Subtle effects of climate change

18 02 2015

I’m becoming anxious about climate change, and in particular what that means to my life. We humans are still in denial about climate change, and even though I’ve been told that climate change could  destroy ecosystems and economies within a generation – I like to look at the little changes that overpopulation and climate change bring about. Because the textile industry is a major contributor to the emissions which bring about these changes, I thought the topic was apt!

I was visiting a friend in Virginia recently. She and her friends were complaining about hiking conditions and how it’s so important to check for ticks after a hike because Lyme disease is so prevalent – complete with lots of stories of friends who had contracted the disease.

Less than four decades ago, scientists identified a spiral-shaped bacteria transmitted by the bite of a tiny hard-bodied tick as the cause of an arthritis outbreak among children in southern Connecticut. Since then, Lyme disease has emerged from obscurity to become the leading vector-borne (i.e., transmitted by mosquitos, ticks and/or fleas) disease in the United States. The 27,203 confirmed new cases reported to federal health authorities in 2013 marked nearly a 25 percent jump over the previous year,[1] and the total number of cases of Lyme disease has doubled since 1991. The CDC estimates that the number of infections is likely 10 times higher than reported, nearly 300,000 new cases per year based on lab test data.  Yale University researchers say that 10 percent of the population of southern New England has evidence of a previous Lyme disease infection. Why is this happening?

annual-cases-lyme-disease-us copy

While the disease is reported coast-to-coast, it is highly concentrated on the Eastern Seaboard, with a range expanding north into Canada and south through Virginia. Tick habitat and populations are influenced by many factors, but one of them is climate. This spring the U.S. Environmental Protection Agency added Lyme disease to its list of climate change indicators.

Scientists from Yale University have determined that climate impacts the severity of Lyme disease by influencing the feeding patterns of deer ticks that carry and transmit it.[2]  Deer ticks live for two years and have three stages of life – larval, nymphal and adult. They obtain one blood meal during each stage in order to survive. If the source of the first meal (a mouse, bird or other small animal) is infected with the bacterium that causes Lyme disease, the tick also becomes infected and passes it on to its next meal source – be it wildlife or human – in its second life stage as a nymph.

The researchers found that this cycle is heavily influenced by climate, which has the following effects on Lyme disease: An acceleration of the tick’s developmental cycle, a prolonged developmental cycle, increased egg production, increased population density, and a broader range of risk areas. Once the larvae have molted into the nymphal stage, the winter forces them to remain dormant until spring. An adult tick no longer needs to hibernate during the winter, so these ticks may become active on warm winter days, yielding a larger nymph population the following year. With an earlier winter thawing, nymphal-staged ticks will become active sooner. The warmer winters will also allow for a higher survival rate of the white-footed mouse, a popular host for the ticks, meaning an increased tick population in the spring and summer.

In the Midwest, where there are greater extremes of temperature, there is a shorter window of opportunity for tick feeding, and therefore a shorter gap between nymphal and larval feedings. Because of this, report the scientists, Midwestern wildlife and ticks are infected with less persistent strains, which correlates with fewer cases of Lyme disease reported in the Midwest.

The clear implication of this research, say the researchers, is that, as the planet warms, the Upper Midwest could find itself in the same situation as the Northeast: longer gaps between nymphal and larval feeding, and therefore, stronger, more persistent strains of Lyme disease.

Deer have been the main suspect in being the carrier of Lyme disease, but research shows that the new suspect is the white-footed mouse. Both deer and white-footed mouse populations have exploded recently – largely due to forest fragmentation. Forest fragments generally have fewer species than larger forest tracts, including the predators of deer and white-footed mice, which have allowed both of these populations to explode. “Our results suggest that efforts to reduce the risk of Lyme disease should be directed toward decreasing fragmentation of deciduous forests of the northeastern United States, particularly in areas with a high incidence of Lyme disease,” says Felicia Keesing of Bard College in Annandale, New York. “The creation of forest fragments smaller than five acres should especially be avoided.”

 

[1] Lavelle, Marianne, “Has Climate Change Made Lyme Disease worse?”, Scientific American, September 22, 2014

[2] Gatewood et al, “Climaate and Tick Seasonality are Predictors of Borrelia burgdorferl Genotype Distribution”, Applied and Environmental Microbiology, 2009; 75 (8): 2476 DOI: 10.1128/AEM.02633-08





Phthalate concerns for pregnant women

29 01 2015

Three pregnant women

As if we needed something else to worry about, a peer-reviewed study from the Mailman School of Public Health at Columbia University, published in December 2014, found evidence that chemicals called phthalates can impact the children of pregnant women who were exposed to those chemicals. Children of moms who had the highest levels of phthalates during pregnancy had markedly lower IQs at age 7. [1] Phthalates had previously been linked to effects ranging from behavioral disorders and cancers to deformations of the sex organs.

Why are we talking about this in a blog about fabrics?

Because phthalates are in the fabrics we use.  Generally, phthalates are used to make plastic soft: they are the most commonly used plasticizers in the world and are pretty much ubiquitous. They’re found in perfume, hair spray, deodorant, almost anything fragranced (from shampoo to air fresheners to laundry detergent), nail polish, insect repellent, carpeting, vinyl flooring, the coating on wires and cables, shower curtains, raincoats, plastic toys, and your car’s steering wheel, dashboard, and gearshift. (When you smell “new car,” you’re smelling phthalates.) Medical devices are full of phthalates — they make IV drip bags and tubes soft, but unfortunately, DEHP is being pumped directly into the bloodstream of ailing patients. Most plastic sex toys are softened with phthalates.

Phthalates are found in our food and water, too. They are in dairy products, possibly from the plastic tubing used to milk cows. They are in meats (some phthalates are attracted to fat, so meats and cheeses have high levels, although it’s not entirely clear how they are getting in to begin with). You’ll find phthalates in tap water that’s been tainted by industrial waste, and in the pesticides sprayed on conventional fruits and vegetables.

And fabrics. People just don’t think to even mention fabrics, which we continue to identify as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% by weight of the fabric.[2] Phthalates are one of the main components of plastisol screen printing inks used on fabrics. These plasticizers are not chemically bound to the PVC, so they can leach out. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Phthalates are what is termed an “endocrine disruptor” – which means they interfere with the action of hormones. Hormones do a lot more than just make the sexual organs develop. During the development of a fetus, they fire on and off at certain times to affect the brain and other organs.

“The developing brain relies on hormones,” Dr. Factor-Litvak, the lead scientist of the study, said. Thyroid hormones affect the development of neurons, for example. There might be a window of vulnerability during pregnancy when certain key portions of the brain are forming, she said, and kids whose moms take in a lot of the chemicals during those times might be at risk of having the process disrupted somehow.

“These findings further suggest a potential role for phthalates on neurodevelopment,” said Dr. Maida P. Galvez, who did not work on the study but has a specialty in environmental pediatrics. The associate professor is in the Department of Preventive Medicine and Pediatrics at the Icahn School of Medicine at Mount Sinai. “While this requires replication in other study populations for confirmation, it underscores the fact that chemicals used in everyday products need to be rigorously evaluated for their full potential of human health impacts before they are made widely available in the marketplace.”[3]

In the United States, the new Consumer Product Safety Improvement Act of 2008 (CPSIA) banned certain phthalates from use in toys or certain products marketed to children. In order to comply with this law, a product must not contain more than 0.1% of any of six banned phthalates. But just these six – the class of phthalates includes more than 25 different chemicals.

Gwynne Lyons, policy director of the campaign group, CHEM Trust, said: “The number of studies showing that these substances can cause harm is growing, but efforts by Denmark to try and get EU action on some phthalates had run into difficulties, largely because of concerns about the costs to industry.” [4] (our highlight!)

[1] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[2] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[3] Christensen, “Exposure to common household chemicals may cause IQ drop”, CNN, December 11, 2014 http://www.cnn.com/2014/12/11/health/chemical-link-to-lower-iq/

[4] Sample, Ian, “Phthalates risk damaging children’s IQs in the womb, US researchers suggest”, The Guardian, December 10, 2014





The problem with down jackets

8 01 2015

I love my down jacket –  especially now in the cold and dark – it’s light and warm, both really important considerations whenever I’m stuffing a backpack for a few nights in the backcountry (which, o.k., I admit doesn’t happen often) – or even when I’m walking the neighborhood.

Nothing is quite as good as down, the original fill for jackets and sleeping bags, and still the super hero of insulation. Down comes from waterfowl, which have down clusters under their waterproof feathers to keep them warm in the cold, wet conditions in which they live.  Unlike feathers, which have a stiff shaft with barbs sticking out on either side, down clusters have a soft, fine stalk crowned with a puff of very fine fibers at the top.  High quality down is so light that if you closed your eyes and someone dropped a pile of it into your hand, you wouldn’t even feel it (until it started to get warm). Down comes in a range of qualities (low quality down, for example, is usually mixed with a certain percentage of feathers): duck down tends to be lower quality than goose down (with the exception of down from the arctic eider duck, which is very high quality). Hungarian goose down is generally regarded as the best source of down.

But one thing is for sure: pound for pound, nothing insulates like good down.

Down keeps us warm by trapping the maximum amount of air (for warmth) with the minimum amount of material (for light weight and packability). That means that a down jacket will be lighter weight than a comparably warm synthetic. It will also be easier to pack and will stuff down smaller.

Down also has the advantage of durability: Properly cared for down gear can handle being stuffed and unstuffed hundreds of times, and can last a lifetime. Last but not least, down is comfortable; it is hard to beat the feeling of being enveloped in the light, soft warmth of down, and down’s higher breathability gives down gear a little broader comfort range than synthetics.

But what I have read about the horrific way down is harvested left me a more than a bit sick to my stomach.

Most down comes from what is known as “live plucked” birds. Live plucking means that, typically, geese and ducks are lifted by their necks, their legs are tied, and their feathers are pulled out in large chunks in a process that the industry refers to as “ripping”[1]  The birds struggle and panic, sometimes even breaking limbs in an attempt to escape.  A 2009 Swedish television program, Kalla Fakta, produced a two part documentary on the topic of live-plucking in Hungary which revealed:

…birds on their backs screaming and struggling to free themselves from their tormentors as their down is ripped from their bodies at rapid speed. Afterwards, several birds are left paralyzed on the ground with large flesh wounds. The birds with big gaping wounds are then sewn back together with needle and thread on site by the workers themselves and without any anesthetic.[2]

 Birds are live-plucked for the first time at about ten weeks old, and are plucked again four to six times a year until they’re sent to slaughter at about four years old.

Ducks and geese are not the only birds raised for feathers. Others include fancy roosters (for feathers used as baits for fly fishermen, and for hair extensions) and ostriches. I could continue with additional incidents of this torture but I’ll spare you (and myself).

The documentary Kalla Fakta estimates that as much as 50-80% of the world’s down is from live plucked birds. Major producing countries are Hungary, Poland and China (which produces 80% of the world’s down). The documentary was widely aired in Europe, and as a result both the European Down and Feather Association and the China Feather and Down Industrial Association argued that the percentage is much smaller and that the live-plucked down is more expensive and mainly exported to Japan, where it is especially sought after.  IKEA conducted its own investigation after the documentary, and verified the high numbers.[3]

Live-plucking is illegal now in the E.U., but there are no sanctions to enforce the law. In the U.S., live-plucking is not an industry practice, but the U.S. imports down from the major down producing countries. Surprisingly, many companies actually highlight the fact that feathers used in their products are obtained from birds who are not killed, suggesting that live-plucking is the preferred alternative. The Daily Mail did a story on live-plucking in 2012 and asked many fashion brands about the source of the down used in their products – their response, or lack thereof, is telling.[4]

Down does have an Achilles heel: moisture. Get your down jacket wet and you freeze. Wet down loses its loft and all of its ability to keep you warm – and it takes a long, long time to dry. Enter synthetics.

We are no fan of synthetic fibers, but the reality is that they are here to stay and they do make our lives easier in some ways. And synthetic insulation has not yet matched down for light weight and warmth, but it has some advantages – the biggest of which is that it keeps its warmth while wet. Because the synthetic fibers don’t absorb moisture, they do not change shape and consequently do not lose loft if they get wet. A soaking wet jacket or sleeping bag will never be comfortable or nearly as warm as a dry one, but at least a synthetic insulated bag will retain some insulating ability. It will also dry considerably quicker than down, which can take days to dry out in the backcountry. Another benefit is that synthetics, by virtue of the fact that they are man-made, are hypoallergenic and a good choice for people who are allergic to the dust that can accumulate in cheaper down. Though they vary in quality and consequently price, synthetics in general are less expensive than down and so provide a wider range of options for people who are on a budget. Finally, synthetics are relatively easy to care for. While washing a down sleeping bag takes a great deal of care and most of a day, synthetic gear can usually be machine washed and dried quickly either hanging or in the dryer.

Drawbacks are also part of the package: synthetics are not as light or packable as down. They also tend to be stiffer in feel and so not as comfortable in both clothing and sleeping bags. The other drawback is longevity. Repeated stuffing and un stuffing of synthetic fibers has the tendency to damage them and cause them to clump up, undermining even dispersion of insulation and causing cold spots.

There are a wide variety of synthetic insulation alternatives to down: PrimaLoft, Polarguard, Thermolite, Thinsulate, Thermoloft and Climashield are all alternatives to down and there are others. Synthetic insulation is essentially polyester threading that is molded into long single threads or short staples to mimic lofty down clusters. Thinner and lighter threads fill voids and trap warm air more effectively, while thicker strands sustain the loft and durability. But many of these products include such additions as “anti-microbial protection”, which adds to the chemical burden. Being made from crude oil and sitting in a landfill for centuries is also carries a certain gravitas.

Even with the hoopla about hydrophobic down (i.e., down that “features a molecular level polymer applied to individual down plumes during the finishing process at the nano level – a chemical that by the way one source said is one of those banned in the E.U.) which is encouraging people to reassess down as their preferred insulation.  But  I will search for non down products, despite my aversion to living with synthetic fibers. I don’t think the animals deserve these fates, nor is sufficient quantity produced currently to meet the growing demand for down.

 

 

 

 

 

 

 

[1] Ari Solomon, Down with the Truth, Huffington Post, Sept. 22, 2009

[2] Animal Welfare Institute, Down on the Goose and Duck Farm, 2009

[3] Ibid.

[4] Boggan, Steve, “Feathers ripped from birds’ backs and gaping wounds sewn up with no pain relief: The barbaric cost of your winter coat”, Daily Mail.com, November 28, 2012.





Holiday wishes

20 12 2014

Ansel Adams

 Four years ago we published a list of gift suggestions.  We think it’s still a pretty good list:

To your enemy, forgiveness.
To an opponent, tolerance.
To a friend,  your heart.
To a customer, service.
To all, charity.
To every child,  a good example.
To yourself, respect.

Oren Arnold

Best holiday wishes to all!  We’ll be back in the new year.





Another concern for vigilant parents

19 11 2014

We live in an environment that is full of chemicals – some which are bad for us and yet are completely natural.   We don’t subscribe to the notion that man-made is absolutely bad and natural is absolutely good – botulism is completely natural and can kill you just as dead. But sometimes we adopt products for our use in ways that can hurt us, because we don’t pay attention to the chemicals that are contained in that product nor of how we use the product. Recently, the crushed up tires that are appearing in playgrounds and as the playfield surface of schools around the country have become an object of concern, so let’s take a look at those.

Discarded rubber tires are the bane of waste management – according to the EPA, we generate 290 million scrap tires each year.[1] Obviously finding a market for these slow-to-decompose materials is desirable, and many innovative uses have been developed, including using ground up tires on playground and sports field surfaces. According to the Synthetic Turf Council, this “crumb rubber has been installed in approximately 11,000 U.S. fields, tracks and playgrounds in the United States.[2] And the California Office of Environmental Health says that recycled rubber tires have become one of the top choice materials for surfacing children’s playgrounds.[3]

Crumb rubber is a black, pellet-like substance the size of a cracker crumb. Run your hand through the field, and you’ll pick up black dust, similar to the consistency of pencil graphite. It’s easy to spread, and can easily get into your mouth, shoes, clothing and nostrils. Routes of exposure, especially in the case of infants, can include dermal absorption, inhalation, and even ingestion directly from the material.

Here’s a story about crumb rubber from NBC news:

Various studies have identified the chemicals found in tires, which are made of 40-60% rubber polymers, carbon black (20-35%), silicas, process and extender oils (up to 28%), vulcanization chemicals and chemical anti-degradents, and plasticizers and softeners. It is well known that rubber tire debris contains toxic compounds such as highly aromatic oils and other reactive additives.[1]

The EPA has identified a number of compounds which may be found in tires, though they’re quick to point out that not all are contained in every tire:[2]

  • heavy metals ( cadmium, chromium, iron, lead, magnesium, manganese, molybdenum, selenium, sulfur, and zinc, which can be as much as 2% of tire mass) – most of which have documented health consequences including damage to the central nervous system.
  • Plasticizers (such as phthalates)- phthalates act as estrogens once absorbed by the body. They are considered endocrine disrupting chemicals (EDC’s); conditions associated with EDC’s include infertility; breast, prostate and ovarian cancers; asthma; and allergies.[3]
  • Styrene butadiene – associated with risk of leukemia[4]; known to be genotoxic[5]
  • Benzene – known to be a human carcinogen; also impacts the nervous and immune systems[6]
  • Chloroethane, which causes cancer in mice, is also a neurotoxin[7]
  • Halogenated flame retardants – need we reiterate how these impact human health?
  • Methyl ethyl ketone and methyl isobutyl ketone – there is no evidence of carcinogenicy or mutagenicy but studies show impairment of central nervous system; both are on the Hazardous Substances List by OSHA.[8]
  • Naphthalene – a group C carcinogen (possible human carcinogen); also causes neurological damage.[9]

Another concern is the smell that wafts up from the playing field – like old tires – coupled with the fact that the fields often are 10 – 15 degrees warmer than the ambient temperature, and many of the compounds evaporate at temperatures as low as 77 degrees F. Compounds found to be present in the air in a study done by the Connecticut Agricultural Experiment Station include: [10]

  • Benzothiazole: A skin and eye irritation, harmful if swallowed. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Butylated hydroxyanisole: A recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immunotoxicant, neurotoxicant, skin and sense-organ toxicant. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • n-hexadecane: A severe irritant based on human and animal studies. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • 4-(t-octyl) phenol: Corrosive and destructive to mucous membranes. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Polycyclic aromatic hydrocarbons (PAHs): heavy occupational exposure leads to risk of lung, skin or bladder cancers; genotoxic, leading to malignancies and heritable genetic damage in humans. [11] In 2010, the EPA concluded that in the case of PAHs, “breathing PAHs and skin contact seem to be associated with cancer in humans.”[12] The total concentration of PAHs in crumb rubber exceedes the Norwegian Pollution Control Authority’s normative values for most sensitive land use.[13]

A 2012 study analyzing rubber mulch taken from children’s playgrounds in Spain found harmful chemicals present in all, frequently at high levels.[14] Twenty-one samples were collected from 9 playgrounds in urban locations and screened for various pollutants. The results showed that all samples contained at least one hazardous chemical, with most containing multiple PAHs found at high concentrations. The authors concluded that the use of rubber recycled tires on playgrounds “should be restricted or even prohibited in some cases.”[15]

Many, if not most, of the compounds present in tire crumbs and shreds have been incompletely tested for human health effects, so there is no data available to evaluate the chemicals (as evidenced by the four compounds above).

Artificial turf and rubber crumb manufacturers point to the fact that no research has linked cancer to artificial turf – yet most studies add the caveat that more research should be conducted.

According to Dr. Joel Forman, associate professor of pediatrics and preventive medicine at New York’s Mt. Sinai Hospital, in all these studies, data gaps make it difficult to draw firm conclusions. As he says, “None of [the studies] are long term, they rarely involve very young children and they only look for concentrations of chemicals and compare it to some sort of standard for what’s considered acceptable,” said Dr. Forman. “That doesn’t really take into account subclinical effects, long-term effects, the developing brain and developing kids.” Forman said that it is known that some of the compounds found in tires, “even in chronic lower exposures” can be associated with subtle neurodevelopmental issues in children.

“If you never study anything,” said Dr. Forman, “you can always say, ‘Well there’s no evidence that shows you have a problem,’ but that’s because you haven’t looked. To look is hard.”

Another notable critic of the stuff is Dr. Phillip Landrigan of the Mount Sinai School of Medicine, who submitted a letter to the New York City Planning Department last year expressing concerns over the carcinogens in tire crumbs.

He wrote that the principal chemical components of crumb rubber are Styrene and Butadiene — Styrene is neurotoxic, and Butadiene is a proven human carcinogen that has been shown to cause leukemia and lymphoma.

“There is a potential for all of these toxins to be inhaled, absorbed through the skin and even swallowed by children who play on synthetic turf fields,” Dr. Landrigan wrote. “Only a few studies have been done to evaluate this type of exposure risk.”

So if it walks like a duck, quacks like a duck and looks like a duck…

And as if to add insult to injury, wood chips were found to do a better job of protecting children from head trauma![16]

Remember that children are much more likely to be harmed by exposure to chemicals in their environment than adults because they’re smaller (therefore exposure is greater) and their bodies are still developing. So what’s a concerned parent to do?

  • First – ignore the tire crumb playgrounds and find a good old wood chip or grass site.
  • Teach your children the importance of frequent hand washing as many chemicals enter bodies via the mouth.
  • And persuade local officials to use wood chips rather than recycled rubber.

 

[1] Llompart, Maria et al, “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”, Chemosphere, Vol. 90, issue 2, January 2013, pages 423-431

[2] http://www.epa.gov/nerl/features/tire_crumbs.html

[3] http://www.everydayexposures.com/toxins/phthalates

[4] Santos-Burgoa, Carlos; “Lymphohematopoietic Cancer in Styrene-Butadiene Polymerization Workers”, American Journal of Epidemiology, Volume 136, issue 7, pp. 843-854.

[5] Norppa, H and Sorsa, M; “Genetic toxicity of 1,3-butadiene and styrene”, IARC Scientific Publications, 1993 (127): 185-193.

[6] http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=14

[7] US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Chloroethane”, December 1998 http://www.atsdr.cdc.gov/toxprofiles/tp105.pdf

[8] http://nj.gov/health/eoh/rtkweb/documents/fs/1258.pdf; and http://nj.gov/health/eoh/rtkweb/documents/fs/1268.pdf

[9] http://www.epa.gov/ttnatw01/hlthef/naphthal.html

[10]Mattina, MaryJane et al; “Examination of Crumb Rubber Produced From Recycled Tires”, The Connecticut Agricultural Experiment Station, 2007, http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/examinationofcrumbrubberac005.pdf

[11] http://www.atsdr.cdc.gov/csem/csem.asp?csem=13

[12] US Environmental Protection Agency (EPA). Polycyclic Aromatic Hydrocarbons (PAHs)-Fact Sheet. January 2008. http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/pahs.pdf

[13] Llompart M, Sanchez-Prado L, Lamas JP, Garcia-Jares C, et al. “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”. Chemosphere. 2012; Article In Press. http://dx.doi.org/10.1016/j.chemosphere.2012.07.053

[14]Ibid.

[15] Ibid.

[16] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track PrRememoducts. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

[1] http://www.epa.gov/osw/conserve/materials/tires/basic.htm

[2] http://www.nbcnews.com/news/investigations/how-safe-artificial-turf-your-child-plays-n220166

[3] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

 





Paper or plastic?

29 10 2014

The use of plastic bags is still bugging me. We use 1,000,000 plastic bags on this Earth every minute.

According to The Earth Policy Institute, the plastic bag was invented in Sweden in 1962.  The single-use plastic shopping bag was first popularized by Mobil Oil in the 1970s in an attempt to increase its market for polyethylene, a fossil-fuel derived compound.

And the question is not paper vs. plastic, because they’re both bad:

• Both plastic and paper bags gobble up valuable natural resources for a single use, disposable product.

• Both have negative impacts on wildlife and pollute our environment.
• Both create significant toxic by-products during their lifecycles
• Neither is effectively recycled.

The answer is to use something that can be used again and again.   And that means remembering to bring the reusable bag with you.  You can also carry small items without a bag, especially if you’re just going to your car.  So it’s really whether you – and I – will change our single use habit and put reuseable bags in our cars, purses and homes so that they’re available to use when you need them! The following graphic appeared in The Washington Post in 2007 and helps put this all in perspective:

Paper vs. Plastic





Climate change and the textile industry

15 10 2014

Time sure flies doesn’t it?  I’ve been promising to reiterate the effects the textile industry has on climate change, so I’m re-posting a blog post we published in 2013:

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change. (I only use the term altruistic because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly,like the one in USA Today that explains that wet regions will be wetter, causing flash flooding; dry regions will get drier, resulting in drought. And … a heat wave that used to occur once every 100 years now happens every five years (1)).

Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2] And the U.S. textile industry is small potatoes when compared with some other countries I could mention.

The textile industry is huge, and it is a huge producer of greenhouse gasses (GHG’s). Today’s textile industry is one of the largest sources of greenhouse gasses  on Earth, due to this huge size.[3] In 2008, annual global textile production was estimated at 60 billion kilograms (KG) of fabric. The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of electricity or 132 million metric tons of coal and
  • between 6 – 9 trillion liters of water[4]

Fabrics are the elephant in the room. They’re all around us but no one is thinking about them. We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous: sheets, blankets, sofas, curtains, and of course clothing. Textiles, including clothing, accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]
Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.
How do you evaluate the carbon footprint in any fabric? Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric. Not an easy thing to do! To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

  1. Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn. The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.
  2. Next, add the energy used to weave those yarns into fabric. Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton, or synthetic.[7)

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made):

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields. Synthetic fertilizer use is a major component of the high cost of conventional agriculture: making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.
For synthetics, a crucial fact is that the fibers are made from fossil fuels. Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.
A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:
crop cultivation fiber production TOTAL
polyester USA 0 9.52 9.52
cotton, conventional, USA 4.2 1.7 5.9
hemp, conventional 1.9 2.15 4.05
cotton, organic, India 2 1.8 3.8
cotton, organic, USA 0.9 1.45 2.35

 

The table above only gives results for polyester; other synthetics have more of an impact: acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.
Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers. Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation. In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

 

Embodied Energy used in production of various fibers:
Energy use in MJ per KG of fiber:
flax fibre (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250
SOURCE: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow, http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional benefits:

  • being able to be degraded by micro-organisms and composted (improving soil structure); in this way the fixed CO2 in the fiber will be released and the cycle closed. Synthetics do not decompose: in landfills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned fishing nets in the world’s oceans.
  • sequestering carbon. Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils. Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production, emits fewer greenhouse gases and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques (2009) found that 43% fewer GHGs are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming. When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton. So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time. Best of all is an organic natural fiber.
And next let’s look at #2, the energy needed to weave those yarns into fabric.
There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester: thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels – both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production. In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

#######
(1) http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/
(2) Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html
(3) Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html
(4) Rupp, Jurg, “Ecology and Economy in Textile Finishing”, Textile World, Nov/Dec 2008
(5) Rose, Coral, “CO2 Comes Out of the Closet”, GreenBiz.com, September 24, 2007
(6) U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.
(7) Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint. The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings. We do not take this component into consideration because
. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
. is biodegradeable detergent used?
. Is the washing machine used a new low water machine? Is the water treated by a municipal facility?
. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.
Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome. Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.
(8) Ibid.
(9) “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/
(10) Fletcher, Kate, Sustainable Fashion and Textiles, Earthscan, 2008, Page 13
(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html
(12) Ibid.
(13) Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at
(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL); Organic Farming and Climate Change; Geneva: ITC, 2007.
(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations
(16) “Improving profits with energy-efficiency enhancements”, December 2008, Journal for Asia on Textile and Apparel, http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296








Follow

Get every new post delivered to your Inbox.

Join 1,404 other followers