what I have read about the horrific way down is harvested left me a more than a bit sick to my stomach.

Most down comes from what is known as “live plucked” birds. Live plucking means that, typically, geese and ducks are lifted by their necks, their legs are tied, and their feathers are pulled out in large chunks in a process that the industry refers to as “ripping”[1]  The birds struggle and panic, sometimes even breaking limbs in an attempt to escape.  A 2009 Swedish television program, Kalla Fakta, produced a two part documentary on the topic of live-plucking in Hungary which revealed:

…birds on their backs screaming and struggling to free themselves from their tormentors as their down is ripped from their bodies at rapid speed. Afterwards, several birds are left paralyzed on the ground with large flesh wounds. The birds with big gaping wounds are then sewn back together with needle and thread on site by the workers themselves and without any anesthetic.[2]

 Birds are live-plucked for the first time at about ten weeks old, and are plucked again four to six times a year until they’re sent to slaughter at about four years old.

Ducks and geese are not the only birds raised for feathers. Others include fancy roosters (for feathers used as baits for fly fishermen, and for hair extensions) and ostriches. I could continue with additional incidents of this torture but I’ll spare you (and myself).

The documentary Kalla Fakta estimates that as much as 50-80% of the world’s down is from live plucked birds. Major producing countries are Hungary, Poland and China (which produces 80% of the world’s down). The documentary was widely aired in Europe, and as a result both the European Down and Feather Association and the China Feather and Down Industrial Association argued that the percentage is much smaller and that the live-plucked down is more expensive and mainly exported to Japan, where it is especially sought after.  IKEA conducted its own investigation after the documentary, and verified the high numbers.[3]

Live-plucking is illegal now in the E.U., but there are no sanctions to enforce the law. In the U.S., live-plucking is not an industry practice, but the U.S. imports down from the major down producing countries. Surprisingly, many companies actually highlight the fact that feathers used in their products are obtained from birds who are not killed, suggesting that live-plucking is the preferred alternative. The Daily Mail did a story on live-plucking in 2012 and asked many fashion brands about the source of the down used in their products – their response, or lack thereof, is telling.[4]

Down does have an Achilles heel: moisture. Get your down jacket wet and you freeze. Wet down loses its loft and all of its ability to keep you warm – and it takes a long, long time to dry. Enter synthetics.

We are no fan of synthetic fibers, but the reality is that they are here to stay and they do make our lives easier in some ways. And synthetic insulation has not yet matched down for light weight and warmth, but it has some advantages – the biggest of which is that it keeps its warmth while wet. Because the synthetic fibers don’t absorb moisture, they do not change shape and consequently do not lose loft if they get wet. A soaking wet jacket or sleeping bag will never be comfortable or nearly as warm as a dry one, but at least a synthetic insulated bag will retain some insulating ability. It will also dry considerably quicker than down, which can take days to dry out in the backcountry. Another benefit is that synthetics, by virtue of the fact that they are man-made, are hypoallergenic and a good choice for people who are allergic to the dust that can accumulate in cheaper down. Though they vary in quality and consequently price, synthetics in general are less expensive than down and so provide a wider range of options for people who are on a budget. Finally, synthetics are relatively easy to care for. While washing a down sleeping bag takes a great deal of care and most of a day, synthetic gear can usually be machine washed and dried quickly either hanging or in the dryer.

Drawbacks are also part of the package: synthetics are not as light or packable as down. They also tend to be stiffer in feel and so not as comfortable in both clothing and sleeping bags. The other drawback is longevity. Repeated stuffing and un stuffing of synthetic fibers has the tendency to damage them and cause them to clump up, undermining even dispersion of insulation and causing cold spots.

There are a wide variety of synthetic insulation alternatives to down: PrimaLoft, Polarguard, Thermolite, Thinsulate, Thermoloft and Climashield are all alternatives to down and there are others. Synthetic insulation is essentially polyester threading that is molded into long single threads or short staples to mimic lofty down clusters. Thinner and lighter threads fill voids and trap warm air more effectively, while thicker strands sustain the loft and durability. But many of these products include such additions as “anti-microbial protection”, which adds to the chemical burden. Being made from crude oil and sitting in a landfill for centuries is also carries a certain gravitas.

Even with the hoopla about hydrophobic down (i.e., down that “features a molecular level polymer applied to individual down plumes during the finishing process at the nano level – a chemical that by the way one source said is one of those banned in the E.U.) which is encouraging people to reassess down as their preferred insulation.  But  I will search for non down products, despite my aversion to living with synthetic fibers. I don’t think the animals deserve these fates, nor is sufficient quantity produced currently to meet the growing demand for down.

 

 

 

 

 

 

 

[1] Ari Solomon, Down with the Truth, Huffington Post, Sept. 22, 2009

[2] Animal Welfare Institute, Down on the Goose and Duck Farm, 2009

[3] Ibid.

[4] Boggan, Steve, “Feathers ripped from birds’ backs and gaping wounds sewn up with no pain relief: The barbaric cost of your winter coat”, Daily Mail.com, November 28, 2012.





Holiday wishes

20 12 2014

Ansel Adams

 Four years ago we published a list of gift suggestions.  We think it’s still a pretty good list:

To your enemy, forgiveness.
To an opponent, tolerance.
To a friend,  your heart.
To a customer, service.
To all, charity.
To every child,  a good example.
To yourself, respect.

Oren Arnold

Best holiday wishes to all!  We’ll be back in the new year.








Follow

Get every new post delivered to your Inbox.

Join 1,474 other followers