Why are “endocrine disruptors” a concern?

19 06 2018

We published this in March, 2015, but it’s worth going over again.

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals. Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often and in vast quantities in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[1] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, a per pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[2], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

endocrine disruptor

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. They have become a part of our indoor environment, found in cosmetics, cleaning compounds, baby and children’s toys, food storage containers, furniture and carpets, computers, phones, and appliances. We encounter them as plastics and resins every day in our cars, trucks, planes, trains, sporting goods, outdoor equipment, medical equipment, dental sealants, and pharmaceuticals. Without fire retardants we would not be using our computers or lighting our homes. Instead of steel and wood, plastics and resins are now being used to build homes and offices, schools, etc.  A large portion of pesticides are endocrine disruptors.

What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development. In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”

  1. Age at time of exposure is critical. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  2. The developmental basis of adult disease also has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. In other words, the consequences of exposure may not be apparent early in life.
  3. Exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[3]
  4. Even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window[4]. Surprisingly, low doses may even exert more potent effects than higher doses.
  5. EDCs may affect not only the exposed individual but also the children and subsequent generations.[5]

TEDX (The Endocrine Disruption Exchange, Inc.) is the only organization that focuses primarily on the human health and environmental problems caused by low-dose and/or ambient exposure to endocrine disrupting chemicals.

eD

Carol Kwiatkowski, director of TEDX

TEDX’s work is prevention driven, and it is the only environmental organization that focuses on the problems associated with endocrine disruption attributable to synthetic chemicals found in the general environment. While there are other national, international, and local organizations that address the public health and environmental consequences of toxic chemicals in the environment, none of them expressly emphasize endocrine disruption. By mainly focusing on substances in the environment that interfere with development and function throughout all life stages, TEDX has one of the most complete databases in the world on this topic, available for those concerned about public health and environmental quality. This database was developed because traditional toxicological protocols have used high doses on fully developed tissues and individuals that heretofore missed the consequences of chemical substances on developing tissues.

TEDX is unique because it focuses on the damaging activity of chemicals on biological systems from an entirely new approach. This new approach focuses on the effects of very low and ambient levels of exposure on developing tissue and resulting function before an individual is born, which can lead to irreversible, chronic disorders expressed at any time throughout the individual’s life.

Endocrine disruption takes into consideration the vulnerability of every individual in the population during their most vulnerable life stages. By providing this unique perspective on the actions of endocrine disruptors, TEDX fills in the very large gap in public health protection that traditional toxicology and government regulatory agencies do not fill. Drawing upon its computerized databases on endocrine disruption and coordination with researchers in the field of endocrine disruption, TEDX provides the very latest summaries of the state of knowledge and its meaning for human health and the environment.

 As the TEDX website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects.. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken. TEDX provides concerned persons and organizations with a science-based foundation for individuals to act and promote responsive public policy-making. Moreover, as federal government resources devoted to research on endocrine disruption have diminished due to budget cuts, TEDX must assume an even more prominent role in developing and disseminating information on the human and environmental impacts of endocrine disruption.”

To date, no chemical in use has been thoroughly tested for its endocrine disrupting effects. Traditional toxicological testing protocols were not designed to test for endocrine disruption and to test at ambient or low exposure levels.

[1] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[2] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Type 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

[3] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K 2003 Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals. Pure and Applied Chemistry, SCOPE/IUPAC Project Implications of Endocrine Ac- tive Substances for Humans and Wildlife 75:2305–2320

[4] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D 1999 No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect 107:155–159

[5] Anway MD, Skinner MK 2006 Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147: S43–S49

Advertisements




Why are “endocrine disruptors” a concern?

6 03 2015

 

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals. Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often and in vast quantities in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[1] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, his/her pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[2], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

endocrine disruptor

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. They have become a part of our indoor environment, found in cosmetics, cleaning compounds, baby and children’s toys, food storage containers, furniture and carpets, computers, phones, and appliances. We encounter them as plastics and resins every day in our cars, trucks, planes, trains, sporting goods, outdoor equipment, medical equipment, dental sealants, and pharmaceuticals. Without fire retardants we would not be using our computers or lighting our homes. Instead of steel and wood, plastics and resins are now being used to build homes and offices, schools, etc. A large portion of pesticides are endocrine disruptors.

What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development. In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”

  1. Age at time of exposure is critical. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  2. The developmental basis of adult disease also has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. In other words, the consequences of exposure may not be apparent early in life.
  3. Exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[3]
  4. Even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window[4]. Surprisingly, low doses may even exert more potent effects than higher doses.

    Carol Kwiatkowski, director of TEDX

    Carol Kwiatkowski, director of TEDX

  5. EDCs may affect not only the exposed individual but also the children and subsequent generations.[5]

TEDX (The Endocrine Disruption Exchange, Inc.) is the only organization that focuses primarily on the human health and environmental problems caused by low-dose and/or ambient exposure to endocrine disrupting chemicals.

TEDX’s work is prevention driven, and it is the only environmental organization that focuses on the problems associated with endocrine disruption attributable to synthetic chemicals found in the general environment. While there are other national, international, and local organizations that address the public health and environmental consequences of toxic chemicals in the environment, none of them expressly emphasize endocrine disruption. By mainly focusing on substances in the environment that interfere with development and function throughout all life stages, TEDX has one of the most complete databases in the world on this topic, available for those concerned about public health and environmental quality. This database was developed because traditional toxicological protocols have used high doses on fully developed tissues and individuals that heretofore missed the consequences of chemical substances on developing tissues.

TEDX is unique because it focuses on the damaging activity of chemicals on biological systems from an entirely new approach. This new approach focuses on the effects of very low and ambient levels of exposure on developing tissue and resulting function before an individual is born, which can lead to irreversible, chronic disorders expressed at any time throughout the individual’s life.

Endocrine disruption takes into consideration the vulnerability of every individual in the population during their most vulnerable life stages. By providing this unique perspective on the actions of endocrine disruptors, TEDX fills in the very large gap in public health protection that traditional toxicology and government regulatory agencies do not fill. Drawing upon its computerized databases on endocrine disruption and coordination with researchers in the field of endocrine disruption, TEDX provides the very latest summaries of the state of knowledge and its meaning for human health and the environment.

 As the TEDX website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects.. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken. TEDX provides concerned persons and organizations with a science-based foundation for individuals to act and promote responsive public policy-making. Moreover, as federal government resources devoted to research on endocrine disruption have diminished due to budget cuts, TEDX must assume an even more prominent role in developing and disseminating information on the human and environmental impacts of endocrine disruption.”

To date, no chemical in use has been thoroughly tested for its endocrine disrupting effects. Traditional toxicological testing protocols were not designed to test for endocrine disruption and to test at ambient or low exposure levels.

 

 

[1] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[2] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Tyupe 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

[3] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K 2003 Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals. Pure and Applied Chem- istry, SCOPE/IUPAC Project Implications of Endocrine Ac- tive Substances for Humans and Wildlife 75:2305–2320

[4] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D 1999 No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect 107:155–159

[5] Anway MD, Skinner MK 2006 Epigenetic transgenera- tional actions of endocrine disruptors. Endocrinology 147: S43–S49

 





TED Talks and endocrine disruptors

18 04 2013

Last week we talked about endocrine disruptors in fabric, and how they might affect us, a reposting from a few years back. This post is also a bit aged, but startling and topical nonetheless.

Today’s post features a video clip from TEDWomen, featuring filmmaker Penelope Jagessar Chaffer and Dr. Tyrone Hayes, an endocrinologist at the University of California, Berkeley, and an expert in how genes and hormones direct the developmental stages of amphibians. Dr. Hayes believes if the health of frogs is effected, then so too is the health of humans. In 2002, Nature published research by Hayes and colleagues showing that “developing male frogs exhibited female characteristics after exposure to atrazine … at exposure levels deemed safe by the US Environmental Protection Agency (EPA)”.(1)

Filmmaker Penelope Jagessar Chaffer – who has won several British Academy Award nominations for her films – was curious about the chemicals she was exposed to while pregnant: Could they affect her unborn child?.

It was her question about the effects of chemicals on her unborn child which led to her production of the documentary/surrealist film Toxic Baby. Today she works to bring to light the issue of environmental chemical pollution and its effect on babies and children.

Here Hayes and Chaffer tell their story. It’s stunningly disturbing.

(1) Tyrone Hayes, Kelly Haston, Mable Tsui, Anhthu Hoang, Cathryn Haeffele & Aaron Vonk, “Herbicides: Feminization of male frogs in the wild”, Nature 419, 895-896 (31 October 2002) | doi:10.1038/419895a





Endocrine disruptors – in fabric?

11 04 2013

jeansThis post was published about two years ago, but it’s time to re-run it, because Greenpeace has published its expose of the endocrine disruptors (APEOs and NPEOs) they found in garments produced by major fashion brands (like Levis, Zara, Calvin Klein and others). Click here to read their report.
Many chemicals used in textile processing – and elsewhere in consumer products – have been identified as “endocrine disruptors”. I never paid too much attention to “endocrine disruptors” because it didn’t sound too dire to me – I preferred to worry about something like “carcinogens” because I knew those caused cancer. I knew that endocrine disruptors had something to do with hormones, but I didn’t think that interfering with acne or my teenager’s surliness was much of a concern. Boy was I wrong.
What is an “endocrine disruptor”?
The Environmental Protection Agency defines an endocrine disruptor as an external agent that interferes in some way with the role of natural hormones in the body. (Hmm. Still doesn’t sound too bad.)
The endocrine system includes the glands (e.g., thyroid, pituitary gland, pancreas, ovaries, or testes) and their secretions (i.e., hormones), that are released directly into the body’s circulatory system. The endocrine system controls blood sugar levels, blood pressure, metabolic rates, growth, development, aging, and reproduction. “Endocrine disruptor” is a much broader concept than the terms reproductive toxin, carcinogen, neurotoxin, or teratogen. Scientists use one or more of these terms to describe the types of effects these chemicals have on us.
How do they work? This is from The Society of Environmental Toxicology and Chemistry (SETAC):

Humans and wildlife must regulate how their bodies function to remain healthy in an ever-changing environment. They do this through a complicated exchange between their nervous and endocrine systems. The endocrine systems in humans and wildlife are similar in that they are made up of internal glands that manufacture and secrete hormones. Hormones are chemical messengers that move internally, start or stop various functions, and are important in determining sleep/wake cycles, stimulating or stopping growth, or regulating blood pressure. Some of the most familiar hormones in humans or wildlife are those that help determine male and female gender, as well as control the onset of puberty, maturation, and reproduction. An endocrine disruptor interferes with, or has adverse effects on, the production, distribution, or function of these same hormones. Clearly, interference with or damage of hormones could have major impacts on the health and reproductive system of humans and wildlife, although not all of the changes would necessarily be detrimental.

But why the fuss over endocrine disruptors — and why now? After all, scientists had known for over fifty years that DDT can affect the testes and secondary sex characteristics of young roosters[1]. And for almost as long, it has been well known that daughters born to women who took the drug diethylstilbestrol (DES), a synthetic estrogen, early in their pregnancies had a greatly increased risk of vaginal cancer. [2]
And it has been known for over 25 years that occupational exposures to pesticides could “diminish or destroy the fertility of workers.”[3]

It wasn’t until Theo Colborn, a rancher and mother of four who went back to school at age 51 to get her PhD in zoology, got a job at the Conservation Foundation and began to put the pieces together that the big picture emerged. Theo’s job was to review other scientists’ data, and she noticed that biologists investigating the effects of presumably carcinogenic chemicals on predators in and around the Great Lakes were reporting odd phenomena:

  • Whole communities of minks were failing to reproduce;
  • startling numbers of herring gulls were being born dead, their eyes missing, their bills misshapen;
  •  and the testicles of young male gulls were exhibiting female characteristics.

Often, the offspring of creatures exposed to chemicals were worse off than the animals themselves. Colborn concluded that nearly all the symptoms could be traced to things going wrong in the endocrine system.
In 1991, Colborn called together a conference, whose participants included biologists, endocrinologists and toxicologists as well as psychiatrists and lawyers, at the Wingspread Conference Center in Racine, Wisconsin. They produced what become known as the “Wingspread Statement,” the core document of the endocrine-disruption hypothesis, in which these researchers concluded that observed increases in deformities, evidence of declining human fertility and alleged increases in rates of breast, testicular and prostate cancers, as well as endometriosis are the result of “a large number of man-made chemicals that have been released into the environment”.[4]
Endocrine disruption—the mimicking or blocking or suppression of hormones by industrial or natural chemicals— appeared to be affecting adult reproductive systems and child development in ways that far surpassed cancer, the outcome most commonly looked for by researchers at the time. Potential problems included infertility, genital abnormalities, asthma, autoimmune dysfunction, even neurological disorders involving attention or cognition. In one early study that Colborn reviewed, for instance, the Environmental Protection Agency (EPA) commissioned psychologists to study children whose mothers ate fish out of the Great Lakes. The researchers found that the children “were born sooner, weighed less, and had smaller heads” than those whose mothers hadn’t eaten the fish. Moreover, the more endocrine-disrupting chemicals that were found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2.[5]
The endocrine disruptor hypothesis first came to widespread congressional attention in 1996, with the publication of the book Our Stolen Future – by Theo Colborn, Dianne Dumanoski and John Peterson Myers.[6]
In the years since the Wingspread conference, many of its fears and predictions have been fleshed out by new technologies that give a far more precise picture of the damage that these chemicals can wreak on the human body – and especially on developing fetuses, which are exquisitely sensitive to both the natural hormone signals used to guide its development, and the unexpected chemical signals that reach it from the environment.[7]
Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even tiny doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development.
The endocrine disruption hypothesis has also unleashed a revolution in toxicity theory. The traditional belief that “the dose makes the poison” (the belief that as the dose increases, so does the effect; as the dose decreases, so does its impact) has proven inadequate in explaining the complex workings of the endocrine system, which involves a myriad of chemical messengers and feedback loops.
Experimental data now shows conclusively that some endocrine-disrupting contaminants can cause adverse effects at low levels that are different from those caused by high level exposures. For example, when rats are exposed in the womb to 100 parts per billion of DES, they become scrawny as adults. Yet exposure of just 1 part per billion causes grotesque obesity.[8] Old school toxicology has always assumed that high dose experiments can be used to predict low-dose results. With ‘dose makes the poison’ thinking, traditional toxicologists didn’t pursue the possibility that there might be effects at levels far beneath those used in standard experiments. No health standards incorporated the possibility.
Jerry Heindel, who heads a branch of the National Institute of Environmental Health Science (NIEHS) that funds studies of endocrine disruptors, said that a fetus might respond to a chemical at “one hundred-fold less concentration or more, yet when you take that chemical away, the body is nonetheless altered for life”. Infants may seem fine at birth, but might carry within them a trigger only revealed later in life, often in puberty, when endocrine systems go into hyperdrive. This increases the adolescent’s or adult’s chances of falling ill, getting fat, or becoming infertile – as is the case with DES, where exposure during fetal development doesn’t show up until maturity.
And not just the child’s life, but her children’s lives too. “Inside the fetus are germ cells that are developing that are going to be the sperm and oocytes for the next generation, so you’re actually exposing the mother, the baby, and the baby’s kids, possibly,” says Heindel.[9]
So it’s also the timing that contributes to the poison.
According to Our Stolen Future, “the weight of the evidence says we have a problem. Human impacts beyond isolated cases are already demonstrable. They involve impairments to reproduction, alterations in behavior, diminishment of intellectual capacity, and erosion in the ability to resist disease. The simple truth is that the way we allow chemicals to be used in society today means we are performing a vast experiment, not in the lab, but in the real world, not just on wildlife but on people.”
Now that I know what “endocrine disruptor” means, I’m not dismissing them any more as mere irritants.
________________________________________
[1] Burlington, F. & V.F. Lindeman, 1950. “Effect of DDT on testes and secondary sex
characteristics of white leghorn cockerels”. Proc. Society for Experimental Biology
and Medicine 74: 48–51.
[2] Herbst, A., H. Ulfelder, and D. Poskanzer. “Adenocarcinoma of the vagina: Association of maternal stilbestrol therapy with tumor appearance in young women,” New England Journal of Medicine, v. 284, (1971) p. 878-881.
[3] Moline, J.M., A.L. Golden, N. Bar-Chama, et al. 2000. “Exposure to hazardous substances
and male reproductive health: a research framework”. Environ. Health Perspect.
108: 1–20.
[4] Shulevitz,Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.
[5] Ibid.
[6] Colborn, Theo, Dianne Dumanoski, and John Peterson Myers. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York: Penguin. (1996) 316 p.
[7] http://www.ourstolenfuture.org/Basics/keypoints.htm
[8] http://www.ourstolenfuture.org/NewScience/lowdose/2007/2007-0525nmdrc.html#lightbulb
[9] Shulevitz,Judith, op. cit.





What are endocrine disruptors?

13 04 2011

Many chemicals used in textile processing – and elsewhere in consumer products – have been identified as “endocrine disruptors”.  I never paid too much attention to “endocrine disruptors” because it didn’t sound too dire to me – I preferred to stick to something like “carcinogens” because I knew those caused cancer.   I knew that endocrine disruptors had something to do with hormones, but I didn’t think that interfering with acne or my teenager’s surliness was much of a concern.  Boy was I wrong.

What is an “endocrine disruptor”?

The Environmental Protection Agency defines an endocrine disruptor as an external agent that interferes in some way with the role of natural hormones in the body.  (Hmm.  Still doesn’t sound too bad.)

The endocrine system includes the glands (e.g., thyroid, pituitary gland, pancreas, ovaries, or testes) and their secretions (i.e., hormones), that are released directly into the body’s circulatory system. The endocrine system controls blood sugar levels, blood pressure, metabolic rates, growth, development, aging, and reproduction.  “Endocrine disruptor” is a much broader concept than the terms reproductive toxin, carcinogen, neurotoxin, or teratogen. Scientists use one or more of these terms to describe the types of effects these chemicals have on us.

How do they work?  This is from The Society of Environmental Toxicology and Chemistry (SETAC):

Humans and wildlife must regulate how their bodies function to remain healthy in an ever-changing environment. They do this through a complicated exchange between their nervous and endocrine systems. The endocrine systems in humans and wildlife are similar in that they are made up of internal glands that manufacture and secrete hormones. Hormones are chemical messengers that move internally, start or stop various functions, and are important in determining sleep/wake cycles, stimulating or stopping growth, or regulating blood pressure. Some of the most familiar hormones in humans or wildlife are those that help determine male and female gender, as well as control the onset of puberty, maturation, and reproduction. An endocrine disruptor interferes with, or has adverse effects on, the production, distribution, or function of these same hormones. Clearly, interference with or damage of hormones could have major impacts on the health and reproductive system of humans and wildlife, although not all of the changes would necessarily be detrimental.

But why the fuss over endocrine disruptors and why now?  After all,  scientists had known for over fifty years that DDT can affect the testes and secondary sex characteristics of young roosters[1].

And for almost as long, it has been well known that daughters born to women who took the drug diethylstilbestrol (DES), a synthetic estrogen, early in their pregnancies had a greatly increased risk of vaginal cancer. [2]

And it has been known for over 25 years that occupational exposures to pesticides could “diminish or destroy the fertility of workers.”[3]

It wasn’t until Theo Colborn, a rancher and mother of four who went back to school at age 51 to get her PhD in zoology, got a job at the Conservation Foundation and began to put the pieces together that the big picture emerged.  Theo’s job was to review other scientists’ data, and she noticed that biologists investigating the effects of presumably carcinogenic chemicals on predators in and around the Great Lakes were reporting odd phenomena:

  • Whole communities of minks were failing to reproduce;
  • startling numbers of herring gulls were being born dead, their eyes missing, their bills misshapen;
  • and the testicles of young male gulls were exhibiting female characteristics.

Colborn correlated this data with the presence in the water of organochlorine compounds such as PCBs, DDT, and dieldrin, some of which have hormone-mimicking effects and build up in fatty tissue. Often, the offspring of creatures exposed to chemicals were worse off than the animals themselves.  Colborn concluded that nearly all the symptoms could be traced to things going awry in the endocrine system.

In 1991, Colborn called together a conference, whose participants included biologists, endocrinologists and toxicologists as well as psychiatrists and lawyers, at the Wingspread Conference Center in Racine, Wisconsin. They produced what become known as the “Wingspread Statement,” the core document of the endocrine-disruption hypothesis, in which these researchers concluded that observed increases in deformities, evidence of declining human fertility and alleged increases in rates of breast, testicular and prostate cancers, as well as endometriosis  are the result of “a large number of man-made chemicals that have been released into the environment”.[4]

Endocrine disruption—the mimicking or blocking or suppression of hormones by industrial or natural chemicals— appeared to be affecting adult reproductive systems and child development in ways that far surpassed cancer, the outcome most commonly looked for by researchers at the time. Potential problems included infertility, genital abnormalities, asthma, autoimmune dysfunction, even neurological disorders involving attention or cognition. In one early study that Colborn reviewed, for instance, an Environmental Protection Agency (EPA)  commissioned psychologists to study children whose mothers ate fish out of the Great Lakes. The researchers found that the children “were born sooner, weighed less, and had smaller heads” than those whose mothers hadn’t eaten the fish. Moreover, the more  PCBs that were found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2.[5]

The endocrine disruptor hypothesis first came to widespread congressional attention in 1996, with the publication of the book Our Stolen Future – by Theo Colborn, Dianne Dumanoski and John Peterson Myers.[6]

In the years since the Wingspread conference, many of its fears and predictions have been fleshed out by new technologies that give a far more precise picture of the exquisite damage that toxins can wreak on the human body – and especially on developing fetuses, which are exquisitely sensitive to both the natural hormone signals used to guide its development, and the unexpected chemical signals that reach it from the environment”[7]

Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even tiny doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development.

The endocrine disruption hypothesis has also unleashed a revolution in toxicity theory. The traditional belief that “the dose makes the poison” (the belief that as the dose increases, so does the effect; as the dose decreases, so does its impact)  has proven inadequate in explaining the complex workings of the endocrine system, which involves a myriad of chemical messengers and feedback loops.

Experimental data now  shows conclusively that some endocrine-disrupting contaminants can cause adverse effects at low levels that are different from those caused by high level exposures.  For example, when rats are exposed in the womb to 100 parts per billion of DES, they become scrawny as adults.  Yet exposure of just 1 part per billion causes grotesque obesity.[8] Old school toxicology has always assumed that high dose experiments can be used to predict low-dose results. With ‘dose makes the poison’ thinking, traditional toxicologists didn’t pursue the possibility that there might be effects at levels far beneath those used in standard experiments. No health standards incorporated the possibility.

Jerry Heindel, who heads a branch of the National Institute of Environmental Health Science (NIEHS) that funds studies of endocrine disruptors, said that a fetus might respond to a chemical at “one hundred-fold less concentration or more, yet when you take that chemical away, the body is nonetheless altered for life”.  Infants may seem fine at birth, but might carry within them a trigger only revealed later in life, often in puberty, when endocrine systems go into hyperdrive. This increases the adolescent’s or adult’s chances of falling ill, getting fat, or becoming infertile – as is the case with DES, where exposure during fetal development doesn’t show up until maturity.

And not just the child’s life, but her children’s lives too.  “Inside the fetus are germ cells that are developing that are going to be the sperm and oocytes for the next generation, so you’re actually exposing the mother, the baby, and the baby’s kids, possibly,” says Heindel.[9]

So it’s also the timing that contributes to the poison.

According to Our Stolen Future, “the weight of the evidence says we have a problem. Human impacts beyond isolated cases are already demonstrable. They involve impairments to reproduction, alterations in behavior, diminishment of intellectual capacity, and erosion in the ability to resist disease. The simple truth is that the way we allow chemicals to be used in society today means we are performing a vast experiment, not in the lab, but in the real world, not just on wildlife but on people.”

Now that I know what “endocrine disruptor” means, I’m not dismissing them any more as mere irritants.


[1] Burlington, F. & V.F. Lindeman,  1950. “Effect of DDT on testes and secondary sex

characteristics of white leghorn cockerels”. Proc. Society for Experimental Biology

and Medicine 74: 48–51.

[2] Herbst, A., H. Ulfelder, and D. Poskanzer. “Adenocarcinoma of the vagina: Association of maternal stilbestrol therapy with tumor appearance in young women,” New England Journal of Medicine, v. 284, (1971) p. 878-881.

[3] Moline, J.M., A.L. Golden, N. Bar-Chama, et al. 2000. “Exposure to hazardous substances

and male reproductive health: a research framework”. Environ. Health Perspect.

108: 1–20.

[4] Shulevitz,Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.

[5] Ibid.

[6] Colborn, Theo, Dianne Dumanoski, and John Peterson Myers. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York: Penguin. (1996) 316 p.

[9] Shulevitz,Judith, op. cit.





FabricsellerA

27 11 2018

A company that sells fabric on line has a post about why they don’t offer Oeko-Tex certification.  Their post is woefully incorrect.

We do not name the company, but call it FabricsellerA. Their post, titled,   Why Oeko-Tex certification is NOT Relevant to American Made Fabrics,  (the entirety of which you can read below at the end of this post) claims that, in America, for American-made fabrics, Oeko-Tex is irrelevant because the US government, primarily in the form of the Consumer Product Safety Commission (CPSC), the Occupational Health and Safety Administration (OSHA), and the Environmental Protection Agency (EPA)   ensures that products made in the USA

“ have met the most stringent, comprehensive American health and safety standards.”  …”which makes them even more rigorous than the OEKO-TEX test criteria. This is why OEKO-TEX certification is not required in the United States. These strict measures guarantee the highest levels of safety, not only for the consumers who use the fabrics, but also for the health and safety of those who make them, and environmental protection…In addition to (our) ongoing mission and commitment to bringing you safe, high-quality products for your use, our fabrics are, of course, CPSIA Compliant. They meet the highest standards of health and safety in the world.”

FabricsellerA is most thoroughly incorrect.

We find that many people really want to believe that America’s product safety and toxicity standards are the most stringent in the world. This is very, very far from the truth. Our protections from exposure to toxic chemicals is completely inadequate.

First we will give you a  visual of just a few of the thousands of chemicals regularly used in textile production with unsavory to scary toxicity profiles, and how the US government and the Oeko-Tex standard compare in protecting us.  Then we will recount in detail how the CPSC,  OSHA, and the EPA  fail to protect us as well as Oeko-Tex does. It is not even close.

First the visual:

 

Chemical or Chemical Class

Does Oeko-Tex limit or prohibit? Does the US Government limit or prohibit?
·       All flame retardants Yes, prohibited No
·       Carcinogenic and allergy-inducing dyes Yes No
·       Chlorinated phenols Yes No
·       Chloro-organic benzenes and toluenes Yes No
Heavy metals:  Lead Yes YES, but limit is 100 times weaker than Oeko-Tex
Heavy metals:  Antimony Yes No
Heavy metals:  Cadmium Yes No
Heavy metals:  Arsenic Yes No
·       Organotin compounds (TBT and DBT) Yes No
·       Formaldehyde Yes No
Pthalates, like BPA Yes, the entire class of many chemicals No, not in fabric.  It does regulate 5 chemicals in this huge class but not in fabric – only in toys and child care products like teething rings.

There are lots more chemicals limited by Oeko-Tex which are not regulated by the US government.  We’ve tried to count, but many of the limits apply to whole classes of chemicals, so we would be under-reporting, but our count ignoring classes (which would greatly increase the number) is 300.

The grand total of chemicals prohibited or limited by the CPSC is two: lead and eight forms of phthalates, which by our count methodology would count as one.

But for a closer examination about why we may want to insist on Oeko-Tex (or, better yet, GOTS, the Global Organic Textile Standard) certification, because of the government failing at this job, let’s start with a look at the CPSC.

The Consumer Product Safety Commission (CPSC)is the agency that regulates the sale and manufacture of consumer products, and ultimately certifies a fabric as compliant and approved for sale in the United States, in accordance with the Consumer Product Safety Improvement Act (CPSIA).

Before 2014, CPSC regulated only one chemical of the extremely long list of unsavory and toxic chemicals used in the process of fabric production which can, and often do, remain in fabric:  lead.  In 2014 Congress passed the Consumer Product Safety Improvement act, which banned three chemicals in the class of phthalates (DEHP, DBP, and BBP) and suggest an expert panel study the banning of two others. In 2017 the panel did ban five others, concluding the ten year effort to ban a small subset of phthalates. (Other very toxic phthalates, including BPA, and the chemical cousins used as substitutes for BPA, are not banned by the feds. Eleven states have bans for baby bottles, and similar products.)

Children’s clothing cannot contain more than 100 parts per million.  Oeko Tex restricts lead to 1 part per million; and Oeko-Tex restricts lead from all fabrics, not just in children’s clothing.

The CPSC does regulate eight phthalates in children’s toys and child care items — like teething rings — but not in fabric in children’s clothes. Children’s toys and care items cannot contain concentrations of more than 0.1% of diisononyl phthalate (DINP), diisobutyl phthalate (DIBP), dinpentyl phthalate (DPENP), dinhexyl phthalate (DHEXP), or dicyclohexyl phthalate (DCHP).  These kinds of chemicals are usually used to soften plastic and make it more pliable. Exposure to these chemicals by children has been linked with health problems like hormone disruption and damage to reproductive development, among other serious issues.

The CPSIA’s permanent prohibition concerning DEHP, DBP, and BBP remains in effect. Thus, effective April 25, 2018, any children’s toy or child care article that contains concentrations of more than 0.1 percent of the following phthalates is prohibited:

  • di-(2-ethylhexyl) phthalate (DEHP),
  • dibutyl phthalate (DBP),
  • benzyl butyl phthalate (BBP),
  • diisononyl phthalate (DINP),
  • diisobutyl phthalate (DIBP),
  • di-n-pentyl phthalate (DPENP),
  • di-n-hexyl phthalate (DHEXP), and
  • dicyclohexyl phthalate (DCHP).

Greenpeace has done work that points out the very large concentrations of phthalates in many popular Disney children’s clothes.  You can read Leigh’s blog on this issue at https://oecotextiles.wordpress.com/?s=Toxic+textiles+

The manufacturers may need to limit the few pthalates above, but phthalates are a very large class of chemicals and chemical cousins which are unsavory and can be used interchangeably in their place.

Now on to OSHA. The Occupational Health and Safety Administration (OSHA)is a part of the US Department of Labor.  OSHA is concerned with worker safety, not product safety. OSHA actually requires that any polyester or nylon fabric or any natural fiber fabric have a flame retardant treatment so as not to cause a burn on an employee’s skin. To claim that applying a flame retardant finish adheres to the highest safety standards for consumers or workers is woefully incorrect. The FR chemical profiles are so unsavory that you would never choose to bring them into your home.

We have written about FR chemicals at length in our blog, but allow us to remind you briefly:  To make an intrinsically flame retardant synthetic fiber fabric,  the most common method is to add  brominated flame retardants (BFR’s) to the polymer during the melt phase.     BFR’s are a huge chemical class.  Brominated flame retardants are persistent, accumulate in the food chain, and toxic to both humans and the environment and are suspected of causing neurobehavioral effects, endocrine disruption, cancer and other degenerative diseases.

I’d like to nominate flame retardant chemicals used in our furniture, fabrics and baby products – as well as a host of other products – as being in the running for the new asbestos.  These chemicals are called halogenated flame retardants, such as Polybrominated diphenyl ethers – commonly known as PBDE’s.  Women in North America have 10 to 40 times the levels of the PBDEs in their breast milk, as do women in Europe or in Asia. And these chemicals pass through the placenta and are found in infants at birth, making a double dose of toxins for young children when they are most vulnerable.  When tested in animals, fire retardant chemicals, even at very low doses, can cause endocrine disruption, thyroid disorders, cancer, and developmental, reproductive, and neurological problems such as learning impairment and attention deficit disorder.   In humans, these chemicals are associated with reduced IQ in children, reduced fertility; thyroid impacts, undescended testicles in infants (leading to a higher cancer risk), and decreases in sperm quality and function. Ongoing studies are beginning to show a connection between these chemicals and autism in children.  Pregnant women have the biggest cause for concern because animal studies show negative impacts on brain development of offspring when mothers are exposed during pregnancy. And bioaccumulating PBDEs can stay in our bodies for more than a decade.

A study published last week in the Environmental Health Perspectives  points to California’s unique furniture flammability standard called Technical Bulletin 117, or TB117, as the major reason for high fire retardant levels in California. The California standard, passed in 1975, requires that polyurethane foam in upholstered furniture be able to withstand an open flame for 12 seconds without catching fire. Because there is no other state or federal standard, many manufacturers comply with the California rule, usually by adding flame retardants with the foam.

The startling and disturbing result of the published study in Environmental Health Perspectives is that Latino children born in California have levels of PBDE in their blood seven times higher  than do children who were born and raised in Mexico. In general, residents of California have higher rates of PBDE in their blood than do people in other parts of the United States.

A home can contain a pound or more of fire retardants that are similar in structure and action to substances such as PCBs and DDT that are widely banned. They leak out from furniture, settle in dust and are taken in by toddlers when they put their hands into their mouths. A paper published in Environmental Science & Technology also finds high fire retardant levels in pet dogs. Cats, because they lick their fur, have the highest levels of all.(5)  PBDE use has increased 40% from 1992 to 2003, and is forecast to grow by at least 3% per year from 2011; they are ubiquitous in consumer products.

One troubling example is chlorinated Tris, a flame retardant that was removed from children’s pajamas in the 1970s largely based on research done by Dr. Arlene Blum, a biophysical chemist, after it was found to mutate DNA and identified as a probable human carcinogen.  In the journal Environmental Science and Technology, new research published in 2011 shows that chlorinated Tris was found in more than a third of the foam samples tested – products such as nursing pillows, highchairs, car seats and changing pads.

Tris is now being used at high levels in furniture being sold in California to meet the California standard.

The benefits of adding flame retardants have not been proved. Since the 1980s, retardants have been added to California furniture. From 1980 to 2004, fire deaths in states without such a standard declined at a similar rate as they did in California. And when during a fire the retardants burn, they increase the toxicity of the fire, producing dioxins, as well as additional carbon monoxide, soot and smoke, which are the major causes of fire deaths.

So why are we rolling the dice and exposing our children to substances with the potential to cause serious health problems when there is no proven fire safety benefit?

Under current law, it is difficult for the federal Environmental Protection Agency to ban or restrict chemicals – current federal oversight of chemicals is so weak that manufacturers are not required to label products with flame retardants nor are they required to list what chemicals are used. Even now, the agency has yet to ban asbestos!

“We can buy things that are BPA free, or phthalate free or lead free. We don’t have the choice to buy things that are flame-retardant free,” says Dr. Heather Stapleton, an assistant professor of environmental chemistry at Duke University. “The laws protect the chemical industry, not the general public.”  What makes them so bad?

  1. they are persistent:  they bioaccumulate, or build up, in fish and cats and Orcas and foxes – and people.  Our bodies cannot get rid of these contaminates, so our levels just increase over time.  We eat PBDEs when they contaminate our food, particularly meat and dairy products. They latch on to dust and other particles, so we breathe them in, or ingest them when dust settles on food or when children stuff their fingers into their mouths. Scientists look for PBDEs in breast milk because the chemicals stick to fat. In 1999, Swedish researchers reported that PBDE levels in women’s breast milk had increased 60-fold between 1972 and 1997.  Similar dramatic increases were documented in California harbor seals, ringed seals from the Arctic, gull eggs from the Great Lakes and human blood from Norway.   PBDE pollution has been found essentially everywhere scientists have looked: in the tissues of whales, seals, birds and bird eggs, moose, reindeer, mussels, eels, and fish; in human breast milk, hair, fat and blood; in hot dogs and hamburgers and the cheese we put on them;  in twenty different countries and remote areas such as the North Sea, the Baltic Sea and the Arctic Ocean, on top of mountains and under the sea.
  2. they are fat seeking: this causes them to magnify up the food chain, increasing in concentration at each successively higher  level. Once PBDE’s are released into the environment, they invariably find their way into humans, including pregnant women, where they pass  to the developing fetus in utero or through the breast milk to the nursing infant.  As evidence of fetal exposure, the infant at birth has levels of PBDE’s that are up to 25% of maternal levels.  And researchers have found that children’s PBDE levels are about 2.8 times higher than their mothers. Research in animals shows that exposure to brominated fire retardants in-utero or during infancy leads to more significant harm than exposure during adulthood, and much lower levels of PBDEs are needed to cause harm to infants and children than to adults.
  3. they are endocrine disruptorsMany of the known health effects of PBDEs are thought to stem from their ability to disrupt the body’s thyroid hormone balance, which plays an essential role in brain development.  Laboratory animals showed deficits in learning and memory with exposure to PBDE’s.   Studies of mice showed that a single exposure to PBDEs caused permanent behavioral aberrations that worsened as the mice got older.  One study, for instance, found that women whose levels of T4 measured in the lowest 10 percent of the population during the first trimester of pregnancy were more than 2.5 times as likely to have a child with an IQ of less than 85 (in the lowest 20 percent of the range of IQs) and five times as likely to have a child with an IQ of less than 70, meeting the diagnosis of “mild retardation.”

Personal choices can make a difference. Buying furniture, fabric, cell phones or computers made without PBDEs is definitely a vote for a non-toxic future. But personal choices can only go so far – and the crisis is great.   PBDEs, like other contaminant issues, are at least as much a social as a personal issue and challenge. You can help your kids not only with your buying habits, but also by modeling social action for environmental change, and by campaigning for a non-toxic future, the kind of future where mother’s milk will regain its purity.

The Environmental Protection Agency (EPA) controls chemicals partially through use of the Toxic Substances Control Act of 1976, which was amended in 2016.

Although the law contains the words “Toxic Substances” the TSCA law  does not separate chemicals into categories of toxic and non-toxic.  In fact, of the 60,000 chemicals in use in the USA in 1976, the year of the passing of the law, all were grandfathered in as safe to use. These are known as “existing chemicals”.

  1. We assume the TSCA is testing and regulating chemicals used in the industry..It is not:

Of the more than 60,000 existing chemicals  in use prior to 1976, most were “grandfathered in”; only 263 had been tested for safety and only 5 were restricted.  Today over 80,000 chemicals are routinely used in industry, and the number which have been tested for safety in tests required by the EPA has not materially changed since 1976.  So we cannot know the risks of exposing ourselves to certain chemicals.  The default position is that no information about a chemical = no action. (Thank goodness for the European Union. The great progress in the past two decades in determining toxicity and safety of many chemicals is due to their action.)

The chemical spill which occurred in West Virginia in 2014 was of “crude MCHM”, or 4-methylcyclohexanemethanol, one of the chemicals that was grandfathered into the Toxic Substances Control Act of 1976.   That means that nobody knows for sure what that chemical can do to us.

Carcinogenic effects? No information available.

Mutagenic effects? No information available.

Developmental toxicity? No information available.

Lack of information is the reason the local and federal authorities were so unsure of how to advise the local population about their drinking water supplies.  (And by the way, in January, 2014, a federal lawsuit was filed in Charleston, WV, which claims that the manufacturer of MCHM hid “highly toxic and carcinogenic properties” of components of MCHM, hexane and methanol, both of which have been tested and found to cause diseases such as cancer.)

I found claims he EPA has been successful in restricting only nine chemicals of the 60,000 that were grandfathered in as permissible “existing Chemicals”  (PCBs, chlorofluorocarbons, dioxin, asbestos, and hexavalent chromium) in its 38-year history, with the ban on asbestos being overturned in 1991.

Until 2016 none of those chemicals were required to be tested for safety. The 2016 revision of the law requires some existing chemicals to be tested for safety, and gives deadlines for the evaluation. The first ten chemicals to be assessed as specifically required by the 2016 revisions are:

  • Asbestos
  • 1-Bromopropane
  • Carbon Tetrachloride
  • 1,4 Dioxane
  • Cyclic Aliphatic Bromide Cluster (HBCD)
  • Methylene Chloride
  • N-Methylpyrrolidone
  • Perchloroethylene
  • Pigment Violet 29
  • Trichloroethylene

But don’t hold your breath.  Take one of the above list:  Methylene Chloride.  The EPA assessed it beginning in 2014 and proposed a ban – at least from paint removers – in 2017, stating that the chemical posed “unnecessary risks” to people. The European Union had taken this step in 2011.  The EPA keeps delaying the ban, and has weakened it by removing one of 2 toxic chemicals in the proposed ban to just one.

Slate has an informative account of the current issue, “A Chemical in Paint Remover is A Known Killer: Why Won’t the EPA Ban It?” in which you can get a taste of the many years the EPA can delay an action or change one, even after announcing and committing to it:

https://slate.com/technology/2018/03/will-the-epa-ban-methylene-chloride.html

The Environmental Defense Fund has a good blog whose almost every entry is a repudiation of what FabricSellerA  claims about American manufacture of products being safe because of the federal government. The EDF has an interesting story about PCB’s, which Congress specifically outlawed in  1979; and how action and inaction by the EPA has allowed variants of PCBs to be still used and sold in the US now, even after the 2016 TSCA revisions:

http://blogs.edf.org/health/2018/09/28/have-we-learned-anything-in-the-last-4-decades-when-it-comes-to-allowing-chemicals-like-pcbs-onto-the-market/#more-8177

  1. We assume that the TSCA requires manufacturers to demonstrate that their chemicals are safe before they go into use. It does not:
    1. The EPA requires a “Premanufacture Notification” of a new chemical, and no data of any kind is required.   The EPA receives between 40-50 each week and 8 out of 10 are approved, with or without test data, with no restrictions on their proposed use. As 3M puts it on their PMN forms posted on EPA’s web site, “You are not required to submit the listed test data if you do not have it.”
    2. The TSCA says the government has to prove actual harm caused by the chemical in question before any controls can be put in place.  The catch-22 is that chemical companies don’t have to develop toxicity data or submit it to the EPA for an existing product unless the agency finds out that it will pose a risk to humans or the environment – which is difficult to do if there is no data in the first place.  Lack of evidence of harm is taken as evidence of no harm.
    3. We assume that manufacturers must list all ingredients in a product, so if we have an allergy or reaction to certain chemicals we can check to see if the product is free of those chemicals. It does not.

The TSCA allows chemical manufacturers to keep ingredients in some products secret.   Nearly 20% of the 80,000 chemicals in use today are considered “trade secrets”.  This makes it impossible for consumers to find out what’s actually in a product.  And there is no time limit on the period in which a chemical can be considered a trade secret.

These limitations all help to perpetuate the chemical industry’s failure to innovate toward safer chemical and product design.  It’s one of the reasons the USA is one of the few nations in the world in which asbestos is not banned.  The EPA has issued regulations to control only 9 chemicals since the enactment of TSCA and the EPA has assessed the risks of only about 2% of the chemicals in use.

On June 22, 2016, President Obama signed the bill that reforms the Toxic Substances Control Act.  It was widely agreed that the TSCA is not doing the job of protecting us, and that the United States is in need of profound change in this area. The chemicals market values function, price and performance over safety, which poses a barrier to the scientific and commercial success of green chemistry in the United States and could ultimately hinder the U.S. chemical industry’s competitiveness in the global marketplace as green technologies accelerate under the European Union’s requirements.

we presumably would have an EPA with a mandate to review all chemicals in commerce, the authority to readily get the data it needs, and the resources required to execute the kind of comprehensive prioritization scheme ACC proposes.

So far the improvements in the 2016 revision have not resulted in any safety testing being accomplished, but rather the establishment of a horrendous bureaucracy for evaluation which chemicals need to be evaluated after the first 30 which were mandated.

We cover above the chemicals outlawed in various products by US regulators. There are not many – and most are not regulated in the end usage of fabric at all.   Here are the requirements for fabrics – mostly applying to children:

  • Section 101(a) of the CPSIA restricts children’s products, including children’s apparel and sleepwear, to a lead content limit of 100 parts per million (ppm). In addition, the use of paint or similar surface coating on children’s apparel and sleepwear must not exceed a lead content limit of 90 ppm. That compares to the Oeko-Tex 100andGOTS (Global Organic Textile Standard) requirement that the lead content be 2 ppm.
  • Section 108 of CPSIA states that children’s toys and child care articles cannot contain more that 0.1% of six phthalates – DEHP, DBP, BBP limits are applicable to both toys and child care items while DINP, DIDP, and DnOP limits are applicable only to toys that can be placed in the mouth and are intended for children 3 and younger. Although children’s clothing does not need to be certified to this requirement, children’s sleepwear or bibs (child care article) intended for children age 3 years or younger and any children’s textile product that is intended for use in play (toy) must be certified to the phthalates requirements. In comparison to Oeko-Tex 100 and GOTS, all phthalates are prohibited.
  • Textiles used in apparel must meet class 1 or 2 flammability requirements. Children’s sleepwear must be flame resistant and self-extinguish when exposed to a small ignition source. The rules cover all children’s sleepwear between size 9 months and size 14. The fabric, seams, trim, and garments must pass certain flammability tests or the garment must be tight-fitting as defined by specified dimensions. ( See our blog post on flame retardants , published in May, 2013) But this rule means that toxic chemicals are often added to children’s sleepwear – not kept out of it.

What does this mean? It means that the United States has basically no protection for consumers in terms of textiles.

So, I have many bones to pick with FabricsellerA, who ignores the weak protections that the federal government provides to protect us from the real safety issues from fabric production and chemicals residual in the fabric that is everywhere around us.  The United States has precious few protections for consumers or for workers regarding fabric safety issues while Oeko-Tex does an excellent job of protecting consumers of fabric, though not workers.

The Unabridged Post: from FabricsellerA:

FabricsellerA consumers are savvy consumers. We often receive inquiries from our customers asking if FabricsellerA fabrics are OEKO-TEX certified. They are not OEKO-TEX certified, and here’s why this is a good thing:

 OEKO-TEX® is an international association headquartered in Europe, comprised of independent research and test laboratories – focused on the textile industry – which certifies that fabrics meet safety standards for consumer use. OEKO-TEX 100 is the organization’s global testing and certification program that ensures textile products are tested for more than 300 harmful chemicals.

 It’s often difficult for resellers of fabrics made in China, India, or other countries, to discern how the fabrics are being made, and what chemicals are being used in their manufacture. That’s why it’s important that the fabrics they sell have an OEKO-TEX certificate or equivalent; this indicates that the fabrics meet strict health and safety standards, and are safe to use. For the benefit of consumers there is an online directory that lists all products, companies, and brands that are OEKO-TEX certified

 While OEKO-TEX certification is a stringent process, many of the requirements for this certification are not applicable to our American-made products. That’s why FabricsellerA fabrics are not OEKO-TEX certified—because our fabrics are made right here in the USA . We adhere to the even more demanding American health and safety standards, and ensure that no harmful chemicals are used in the production of our fabrics.

 In the United States, all the fabric manufacturers, including FabricsellerA, produce their fabrics under the safety guidelines and regulations set forth by several government agencies. These agencies include the Consumer Product Safety Commission (CPSC), the Occupational Health and Safety Administration (OSHA)and the Environmental Protection Agency (EPA).

 The CPSC is the agency that regulates the sale and manufacture of consumer products, and ultimately certifies a fabric as compliant and approved for sale in the United States, in accordance with the Consumer Product Safety Improvement Act (CPSIA). The CPSIA compliance certification ensures that the products you use every day have met the most stringent, comprehensive American health and safety standards.

 Fabrics made or sold in America must not only meet CPSIA requirements, but manufacturing must comply with EPA, OSHA, and other regulations, which makes themeven more rigorous than the OEKO-TEX test criteria. This is why OEKO-TEX certification is not required in the United States. These strict measures guarantee the highest levels of safety, not only for the consumers who use the fabrics, but also for the health and safety of those who make them, and environmental protection.

 In addition to FabricsellerA’s ongoing mission and commitment to bringing you safe, high-quality products for your use, our fabrics are, of course, CPSIA Compliant. They meet the highest standards of health and safety in the world.

 END POST

[1]On average, 78% of the weight of a fabric is the fiber it purports to be, and 22% is residual chemicals.  W. Baumann, K. Lacasse, Textile Chemicals: Environmental Data and Facts, Springer-Verlag, Berlin, 2004

[2]If you don’t know what flame retardants can do to you, please see our blog https://oecotextiles.wordpress.com/?s=pbde

 (3) Some of the more common BFR’s are: Polybrominated diphenyl ethers (PBDE’s):  besides PBDE, the group includes DecaBDE, OctaBDE and PentaBDE (neither Octa nor Penta is manufactured anymore); Polybrominated biphenyls (PBB) – also not manufactured anymore; Brominated cyclohydrocarbons

[4]Martin, Andrew, “Chemical Suspected in Cancer is in Baby products”, The New York Times, May 17, 2011.

[5]Vernier, Marta and Hites, Ronald; “Flame Retardants in the Serum of Pet Dogs and in their Food”, Environmental Science and Technology, 2011, 45 (10), pp4602-4608. http://pubs.acs.org/action/doSearchaction=search&searchText=PBDE+levels+in+pets&qsSearchArea=searchText&type=within

 

 





Nichlos Kristof gets it!

24 04 2018

Nicholas Kristof had an editorial in the New York Times on February 25, 2018. This is a reproduction of his editorial:

 Our bodies are full of poisons from products we use every day. I know – I’ve had my urine tested for them. Surprised? So was I when I had my urine tested for these chemicals. (A urine or blood test is needed to confirm whether you have been exposed.)

Let me stress that mine should have been clean.

Almost a decade ago, I was shaken by my reporting! on a class of toxic chemicals called endocrine disruptors. They are linked to cancer and obesity and also seemed to feminize males, so that male alligators developed stunted genitalia and male smallmouth bass produced eggs.

In humans, endocrine disruptors were linked to two-headed sperm and declining sperm counts. They also were blamed for an increase in undescended testicles and in a birth defect called hypospadias, in which the urethra exits the side or base of the penis rather than the tip. Believe me, the scariest horror stories are found in urology journals. If you’re a man, you don’t wring your hands as you read; you clutch your crotch.

So I’ve tried for years now to limit my exposure to endocrine-disrupting chemicals. Following the advice of the President’s Cancer Panel, I eat organic to reduce exposure to endocrine disruptors in pesticides. I try to store leftover meals in glass containers, not plastic. I avoid handling A.T.M. and gas station receipts. I try to avoid flame-retardant furniture.

Those are all common sources of toxic endocrine disruptors, so I figured that my urine would test pristine. Pure as a mountain creek.

                        Here are 12 chemicals found in everyday products:

Chemical Details Found in products like:
Antimicrobials Can interfere with thyroid and other hormones Colgate Total toothpaste, soap, deodorant
Benzophenones Can mimic natural hormones like estrogen Sunscreen, lotions, lip balm
Bisphenols Can mimic natural hormones like estrogen Protective lining for canned goods, hard plastic water bottles, thermal paper register receipts.
1,4-Dichlorobenzene Can affect thyroid hormones and my increase risk of cancer Mothballs, toilet deodorizers
Parabens Can mimic natural hormones like estrogen Cosmetics, personal care products like shampoos, hair gels, lotions
Phthalates Can disrupt male reproductive development and fertility

 

Vinyl shower curtains, fast food, nail polish, perfume/cologne
Fragrance Chemicals Can exacerbate asthma symptoms and disrupt natural hormones. Perfume/cologne, cleaning products, dryer sheets, air fresheners
Per- and polyfluoroalkyl substances (PFAS) Can affect hormones, immune response in children, and may increase risk of cancer. Scotchgard and other stain-resistant treatments, fast-food wrappers.
Flame Retardants Can affect neurodevelopment and hormone levels, and may increase risk of cancer Nail polish, foam cushioning in furniture, rigid foam insulation.

The Silent Spring Institute near Boston, which studies chemical safety, offers a “Detox Me Action Kit” to help consumers determine what harmful substances are in their bodies. Following instructions, I froze two urine samples (warning my wife and kids that day to be careful what food they grabbed from the freezer) and Fed-Exed them off for analysis.

By the way, the testing is for women, too. Men may wince as they read about miniaturized alligator penises, but endocrine disruptors have also been linked to breast cancer and gynecological cancers. The American College of Obstetricians and Gynecologists warns women that endocrine disruptors can also cause miscarriages, fetal defects and much more.[1]

As I waited for the lab results, I continued to follow the latest research. One researcher sent a bizarre video of a mouse exposed to a common endocrine disruptor doing back flips nonstop, as a kind of nervous tic.

Finally, I heard back from Silent Spring Institute. I figured this was a report card I had aced. I avoid all that harmful stuff. In my columns, I had advised readers how to avoid it.

Sure enough, I had a low level of BPA, best known because plastic bottles now often boast “BPA Free.” But even a diligent student like me failed the test. Badly. I had high levels of a BPA substitute called BPF. Ruthann Rudel, a toxicologist who is the head of research at Silent Spring, explained that companies were switching to BPF even though it may actually be yet more harmful (it takes longer for the body to break it down). BPF is similar to that substance that made those mice do back flips.

“These types of regrettable substitutions — when companies remove a chemical that has a widely known bad reputation and substitute a little-known bad actor in its place — are all too common,” Rudel told me. “Sometimes we environmental scientists think we are playing a big game of whack-a-mole with the chemical companies.”

Sigh. I thought I was being virtuous by avoiding plastics with BPA, but I may have been causing my body even more damage.

My urine had an average level of an endocrine disruptor called triclosan, possibly from soap or toothpaste. Like most people, I also had chlorinated phenols (perhaps from mothballs in my closet).

I had a high level of a flame retardant called triphenyl phosphate, possibly from a floor finish, which may be “neurotoxic.” Hmm. Whenever you see flaws in my columns, that’s just my neurotoxins at work.

                            My lab results: high levels of FOUR chemicals were found

CHEMICAL DETAILS
1,4- DICHLOROBENZENE Can affect thyroid hormones and may increase risk of cancer
ANTIMICROBIALS Can interfere with thyroid and other hormones
BISPHENOLS Can mimic natural hormones like estrogen
FLAME RETARDANTS Can affect neurodevelopment and hormone levels, and may increase risk of cancer
BENZOPHENONES Can mimic natural hormones like estrogen
PARABENS Can mimic natural hormones like estrogen

Notes: Benzophenones and parabens were also found, but in lower levels than in most Americans. Tests for phthalates and fragrance chemicals were not included.

Will these endocrine disruptors give me cancer? Make me obese? Make my genitals fall off? Nobody really knows. At least I haven’t started doing random back flips yet.

The steps I took did help, and I recommend that others consult consumer guides such as at ewg.org to reduce their exposures to toxic chemicals. Likewise, if I had downloaded the Detox Me smartphone app, I would have known to get rid of those mothballs, along with air fresheners and scented candles. (Science lesson: A less fragrant house means cleaner pee.)

Yet my takeaway is also that chemical industry lobbyists have rigged the system so that we consumers just can’t protect ourselves adequately.

“You should not have to be a Ph.D toxicologist to be safe from so many of the chemicals in use,” Dr. Richard Jackson of U.C.L.A. told me. “So much of what we are exposed to is poorly tested and even less regulated.”

The Trump administration has magnified the problem by relaxing regulation of substances like chlorpyrifos, Dow Chemical’s nerve gas pesticide. The swamp has won.

So the saddest lesson is that even if you understand the peril and try to protect yourself and your family — as I strongly suggest you do — your body may still be tainted. The chemical companies spend tens of millions of dollars lobbying and have gotten the lightest regulation that money can buy.

They are running the show, and we consumers are their lab mice.

[1] “Exposure to Toxic Environmental Agents”, The American College of Obstetricians and Gynecologists, University of California San Francisco Program on Reproductive Health and the Environment.





What Poisons are in your body?

7 03 2018

Nicholas Kristof had an editorial in the New York Times on February 25, 2018.  This is a reproduction of his editorial:

Our bodies are full of poisons from products we use every day. I know – I’ve had my urine tested for them.  Surprised? So was I when I had my urine tested for these chemicals. (A urine or blood test is needed to confirm whether you have been exposed.)

Let me stress that mine should have been clean.

Almost a decade ago, I was shaken by my reporting on a class of toxic chemicals called endocrine disruptors. They are linked to cancer and obesity and also seemed to feminize males, so that male alligators developed stunted genitalia and male smallmouth bass produced eggs.

In humans, endocrine disruptors were linked to two-headed sperm and declining sperm counts. They also were blamed for an increase in undescended testicles and in a birth defect called hypospadias, in which the urethra exits the side or base of the penis rather than the tip.  Believe me, the scariest horror stories are found in urology journals. If you’re a man, you don’t wring your hands as you read; you clutch your crotch.

So I’ve tried for years now to limit my exposure to endocrine-disrupting chemicals. Following the advice of the President’s Cancer Panel, I eat organic to reduce exposure to endocrine disruptors in pesticides. I try to store leftover meals in glass containers, not plastic. I avoid handling A.T.M. and gas station receipts. I try to avoid flame-retardant furniture.

Those are all common sources of toxic endocrine disruptors, so I figured that my urine would test pristine. Pure as a mountain creek.

                                       12 Chemicals found in everyday products

Chemical Details Found in products like:
ANTIMICROBIALS Can interfere with thyroid and other hormones Colgate Total toothpaste, soap, deodorant
BENZOPHENONES Can mimic natural hormones like estrogen Sunscreen, lotions, lip balm
BISPHENOLS Can mimic natural hormones like estrogen Protective lining for canned goods, hard plastic water bottles, thermal paper register receipts
1,4-DICHLOROBENZENE Can affect thyroid hormones and may increase risk of cancer Mothballs, toilet deodorizers
PARABENS Can mimic natural hormones like estrogen Cosmetics, personal care products like shampoos, hair gels, lotions
PHTHALATES Can disrupt male reproductive development and fertility Vinyl shower curtains, fast food, nail polish, perfume/cologne
PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) Can affect hormones, immune response in children, and may increase risk of cancer Scotchgard and other stain-resistant treatments, fast-food wrappers
FLAME RETARDANTS Can affect neurodevelopment and hormone levels, and may increase risk of cancer Nail polish, foam cushioning in furniture, rigid foam insulation
FRAGRANCE CHEMICALS Can exacerbate asthma symptoms and disrupt natural hormones Perfume/cologne, cleaning products, dryer sheets, air fresheners

The Silent Spring Institute near Boston, which studies chemical safety, offers a “Detox Me Action Kit” to help consumers determine what harmful substances are in their bodies. Following instructions, I froze two urine samples (warning my wife and kids that day to be careful what food they grabbed from the freezer) and Fed-Exed them off for analysis.

By the way, the testing is for women, too. Men may wince as they read about miniaturized alligator penises, but endocrine disruptors have also been linked to breast cancer and gynecological cancers. The American College of Obstetricians and Gynecologists warns women that endocrine disruptors can also cause miscarriages, fetal defects and much more.

As I waited for the lab results, I continued to follow the latest research. One researcher sent a bizarre video of a mouse exposed to a common endocrine disruptor doing back flips nonstop, as a kind of nervous tic.

Finally, I heard back from Silent Spring Institute. I figured this was a report card I had aced. I avoid all that harmful stuff. In my columns, I had advised readers how to avoid it.

Sure enough, I had a low level of BPA, best known because plastic bottles now often boast “BPA Free.”

But even a diligent student like me failed the test. Badly. I had high levels of a BPA substitute called BPF. Ruthann Rudel, a toxicologist who is the head of research at Silent Spring, explained that companies were switching to BPF even though it may actually be yet more harmful (it takes longer for the body to break it down). BPF is similar to that substance that made those mice do back flips.

“These types of regrettable substitutions — when companies remove a chemical that has a widely known bad reputation and substitute a little-known bad actor in its place — are all too common,” Rudel told me. “Sometimes we environmental scientists think we are playing a big game of whack-a-mole with the chemical companies.”

Sigh. I thought I was being virtuous by avoiding plastics with BPA, but I may have been causing my body even more damage.

My urine had an average level of an endocrine disruptor called triclosan, possibly from soap or toothpaste. Like most people, I also had chlorinated phenols (perhaps from mothballs in my closet).

I had a high level of a flame retardant called triphenyl phosphate, possibly from a floor finish, which may be “neurotoxic.” Hmm. Whenever you see flaws in my columns, that’s just my neurotoxins at work.

My lab results: high levels of FOUR chemicals were found

CHEMICAL DETAILS
1,4- DICHLOROBENZENE Can affect thyroid hormones and may increase risk of cancer
ANTIMICROBIALS Can interfere with thyroid and other hormones
BISPHENOLS Can mimic natural hormones like estrogen
FLAME RETARDANTS Can affect neurodevelopment and hormone levels, and may increase risk of cancer
BENZOPHENONES Can mimic natural hormones like estrogen
PARABENS Can mimic natural hormones like estrogen

Notes: Benzophenones and parabens were also found, but in lower levels than in most Americans. Tests for phthalates and fragrance chemicals were not included.

Will these endocrine disruptors give me cancer? Make me obese? Make my genitals fall off? Nobody really knows. At least I haven’t started doing random back flips yet.

The steps I took did help, and I recommend that others consult consumer guides such as at ewg.org to reduce their exposures to toxic chemicals. Likewise, if I had downloaded the Detox Me smartphone app, I would have known to get rid of those mothballs, along with air fresheners and scented candles. (Science lesson: A less fragrant house means cleaner pee.)

Yet my takeaway is also that chemical industry lobbyists have rigged the system so that we consumers just can’t protect ourselves adequately.

“You should not have to be a Ph.D toxicologist to be safe from so many of the chemicals in use,” Dr. Richard Jackson of U.C.L.A. told me. “So much of what we are exposed to is poorly tested and even less regulated.”

The Trump administration has magnified the problem by relaxing regulation of substances like chlorpyrifos, Dow Chemical’s nerve gas pesticide. The swamp has won.

So the saddest lesson is that even if you understand the peril and try to protect yourself and your family — as I strongly suggest you do — your body may still be tainted. The chemical companies spend tens of millions of dollars  lobbying and have gotten the lightest regulation that money can buy.

They are running the show, and we consumers are their lab mice.





For our children

4 05 2017

“Going personally green is a bet, nothing more or less, though it’s one we probably all should make, even if the odds of it paying off aren’t great. Sometimes you have to act as if it will make a difference, even when you can’t prove that it will.” Michael Pollan

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  Traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase:

  • asthma is now the leading cause of school absenteeism for children 5 to 17[1];
  • birth defects are the leading cause of death in early infancy[2];
  • developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder.[3] Currently one of every six American children has a developmental disorder of some kind. [4]
  • Childhood cancers had once been a medical rarity but have grown 67% since 1950.[5] Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase.[6]
  • Most likely, one in three of the children you know suffers from a chronic illness – perhaps cancer, birth defects, asthma, learning disorders, ADHD or autism.[7]

And the cost of these illnesses is staggering – a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD – and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease” trumpeted Time magazine in 2011.[8]

The generation born from 1970 on is the first to be raised in a truly toxified world.

Since World War II, more than 80,000 new chemicals have been invented.  Scientific evidence is strong, and continues to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases.[9]  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[10] –  disorders that affect approximately 17% of U.S. children under the age of 18. Even before conception and on into adulthood, the assault is everywhere: heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, prozac and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’

What is different now?

  • The chief argument used by manufacturers to defend their chemical use is that the amounts used in products are so low that they don’t cause harm.  Yet we now know that the old belief that “the dose makes the poison” (i.e., the higher the dose, the greater the effect – because water can kill you just as surely as arsenic given sufficient quantity) is simply wrong.  Studies are finding that even infinitesimally low levels of exposure – indeed any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window.[11]Surprisingly, low doses may even exert more potent effects than higher doses. 
Endocrine disrupting chemicals may affect not only the exposed individual but also their children and subsequent generations.[12] Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.
  • We also now know that time of exposure is critical – because during gestation and through early childhood the body is rapidly growing under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted – and so on – until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which subsequently impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  • Order of exposure is important – exposures can happen all at once, or one after the other, and that can make a world of difference.
  • There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years. The developmental basis of adult disease has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases that can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations – is called “epigenetics”. Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[13]  Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and diabetes. Other studies are being published which corroborate these findings.[14]
  • Age at time of exposure is critical. Fetuses are most at risk, because their rapidly developing bodies can be altered and reprogrammed before birth.
  • Finally, exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[15] Synergy means the interaction of two (or more) things that produce an overall effect that’s greater than – or different from – the sum of the individual effects. In other words, we cannot predict the whole simply by looking at the parts.   Even so, we are challenged to understand and predict the impacts that contaminants have on communities – when understanding the effect of a single contaminant on a single organism is daunting. There are almost unlimited variables that impact any situation. For example: a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

It is well documented that chemicals can make each other more toxic, and because we can’t know what exposures we’re being subjected to (given the cocktail of smog, auto exhaust, cosmetics, cleaning products and countless other chemicals we’re exposed to every day) coupled with an individuals unique chemistry, we can’t know when exposure to a chemical will trigger a tipping point.

Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are throwing out our old notions of toxicology (i.e., “the dose makes the poison”). In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things” that is, that huge doses led to “death or low birth weight.”

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the max. And our children are the pawns in this great experiment. And if you think artificial pathogens are not the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the max has replaced bacteria and viruses as the major cause of human illness.[16] We don’t have to debate which source is primary, especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Consider this: Children of moms who had the highest levels of phthalates in their blood during pregnancy had children who had markedly lower IQs at age 7.[17] Why talk about this? Because phthalates are in the fabrics we use. Generally, phthalates are used to make plastic soft, but they’re also found in perfume, hair spray, deodorant, nail polish, insect repellent, carpeting, vinyl flooring, shower curtains…..I could go on. They’re in our food and water too. And also in fabrics. People don’t think about the soft fabrics they’re surrounded most of every day as containing chemicals that can harm us – while we continue to identify fabric as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% of the weight of the fabric.[18]  Phthalates are one of the main components of plastisol screen printing inks used on fabrics. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Consider this: The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops.[19] What other chemicals are used in textile production, and what do those chemicals do to human health?

  1. Disruptions during development (including autism, which now occurs in 1 of every 68 births in the US[20]); attention deficit disorders (ADD) and hyperactivity (ADHD): Chemicals commonly used in textiles which contribute to these conditions:
  1. Breathing difficulties, including asthma (in children under 5 asthma has increased 160% between 1980-1994[21]) and allergies. Chemicals used in textiles which contribute:
  • Formaldehyde, other aldehydes
  • Benzene, toluene
  1. Damage to the nervous and immune system, reproductive disorders, endometriosis:

Dioxins

Toluene/benzene

  1. Hormone disruptions, infertility and lowered sperm counts:

Chlorine

Sodium cyanide/ sodium sulfate

Alkylphenolethoxylates

Phthalates

  1. Cancer:

Formaldehyde,

Lead,

Cadmium,

Pesticides,

Benzene,

Vinyl chloride

 

Specifically:

  • Formaldehyde is used often in finishing textiles to give the fabrics easy care properties (like wrinkle resistance, anti cling, stain resistance, etc.).  Formaldehyde resins are used on almost all cotton/poly sheet sets sold in the USA.
    • Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-links with proteins, DNA and unsaturated fatty acids. These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption.[22]
      • In January 2009, new blue uniforms issued to Transportation Security Administration officers gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers[23]; in 2012 Alaska Airlines flight attendants reported the same “dermal symptoms” as the TSA officers – and in 2016 American Airlines flight attendants had the same symptoms.[24]
      • In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras.
      • A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[25]

Studies have been done which link formaldehyde in indoor air as a risk factor for childhood asthma.[26] Formaldehyde in clothing is not regulated in the United States, but 13 other countries do have laws that regulate the amount of formaldehyde allowed in clothing.   Greenpeace tested a series of Disney clothing articles and found from 23ppm – 1,100 ppm of formaldehyde in 8 of the 16 products tested.   By the way, OSHA has established a Federal standard that restricts the amount of formaldehyde that a worker can be exposed to over an 8 hour workday – currently that’s 0.75 ppm. That means if you have 0.2 ppm of formaldehyde in your indoor air, and your baby is wearing the Disney “Finding Nemo” t-shirt, which registered at 1,100 ppm formaldehyde – what do you think the formaldehyde is doing to your baby?

  • Perfluorocarbons (PFC’s, which break down in the body to perfluorooctanoic acid – PFOA – and perfluorooctanyl sulfate – PFOS) are used on fabrics as soil and stain repellents.
    • These are among the most persistent synthetic chemicals known to man. Scientists noticed that PFOS was showing up everywhere: in polar bears, dolphins, baby eagles, tap water and human blood. So did its cousin PFOA.    These two man-made perfluorochemicals (PFOS and PFOA) don’t decompose in nature and are toxic to humans, with health effects ranging from birth or developmental effects, to the brain and nervous system, immune system (including sensitization and allergies) and some forms of cancer.  Once they are in the body, it takes decades to get them out – assuming you are exposed to no more. Every American who has been tested for these chemicals have these hyper-persistent, toxic chemicals in their blood. The Cradle to Cradle program no longer certifies any products which contain PFCs. A 2012 study published in the Journal of the American Medical Association reveals that the more exposure children have to PFCs, the less likely they are to have a good immune response to vaccinations.[27] This is not a frivolous concern because the levels of PFCs globally are not going down, and in some places may be increasing.
  • Benzene, used in the production of nylon and other synthetics, in textile dyestuffs and in the pigment printing process – is highly carcinogenic and linked to leukemia, breast cancer, lymphatic and hematopoietic cancers. It is easily absorbed by the skin.
  • Endocrine disruptors (EDC): Used in detergents, as dye stripping agents, fastness improvers and in finishes (water repellents, flame retardants, anti-fungal and odor-preventive agents).

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body. Pregnancy, childhood and adolescence are periods of brain development that are considered critically sensitive to toxic chemicals, with even small exposures at the wrong time altering the brain’s developmental programming signals in an irreversible way.    Impaired brain development may result in a broad range of human health effects:  from altered reproduction, metabolism and stress response, to mental retardation and subtle, subclinical intellectual deficiencies.  In addition, fetal and early childhood life stages are particularly sensitive to heavy metals and EDCs and there are likely to be no safe levels which can be set with sufficient certainty. (To see which chemicals impact the fetus, go to:         http://endocrinedisruption.org/prenatal-origins-of-endocrine-disruption/critical-windows-of-development/timeline-test/

Over the past 60 years, a growing number of endocrine disrupting chemicals have been used in the production of almost everything we purchase. What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure. In 2007, the global prevalence of attention deficit hyperactivity disorder (ADHD) was 5.3%.  In the United States, by 2012, the number of children diagnosed with ADHD was 10% of children while 8% of children have a learning disability.

As the TEDX (The Endocrine Disruption Exchange, Inc.) website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken.”

  • Lead: used in textile dyestuffs and as a catalyst in the dye process. Lead has been known to cause intellectual disabilities for many years, with no known safe blood level. Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[28]
  • Mercury: also used in textile dyestuffs, and as a catalyst in the dyeing process. Exposure to mercury during development prevents neurons from finding their appropriate place in the brain, causing lower language, attention and memory scores, reduced cognitive performance and psychomotor deficiencies in children.
  • Polychlorinated biphenyls (PCBs):  used in textile dyestuffs. PCBs have been banned from most uses since the 1970s in many countries. Known to interfere with the normal function of the thyroid hormone, and there is growing evidence that PCBs adversely affect neurodevelopment.
  • Polybrominated diphenyl ethers (PBDEs)used in flame retardants in the textile industry

PBDEs are widespread contaminants of the environment and the human body.  PBDEs persist in the environment and some bioaccumuate in human tissues.  A recent Dutch study reported that PBDEs were associated with lower mental and psychomotor development and IQ in pre-school children, and poorer attention for those in school. A study published in Environmental Health Perspectives found that Latino children born in California had levels of PBDE in their blood seven times higher than Latino children who were born in raised in Mexico.[29] In general, people in the United States have higher levels of PBDE than anyone else in the world. A paper published in Environmental Science & Technology[30] also finds high fire retardant levels in pet dogs. Cats, because they lick their fur, have the highest levels of all. See the Chicago Tribune series “Playing with Fire”, in which they concluded fire retardants were a public health debacle. (http://media.apps.chicagotribune.com/flames/index.html )

  • Dioxins: Main uses of dioxin in relation to textiles is as a preservative for cotton and other fibers during sea transit,  and in cotton bleaching. It is also found in some dyestuffs.   It is one of the strongest poisons which man is able to produce. It causes cancer of the liver and lung, and interferes with the immune system, resulting in a predisposition to infectious diseases and impacts the developing fetus
    • Studies have found dioxin leached from clothing  onto  the skin of participants.[31] It was shown that these contaminants are transferred from textiles to human skin during wearing. They were also present in shower water and were washed out of textiles during washing. Extensive evidence was found indicating that contaminated textiles are a major source of chlorinated dioxins and furans in non-industrial sewage sludge, dry cleaning residues and house dust.

Today there are more than 80,000 synthetic chemicals in use by industry, most of which have never been tested.   These synthetic chemicals, many believe, can be blamed for many of the modern maladies affecting humans. In fact, many scientists are saying that the increasing levels of human disease are caused by the chemical burden imposed on our bodies. Dr. Dick Irwin, a toxicologist at Texas A&M University, says, “Chemicals have replaced bacteria and viruses as the main threat to health. The diseases we are beginning to see in the 21st Century as the major causes of death are diseases of chemical origin.” These chemicals are becoming part of our environment, being taken into our bodies and changing them in unknown and unforeseen ways.

We need to do whatever we can to stem the tide of chemical incursions into our world; we can see the damage being done, from dead zones in the oceans to desertification of entire countries. We all suffer the “common wound”. We know very little about what these exposures are doing to our genetic makeup. We need to act now to protect our kids. We can’t wait for the government to put legislated controls in place – the government historically has not been proactive in this area.

What is an “organic fabric”?   When you see a fabric that says “made with organic cotton” the manufacturer is not telling you anything about how the organic cotton was made into cloth. The fiber, organic cotton, used to make the fabric may have been raised with regard to health and safety of the planet and people; but the production of the fabric made from that cotton may not have been. Think of applesauce: if you start with organic apples, then add Red Dye #2, stabilizers, emulsifiers, and antibacterials to inhibit mold – you don’t end up with organic applesauce. The same analogy can be used for textile production.

An organic fabric is a fabric that is produced using no known or suspected toxic chemicals (toxic to the earth, humans or animals) at any stage of the production process: from fiber to finished fabric. The major textile production steps include spinning; weaving; dyeing; printing; and finishing. Sub steps can include bleaching, brightening, sizing, de-sizing, de-foaming, brightening and countless others. The GOTS, or Global Organic Textile Standard, which forbids the use of many known or suspected toxic substances in each step of the textile production process, also requires water treatment (because even benign chemicals released into the eco-system will degrade the local eco-system and threaten the life of all that depend on it). It also covers fundamental social justice issues (no child labor, no slave labor, certain minimal working conditions); and addresses in a preliminary way carbon footprint concerns.

The trend to eco consciousness in textiles is major progress in reclaiming our stewardship of the earth, and in preventing preventable human misery. The new textile standards are not, by any means, yet environmentally benign. But, if people demand or support the efforts, more progress can be made – and rapidly. Many new techniques are possible, such as using ultrasound for dyeing, thereby eliminating the use of water entirely; and drying fabrics using radio frequencies rather than ovens, saving energy.

You have the power to stem the toxic stream caused by the production of fabric. If you search for and buy an eco textile, you are encouraging a shift to production methods that have the currently achievable minimum detrimental effects for either the planet or for your health. You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles exist and they give you a greener, healthier, fair-trade alternative. What will an eco textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.

[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Shabecoff, Philip and Alice; Poisoned Profits: the Toxic Assault on Our Children, Random House, August 2008.

[6] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[7] Shabecoff, op cit.

[8] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[9] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[10] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[11] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D; “No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much?” Environ Health Perspect 107:155–159, 1999

[12] Anway MD, Skinner MK “Epigenetic transgenerational actions of endocrine disruptors.” Endocrinology 147: S43–S49, 2006

[13] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[14] http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdfALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[15] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K “Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals”, Pure and Applied Chemistry, SCOPE/IUPAC Project Implications of Endocrine Active Substances for Humans and Wildlife 75:2305–2320, 2003

[16] Irwin, Richard, “Chemicals replace infection as top threat to health”, January 31 2016.

[17] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[18] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[19] http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

[20] https://www.cdc.gov/ncbddd/autism/data.html

[21] http://www.aaaai.org/about-the-aaaai/newsroom/asthma-statistics.aspx

[22] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918    SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[23] http://www.examiner.com/article/new-tsa-uniforms-making-workers-sick-afge-demands-replacement

[24] Tuten, Craig, “Employee Uniforms a Major Source of Irritation for American Airlines Flight Attendants”, Dec. 4, 2016; http://www.alaskacommons.com

[25] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[26] Rumchev, K.B., et al, “Domestic exposure to formaldehyde significantly increases the risk of asthma in young children”, Microsoft Academic Search 2002

[27] Grandjean, Philippe et al, “Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds”, January 25, 2012; JAMA.2012; 307(4):391-397.doi:10.1001/jama.2011.2034

[28] Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead

Exposure”, PLoS Med 2008 5(5): e112.

[29] Eskenazi, B., et al., “A Comparison of PBDE Serum Concentrations in Mexican and Mexican-American
Children Living in California”, http://ehp03.nieh.nih.gov/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1289%2Fehp.100284

[30] Vernier, Marta and Hites, Ronald; “Flame Retardants in the Serum of Pet Dogs and in their Food”, Environmental Science and Technology, 2011, 45 (10), pp4602-4608. http://pubs.acs.org/action/doSearch?action=search&searchText=PBDE+levels+in+pets&qsSearchArea=searchText&type=within

[31] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003





Firefighters

3 11 2016

We now know that firefighters and other first responders are at risk because of exposure to chemicals in the smoke that they are exposed to.  In fact, marine toxicologist Susan Shaw, PhD, found that firefighters had alarmingly high levels of PBDE flame retardants (polybrominated diphenyl ethers) in their blood immediately after fighting fires—three times higher than that of average Americans, who already have the highest PBDE levels in the world. Although the most toxic forms of these chemicals were phased out of production in 2004, they—along with newer, chemically similar flame retardants—remain in household items and dust. They are also persistent, bioaccumulative toxic substances that can actually become more harmful the longer they persist.  PBDEs are endocrine disruptors and neurological toxicants that may have links to thyroid cancer. Shaw said the firefighters also had elevated levels of dioxin and furans—both potent carcinogens that occur when PVC and other common plastics burn. Although firefighters are known to have higher cancer risk than the general population—including double the risk of testicular cancer, no studies have linked their increased risk to specific chemicals.  A massive, multi-year epidemiological study launched in 2010 by the National Institute for Occupational Safety and Health may eventually help answer lingering questions.

A petition by Greg Heath of Westfield, Massachusetts is on Change.org, and we think he should be heard:

A fire can cause millions of toxic chemical combinations. We have become aware of the massive risks these toxins pose for first responders, who breathe them in, ingest them, and absorb them through the skin while putting their lives on the line. Most states have adopted “cancer presumptive laws,” meaning that if a firefighter gets cancer on the job, they are automatically awarded accidental disability to see them through their illness. But the increased rate of Parkinson’s Disease (PD), a degenerative brain disorder, in firefighters has mostly been ignored.

I am a firefighter who was recently diagnosed with Parkinson’s. I am not alone — while the rate of PD in the general population is 3 out of 1000, it is ten times as much in firefighters:   30 out of 1000. I am young to be experiencing this disease, but that’s often how it works for emergency responders, and there is mounting evidence that our exposure to burning chemicals is the culprit.

I have 12 years left until I reach retirement, and, unfortunately, I am not sure I’ll be able to keep working that long.

My state of Massachusetts has great presumptive laws for firefighters, not only for cancer, but for heart and lung disease as well. It is now time for our legislators to include Parkinson’s Disease among these illnesses. We cannot ignore the connection between toxic chemical exposure and PD anymore.

While PD usually develops slowly among the general population, symptoms often hit firefighters fast, seemingly out of nowhere. Research now suggests that toxin-induced PD has a more rapid onset than genetic PD, another indicator that we are, indeed, contracting this illness on the job. For those of us struggling with Parkinson’s, walking, talking, grasping and even blinking become increasingly difficult tasks to accomplish. Needless to say, continuing to work as firefighters while battling this disease is most often not possible.

Indiana recently became the first state to include Parkinson’s in its presumptive law. This has provided unimaginable relief to many firefighters, who were running out of sick time, and facing unemployment and massive medical bills due to their debilitating disease. We now must band together and demand that more states recognize the link between firefighting and PD, and include PD among the illnesses covered by their presumptive laws.

Please sign this petition to include Parkinson’s in Massachusetts’ presumptive law, which would allow firefighters with Parkinson’s to retire on full accidental disability.

You can sign Greg’s petition by clicking here.