Hemp vs. Linen

31 08 2016

We are often asked for 100% hemp fabric in lieu of linen fabrics. We offer hemp and adore it, but it may not be the best eco choice.

Make no mistake – we love hemp, we sell hemp fabrics and we think the re-introduction of hemp as a crop would be a boon for American farmers and consumers.

But hemp that is used to produce hemp fabric via conventional methods – as opposed to GOTS methods – is a far inferior choice to any Global Organic Textile Standard (GOTS) or Oeko-Tex certified fabric. So the overriding difference is not between hemp and any other fiber, but between a certified fabric versus one that is not certified, because certification assures us that the fabric is free of any chemicals that can change your DNA, give you cancer or other dred diseases which can affect you in ways ranging from subtle to profound. The choice of GOTS also assures us that the mill which produced the fabric has water treatment in place, so these chemicals don’t pollute our groundwater – and that the mill pays fair wages to their workers who toil in safe conditions!

Now let’s look at some of the differences between hemp and linen:

First, do not be confused by the difference between the fiber and the cloth woven from that fiber – because the spinning of the yarn and the weaving of the cloth introduces many variables that have nothing to do with the fibers. Both hemp and flax (from which linen is derived) are made from fibers found in the stems of plants, and both are very laborious to produce. The strength and quality of both fibers are highly dependent on seed variety, the conditions during growth, time of harvest and manner of retting and other post-harvest handling.

Retting (or, really, rotting) is the microbial decomposition of the pectins which bind the fibers to the woody inner core of the plant stem. The old system of water or snow retting has given way to chemical retting, which in turn often shortens – which means weakens – the fibers. These short fibers are said to have been “cottonized” since cotton fibers are only about 1.5 inches long.

It’s important to note that there is very little to distinguish flax fibers from hemp fibers – they both have similar properties. Hemp’s fibers so closely resemble flax that a high-power microscope is needed to tell the difference. Without microscopic or chemical examination, the fibers can only be distinguished by the direction in which they twist upon wetting: hemp will rotate counterclockwise; flax, clockwise.

In general, hemp fiber bundles are longer than those of flax.   So the first point of differentiation is this: the length of the fibers. Long fibers translate into inherently more resilient and therefore durable yarns. Hemp fibers vary from 4 to about 7 feet in length, while linen is generally 1.5 to 3 feet in length. Other differences:

  • The color of flax fibers is described as yellowish-buff to gray, and hemp as yellowish-gray to dark brown.
  • Hemp is highly resistant to rotting, mildew, mold and salt water. Linen on the other hand is non-allergenic and insect-repellent.
  • Hemp is the most highly resistant natural fiber to ultraviolet light, so it won’t fade or disintegrate in sunlight. Linen too has excellent resistance to UV rays.
  • Hemp’s elastic recovery is very poor and less than linen; it stretches less than any other natural fiber.

The biggest difference between hemp and linen might be in the agricultural arena.

Hemp grows well without the use of chemicals because it has few serious pest problems, although the degree of immunity to attacking organisms has been greatly exaggerated.  Several insects and fungi specialize exclusively in hemp!  But despite this, the use of pesticides and fungicides are usually unnecessary to get a good yield. Hemp has a fiber yield that averages between 485 – 809 lbs., compared to flax, which averages just 323 – 465 lbs. on the same amount of land.   This yield translates into a high biomass, which can be converted into fuel in the form of clean-burning alcohol.

Farmers claim that hemp is a great rotation crop – it was sometimes grown the year prior to a flax crop because it left the land free of weeds and in good condition.   Hemp, it was said, is good for the soil, aerating and building topsoil. Hemp’s long taproot descends for three feet or more, and these roots anchor and protect the soil from runoff. Moreover, hemp does not exhaust the soil. Additionally, hemp can be grown for many seasons successively without impacting the soil negatively. In fact, this is done sometimes to improve soil tilth and clean the land of weeds.

The price of hemp in the market is far higher than for linen, despite hemp’s yields.   We have no idea why this is so. And finding organic hemp is becoming almost impossible, because hemp is usually grown by subsistence farmers who are loath to pay certification fees.

Yarns, made from the fibers, are graded from ‘A’, the best quality, to below ‘D’.   The number of twists per unit length is often (but not always) an indication of a stronger yarn.   In addition, the yarns can be single or plied – a plied yarn is combined with more than one strand of yarn. Next, the cloth can be woven from grade ‘A’ yarns with a double twist per unit length and double ply into a fabric where the yarns are tightly woven together into cloth. Or not.

But in general, there are many similarities between cloth made from hemp and cloth made from linen:

  • Both linen and hemp become soft and supple through handling, gaining elegance and creating a fluid drape.
  • Both hemp and linen are strong fibers – though most sources say hemp is stronger (by up to 8 times stronger) than linen (even though the real winner is spider silk!), but this point becomes moot due to the variables involved in spinning the fiber into yarn and then weaving into fabric.   The lifespan of hemp is the longest of all the natural fibers.
  • Both hemp and linen wrinkle easily.
  • Both hemp and linen absorb moisture. Hemp’s moisture retention is a bit more (12%) than linen’s (10 – 12%)
  • Both hemp and linen breathe – they release moisture back into the atmosphere and do not retain water.
  • Both hemp and linen are natural insulators: both have hollow fibers which means they’re cool in summer and warm in winter.
  • Both hemp and linen have anti-bacterial properties.
  • Both hemp and linen benefit from washing, becoming softer and more lustrous with each wash.
  • Both hemp and linen are resistant to moths and other insects.
  • Both hemp and linen absorb dyestuffs readily.
  • Both hemp and linen biodegrade.

The overriding difference is not between hemp and linen, but between a hemp OR linen fabric that has GOTS or Oeko-Tex certification and one that does not. That means that a conventional hemp fabric, which enjoys all the benefits of hemp’s attributes, also introduces unwanted chemicals into your life: such as formaldehyde, phthalates, heavy metals, endocrine disruptors and perhaps soil or fire retardants. The certified fabric is the better choice. If the choice is between a conventional hemp fabric and a certified linen fabric, we wouldn’t hesitate a second to choose the linen over the hemp, especially because hemp and linen are such close cousins.

 

 

 

 

 

 

 

Advertisements




Should I choose a hemp or linen fabric?

5 08 2015

We are often asked for 100% hemp fabric in lieu of linen fabrics. We offer hemp and adore it, but it may not be the best eco choice.  Make no mistake – we love hemp, we sell hemp fabrics and we think the re-introduction of hemp as a crop would be a boon for American farmers and consumers.

But hemp that is used to produce hemp fabric via conventional methods – as opposed to GOTS methods – is an inferior choice to any GOTS certified fabric. So the overriding difference is not between hemp and any other fiber, but between a GOTS certified fabric versus one that is not GOTS certified, because GOTS certification assures us that the fabric is free of any chemicals that can change your DNA, give you cancer or another dread disease or affect you in other ways ranging from subtle to profound. It also assures us that the mill which produced the fabric has water treatment in place, so these chemicals don’t pollute our groundwater – and that the mill pays fair wages to their workers who toil in safe conditions!

The GOTS certification requires that the fiber used in the fabric be third party certified organic. Organic linen is more available and less expensive then organic hemp, so we often use linen instead of hemp in our fabrics. Using organic linen instead of organic hemp keeps the price lower for you and you do not give up any performance characteristics at all.   Allow me to say that once more: You do not give up any performance at all.

To begin with, do not be confused by the difference between the fiber and the cloth woven from that fiber – because the spinning of the yarn and the weaving of the cloth introduces many variables that have nothing to do with the fibers. Both hemp and flax (from which linen is derived) are made from fibers found in the stems of plants, and both are very laborious to produce. The strength and quality of both fibers are highly dependent on seed variety, the conditions during growth, time of harvest and manner of retting and other post-harvest handling.

Yarns, made from the fibers, are graded from ‘A’, the best quality, to below ‘D’ and the number of twists per unit length is often (but not always) an indication of a stronger yarn.   In addition, the yarns can be single or plied – a plied yarn is combined with more than one strand of yarn. Next, the cloth can be woven from grade ‘A’ yarns with double twist per unit length and double ply into a fabric where the yarns are tightly woven together from cloth that is lightweight or heavier, producing a superior fabric.  Or not.

Now let’s look at some of the differences between hemp and linen:

Hemp and linen fibers are basically interchangeable – there is very little to distinguish flax fibers from hemp fibers.  In fact,  hemp’s fibers so closely resemble flax that a high-power microscope is needed to tell the difference. Without microscopic or chemical examination, the fibers can only be distinguished by the direction in which they twist upon wetting: hemp will rotate counterclockwise; flax, clockwise.  And in general, they tend to have the same properties.

In general, there are many similarities between cloth made from hemp and cloth made from linen:

  • Both linen and hemp become soft and supple through handling, gaining elegance and creating a fluid drape.
  • Both hemp and linen are strong fibers – though most sources say hemp is stronger (by up to 8 times) than linen (even though the real winner is spider silk), but this point becomes moot due to the variables involved in spinning the fiber into yarn and then weaving into fabric.   The lifespan of hemp is the longest of all the natural fibers.
  • Both hemp and linen wrinkle easily.
  • Both hemp and linen absorb moisture. Hemp’s moisture retention is a bit more (12%) than linen’s (10 – 12%)
  • Both hemp and linen breathe.
  • Both hemp and linen are natural insulators: both have hollow fibers which means they’re cool in summer and warm in winter.
  • Both hemp and linen have anti-bacterial properties.
  • Both hemp and linen benefit from washing, becoming softer and more lustrous with each wash.
  • Both hemp and linen are resistant to moths and other insects.
  • Both hemp and linen absorb dyestuffs readily.
  • Both hemp and linen biodegrade.

In general, hemp fiber bundles are longer than those of flax.   So the first point of differentiation is this: the length of the fibers. Hemp fibers vary from 4 to about 7 feet in length, while linen is general 1.5 to 3 feet in length. Other differences:

  • The color of flax fibers is described as yellowish-buff to gray, and hemp as yellowish-gray to dark brown.
  • Hemp is highly resistant to rotting, mildew, mold and salt water.
  • Hemp is also highly resistant to ultraviolet light, so it won’t fade or disintegrate in sunlight.
  • Hemp’s elastic recovery is very poor and less than linen; it stretches less than any other natural fiber.

The biggest difference between hemp and linen might be in the agricultural arena: Hemp grows well without the use of chemicals because it has few serious pest problems, although the degree of immunity to attacking organisms has been greatly exaggerated.  Several insects and fungi specialize exclusively in hemp!  But despite this, the use of pesticides and fungicides are usually unnecessary to get a good yield. Hemp has a fiber yield that averages between 485 – 809 lbs., compared to flax, which averages just 323 – 465 lbs. on the same amount of land.  This yield translates into a high biomass, which can be converted into fuel in the form of clean-burning alcohol.

Farmers claim that hemp is a great rotation crop – it was sometimes grown the year prior to a flax crop because it left the land free of weeds and in good condition.   Hemp, it was said, is good for the soil, aerating and building topsoil. Hemp’s long taproot descends for three feet or more, and these roots anchor and protect the soil from runoff. Moreover, hemp does not exhaust the soil. Additionally, hemp can be grown for many seasons successively without impacting the soil negatively. In fact, this is done sometimes to improve soil tilth and clean the land of weeds.

The price of hemp in the market is far higher than for linen, despite hemp’s yields.   We have no idea why this is so.

The overriding difference is not between hemp and linen, but between a hemp OR linen fabric that has a GOTS certification and one that does not. That means that a conventional hemp fabric, which enjoys all the benefits of hemp’s attributes, also introduces unwanted chemicals into your life: such as formaldehyde, phthalates, heavy metals, endocrine disruptors and perhaps soil or fire retardants.   The GOTS certified fabric is the better choice. If the choice is between a conventional hemp fabric and a GOTS certified linen fabric, we wouldn’t hesitate a second to choose the linen over the hemp, especially because hemp and linen are such close cousins.

 

 

 

 

 

 





Characteristics of hemp

2 06 2010

We were charmed by this quote, which was written by Yitzac Goldstein of Earth Protex, many years ago:

Before Huang-Ti’s time                                      
clothing was made from skins of birds and animals.

But as time went on

people increased and animals were few

Causing great hardship.

So Huang-Ti ordained that

Clothing should be made from hemp fiber.

This is how the spiritual leader  changed matters

For the people’s benefit.

6th century A.D. historian Khung Ying-Ta on

The Yellow Emperor, Huang-Ti, 27th century B.C.

I love hemp, maybe just because of the lore associated with the plant – and I don’t mean the lore surrounding the hallucinogenic properties of the plants that are bred for high THC content!  So let’s get that part out of the way fast:

Hemp is another word for the plant Cannabis sativa. Yes, marijuana comes from this same plant genus – and so does hops, used to produce beer for millennia. But what we call “industrial hemp” is a different variety (or subspecies), called Cannabis sativa sativa.  Marijuana is from Cannabis sativa indica, which is bred to contain between 5 – 10% of the intoxicating substance delta-9 tetrahydrocannabinol, or THC.  Industrial hemp, Cannabis sativa sativa, contains less than one tenth that amount.  Industrial grade hemp is not marijuana – it doesn’t look the same and if you tried to smoke it you’d probably die of carbon monoxide poisoning before you felt anything but sick. For more about the differences between the two varieties click here or go to the Industrial Hemp website.

Hemp is unique among other crops in that every part of the plant has utility and potential market value.  Here are some interesting facts about hemp that contribute to the lore I’m referring to:

  • In 1941 Henry Ford built a car with a plastic made from hemp and wheat straw.
  • Both George Washington and Thomas Jefferson grew hemp on their plantations; in fact the colonial government mandated that people grow hemp.  Settlers used hemp fiber as money and to pay taxes.
  • The original Levi Strauss jeans were made from hemp.
  • The July 4, 1776 Declaration of Independence  was written on hemp paper.

The plant has been used for millennia for food, fibers and fuel.   Today it is said that over 30,000 different products can be made from hemp.  Hemp’s oilseed makes high-grade food and beauty products.  The stalks produce fiber and cellulose.  And today, because of its length and strength, hemp fiber is woven into natural advanced composites, which can then be fashioned into anything from fast food containers to skateboard decks to the body of a stealth fighter.  There are over two million cars on the road today with hemp composite components.

But hemp for luxurious fabrics?  I remember those macramé plant hangers that were all the rage in the 1970’s.  Hemp has a public relations campaign to wage, because when I thought of hemp a few years ago (before my enlightenment) all I could imagine was burlap bag and sisal rugs.  Turns out the technical revolution has even found hemp:  new developments from the 1980’s  in retting and processing the stalks has meant that the hemp fibers produced today are soft and lustrous enough for even the finest fabrics.

Many end users look for comfort and durability in choosing a fabric, so hemp’s softness and high abrasion resistance make it a competitive choice.  Hemp fiber’s positive qualities have been recognized over thousands of years of real life applications.  The texture of pure hemp textiles resembles that of flax linen, appealing to the eye with its subtle variations in thickness, but it is also versatile and can be blended with other fibers to create many different looks.  Hemp’s versatility as a textile is stunning:  hemp fibers can be woven alone or with other fibers to produce weaves from rugged canvas to the lightest, silkiest  gauze,  in an unlimited array of colors and finishes.  Hemp has a beautiful natural luster and a lush hand and drape not found with any other natural or synthetic fiber, even linen.

Hemp’s characteristics as a textile make it a desirable choice in many applications:

  • Hemp is stronger and more durable than any other natural fabric, including linen, which almost matches hemps abrasion resistance and tensile strength.  The result is that hemp has a longer lifespan than other natural fabrics.[1] (Patagonia is just one of the many companies which has published studies which demonstrate hemp’s superior strength; results for these studies range from 3 to 8 times stronger.)  Products made from hemp will outlast their competitors by many years.
  • Not only is hemp strong, but it also holds its shape, stretching less than any other natural fiber. This prevents hemp fabric used in upholstery, demountable panels, acoustic paneling or as wallcovering from stretching out or becoming distorted with use.
  • Hemp fabric withstands, even benefits from, commercial laundering. Its inherent luster and light reflective qualities are enhanced by washing; it becomes finer and more luxurious with use. Hemp also possesses excellent soil-release properties because it sheds a microscopic layer each time it is laundered. This eliminates soiling and exposes a fresh surface. In effect, this means that hemp retains its sleek sheen every time it is washed, that it never dulls, and that it releases stains more easily than other fabrics.
  • Hemp may be known for its durability, but its comfort and style are second to none.  The more hemp is used, the softer it gets: it wears in, not out, thriving on regular use and machine washing without suffering fabric degradation. Hemp actually becomes softer, more resilient and more lustrous as a result of washing.
  • Hemp’s superior absorbency, due to its porous nature, means that it is very breathable and quick drying. Hemp can absorb up to 20% its own weight while still feeling dry to the touch (vs. polyester, which can absorb a maximum of 6%). This is important in the case of any fabric that is in contact with human skin, such as sheets, as perspiration is rapidly absorbed. It feels cooler in summer yet during cool weather, air which is trapped in the fibers is warmed by the body, making it naturally warm.
  • Hemp’s absorbency allows it to accept dyes readily and retain color better than other natural fibers, including cotton.
  • Hemp has a high resistance to ultraviolet light; it will not fade or disintegrate from sunlight as quickly as other natural fibers. (Tilly Endurables introduced a new hat in 2004 after testing its hemp fabric to a UPF of 50+, the maximum ultraviolet protection rating given.[2]) UV damage is especially a problem for draperies and marine interiors, so hemp would be a good natural fiber choice for these applications.
  • Hemp fiber is highly resistant to rotting, and its resistance to mildew, mold and salt water led to its premier use in marine fittings:  the majority of all twine, rope, ship’s sails, rigging and nets up to the late 19th century were made from hemp.  The word canvas itself is derived from cannabis.
  • Finally, any product made of hemp is fully biodegradable and easily recyclable.

Hemp as a crop is also a standout.  The bio-regional model of agriculture focuses on obtaining high value for the resources of the local land, recycling the waste and end products ad infinitum and thereby creating a “closed circle” of farming and industry.  Hemp is an elegant solution to the crises created by modern agribusiness and conventional cotton production because:

  • Hemp grows well without the use of chemicals:  usually no pesticides or fungicides are used because it has few serious fungus or pest problems – although the degree of immunity to attacking organisms has been greatly exaggerated.  Several insects and fungi specialize exclusively in hemp!  But despite this, the use of pesticides and fungicides are usually unnecessary to get a good yield.    No herbicides are generally used because dense plantings shade out weeds; no defoliants are needed (as they are with machine harvested cotton) because the dried foliage is not a problem for harvesting.
  • Hemp requires less water to thrive than cotton – is actually drought tolerant –  and usually grows well without irrigation.  Globally, 77% of cotton crops are irrigated.
  • Hemp has a fiber yield higher than any other agricultural crop, thereby requiring less land for equal yield:

Average fiber production, in pounds, per acre:

Conventional cotton Organic cotton Flax Wool Hemp
121 – 445 lbs. 80  –  102 lbs. 323 – 465 lbs. 62  lbs. 485 – 809 lbs.

Source: UK-government funded project at University of London, “Demi: design for sustainability” (www.demi.org.uk), © Kate Fletcher, 1999

This yield translates into high biomass, which can be converted into fuel in the form of clean-burning alcohol, or no-sulphur man-made coal.

The most widespread claim for the environmental friendliness of hemp is that it has the potential to save trees that otherwise would be harvested for the production of pulp.  If  hemp reduces the need to harvest trees for building materials or other products, its use as a wood substitute will tend to contribute to preserving biodiversity.  Hemp may also enhance forestry management by responding to short-term fiber demand while trees reach their ideal maturation. In developing countries where fuel wood is becoming increasingly scarce and food security is a concern, the introduction of a dual-purpose crop such as hemp to meet food, shelter, and fuel needs may contribute significantly to preserving biodiversity.

For more on hemp, here are some resources to get you started:

Organizations

Web

Journals

  • Journal of the International Hemp Association. Vol. 1 (1994)–Vol. 6 (1999). (Vols. 1–5 and part of Vol. 6 available online at mojo.calyx.net/~olsen/HEMP/IHA/). Superseded by Journal of Industrial Hemp.
  • Journal of Cannabis Therapeutics. Hawarth Press. Vol. 1 published 2001.
  • Journal of Industrial Hemp. Haworth Press. Vol. 1 to be published 2002.

[1] Kerr, Nancy, PhD, “Fabulous Fibers? Can hemp compete with natural and manufactured fibers?” AgFibe2002 conference, Winnipeg, MB, Nov. 13 – 15, 2002.

[2] Press release, Tilly Endurables 2004; also see http://www.backpackgeartest.org/News/article.php?story=20050210193045692.





What is Sensuede?

17 07 2018

Sensuede is, according to its website, an elegant, supple, high performance textile made with recycled fibers. But Sensuede is not a fabric we’d be excited about selling, and let us tell you why:  Sensuade is just a brand name for a polyester microfiber.  Ultrasuede was the first of its type.  But all microfibers are made in the same way:

Polyester microfibers are spun and cut into short staple lengths, then are bound in a polyurethane base (88% recycled polyester, 12% polyurethane).

  1. Polyester is made from crude oil, and is the terminal product in a chain of very reactive and toxic precursors. Most are carcinogens: all are poisonous.   The manufacturing process requires workers and our environment to be exposed to some or all of the chemicals produced during the manufacturing process. There is no doubt that the manufacture of polyester is an environmental and public health burden that we would be better off without. Polyesters contain many hormone disrupting chemicals that have been more in the news lately.
  2. Polyurethane used in this process is usually made from toluene diisocyante (TDI) which is highly toxic.  It is, in fact, the most toxic plastic known next to PVC.   Polyurethane manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.  From Wikipedia:  No exposure limits have been established by OSHA (Occupational Safety and Health Administration) or ACGIH (American Conference of Governmental Industrial Hygienists). It is not regulated by OSHA for carcinogenicity. Polyurethane polymer is a combustible solid and can be ignited if exposed to an open flame. Decomposition from fire can produce mainly carbon monoxide, and trace nitrogen oxides and hydrogen cyanide.

The production of polyester uses antimony as a catalyst, which has been classified as a carcinogen in the State of California since 1990 and a class 3 carcinogen by the EU.

Sensuade’s claim to being eco is that it takes 84% less energy to use recycled polyester than to use virgin polyester.  That still leaves energy requirements which are higher than most natural fibers:

FIBER energy use in MJ per KG of fiber:
hemp, organic 2
flax 10
hemp, conventional 12
cotton, organic, India 12
cotton, organic, USA 14
Cotton, conventional, USA 55
wool 63
Viscose 100
SENSUADE – (uses 84% less energy than virgin poly) 20
Polyester 125
Nylon 250

What is not mentioned by Sensuade is that polyester production produces a large quantity of CO2 emissions:  the production of polyester generates particulates, CO2, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[1]acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[2]

The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia. Water treatment throughout the production process would be essential for any polyester  product to make a claim to being green.  But Oeko-Tex 100 has no such requirements at all. Oeko-Tex 100 was a decent start when it was first introdcued twenty years ago, but fabric certifications have come a long way since then in recognizing the envirnomental costs and harm in textile production.  Oeko-Tex 1000 is a good standard, but there are very very few mills in the world so certifed.

Also please keep in mind, that if, you choose a synthetic, then you bypass the benefits you’d get from supporting organic agriculture, which may be one of our most potent weapons in fighting climate change, because:

    1. It acts as a carbon sink: new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil. And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
    2. It eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity
    3. It conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
    4. It ensures sustained biodiversity

And remember,   Sensuade is still . . .plastic.   Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount. A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [3]and they found:

    1. Chemicals added to plastics are absorbed by human bodies. Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose: in landfills they release heavy metals, including antimony, and other additives into soil and groundwater. If they are burned for energy, the chemicals are released into the air.

But Sensuade is Oeko Tex 100 certified?  How can that be?

Because Oeko Tex 100 tests the finished fabric only – and only for process chemicals which are normally used in textile production and which may remain residue in the fabric, not having been washed out in the production steps.  Many fabrics made of synthetic fibers can be Oeko Tex 100 certified because the list of chemicals tested for doesn’t include the chemicals found in the fibers.  So the dyes used in Sensuade are benign, but the fibers (polyester and polyurethane) are not.  And Oeko Tex doesn’t require water treatment, which is critically needed to prevent the water borne emissions from polyester and polyurethane production from entering our groundwaters.  And Sensuade doesn’t mention anything about capturing emissions.

Is it safe because of the Oeko Tex certification?  Remember, each time you sit down microscopic particles abrade and fly into the air, so you can breathe them in.  So you’re not eating the fabrics, but your body is porous –  the environment isus.

From our blog post on 9.9.2011:

The Global Recycle Standard (GRS), originated by Control Union and now administered by Textile Exchange (formerly Organic Exchange), is intended to establish independently verified claims as to the amount of recycled content in a yarn, with the important added dimension of prohibiting certain chemicals, requiring water treatment and upholding workers rights, holding the weaver to standards similar to those found in the Global Organic Textile Standard:

  • Companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • All prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • All wastewater must be treated for pH, temperature, COD and BOD before disposal;
  • There is an extensive section related to worker’s rights.

 

[1]  “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[2]Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.

[3]“Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009





What kind of fabric for your new sofa?

11 06 2015

 

We’ve looked at the frame, suspension system and cushioning on a sofa; next up:  fabric.  We consider fabric to be a very important, yet certainly misunderstood, component of furniture.  It can make up 40 – 45% of the price of a sofa.    So we’ll be breaking this topic up into several smaller bite size portions:  after a general discussion of what kind of fabric to choose for your lifestyle,  we’ll look at the embodied energy in your fabric choice (next post), and then finally we’ll take a look at why an organic fabric is better for you (as well as the rest of us).

One thing to remember is that there is much more fabric used in constructing an  upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yards of lining fabric, 15 yards of burlap and 10 yards of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, lightweight cotton doesn’t usually come to mind.  A fabric with densely woven yarns tends to be more durable than a loosely woven fabric.  Often people assume leather is the best choice for a busy family.  We did a post about leather – if you’re at all considering leather, please read this first (https://oecotextiles.wordpress.com/2012/05/22/leather-furniture-what-are-you-buying/ ).    Another choice widely touted is to use Ultrasuede.  Please see our post about this fabric if you’re considering Ultrasuede: https://oecotextiles.wordpress.com/2010/09/08/is-ultrasuede%c2%ae-a-green-fabric/.

Equally important in evaluating durability is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable – no matter how durable it appears on the showroom floor.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round  shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
Low traffic / private spaces 15,000 20,000
High traffic / public spaces 30,000 40,000

According to the Association for Contract Textiles, end use examples of “low traffic” areas where 30,000 WZ results should be appropriate include executive offices, corporate boardrooms, luxury hotel lobbies, suites and guest rooms. Areas of “high traffic” include: single shit corporate offices, waiting rooms, and high traffic hotel lobbies and guest rooms.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

The reason these test results might not be predicative is because there are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.

2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.

3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well… you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.

[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[2]  http://www.globalhemp.com/Archives/Magazines/historic_fiber_remains.html

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.

About these ads





Climate change and the textile industry

15 10 2014

Time sure flies doesn’t it?  I’ve been promising to reiterate the effects the textile industry has on climate change, so I’m re-posting a blog post we published in 2013:

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change. (I only use the term altruistic because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly,like the one in USA Today that explains that wet regions will be wetter, causing flash flooding; dry regions will get drier, resulting in drought. And … a heat wave that used to occur once every 100 years now happens every five years (1)).

Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2] And the U.S. textile industry is small potatoes when compared with some other countries I could mention.

The textile industry is huge, and it is a huge producer of greenhouse gasses (GHG’s). Today’s textile industry is one of the largest sources of greenhouse gasses  on Earth, due to this huge size.[3] In 2008, annual global textile production was estimated at 60 billion kilograms (KG) of fabric. The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of electricity or 132 million metric tons of coal and
  • between 6 – 9 trillion liters of water[4]

Fabrics are the elephant in the room. They’re all around us but no one is thinking about them. We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous: sheets, blankets, sofas, curtains, and of course clothing. Textiles, including clothing, accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]
Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.
How do you evaluate the carbon footprint in any fabric? Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric. Not an easy thing to do! To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

  1. Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn. The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.
  2. Next, add the energy used to weave those yarns into fabric. Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton, or synthetic.[7)

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made):

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields. Synthetic fertilizer use is a major component of the high cost of conventional agriculture: making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.
For synthetics, a crucial fact is that the fibers are made from fossil fuels. Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.
A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:
crop cultivation fiber production TOTAL
polyester USA 0 9.52 9.52
cotton, conventional, USA 4.2 1.7 5.9
hemp, conventional 1.9 2.15 4.05
cotton, organic, India 2 1.8 3.8
cotton, organic, USA 0.9 1.45 2.35

 

The table above only gives results for polyester; other synthetics have more of an impact: acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.
Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers. Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation. In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

 

Embodied Energy used in production of various fibers:
Energy use in MJ per KG of fiber:
flax fibre (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250
SOURCE: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow, http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional benefits:

  • being able to be degraded by micro-organisms and composted (improving soil structure); in this way the fixed CO2 in the fiber will be released and the cycle closed. Synthetics do not decompose: in landfills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned fishing nets in the world’s oceans.
  • sequestering carbon. Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils. Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production, emits fewer greenhouse gases and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques (2009) found that 43% fewer GHGs are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming. When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton. So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time. Best of all is an organic natural fiber.
And next let’s look at #2, the energy needed to weave those yarns into fabric.
There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester: thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels – both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production. In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

#######
(1) http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/
(2) Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html
(3) Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html
(4) Rupp, Jurg, “Ecology and Economy in Textile Finishing”, Textile World, Nov/Dec 2008
(5) Rose, Coral, “CO2 Comes Out of the Closet”, GreenBiz.com, September 24, 2007
(6) U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.
(7) Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint. The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings. We do not take this component into consideration because
. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
. is biodegradeable detergent used?
. Is the washing machine used a new low water machine? Is the water treated by a municipal facility?
. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.
Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome. Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.
(8) Ibid.
(9) “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/
(10) Fletcher, Kate, Sustainable Fashion and Textiles, Earthscan, 2008, Page 13
(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html
(12) Ibid.
(13) Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at
(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL); Organic Farming and Climate Change; Geneva: ITC, 2007.
(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations
(16) “Improving profits with energy-efficiency enhancements”, December 2008, Journal for Asia on Textile and Apparel, http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296





Defining luxury

29 04 2014

The most recent issue of Ecotextile News had an article about “sustainable luxury”[1] and it got me thinking.  The article asked the question whether “luxury” and “sustainability” were opposing concepts.   One would think so.

Although luxury and sustainability both focus on rarity and beauty,  both have durability at the heart of the concept.  Just look at Louis Vuitton, which provides after sale service to any genuine product of theirs, wherever it was bought.   A product  seen as “luxurious” is one of lasting worth and timeless design, which is at the opposite end of the spectrum of the fashion and mass market industry where obsolescence is locked into a product at the design stage.

But I think the concept of luxury has an added dimension today – it is more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends,  the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.

In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

Luxury today is more about the one perfectly plain organic lettuce salad from the farmers market near your home than a rich meal made of food from the other side of the globe. It’s about craftsmanship, art, intimacy, and service.

We want to eliminate the guilt of our throwaway culture. Things we buy should be produced in ways that, at the very least, do no harm, and that either biodegrade or are infinitely recyclable – or they should exhibit the timeless aesthetics and natural qualities that make them heirlooms to be passed down to future generations. This is exactly what we at O Ecotextiles have committed ourselves to providing.

Our designs are classic and therefore timeless, and our choice of natural fabrics respects a time-honored tradition.

By protecting our planet, and the flora and fauna it supports, we are assured of being able to live with linen sheets, silk velvet upholstery and pure hemp draperies – forever.  The fibers are eternal; how we choose to weave and color them varies by designer and is part of the colorful history of design.

We want to make sure the fibers endure.

 Once you start tinkering with the ecosystem it’s not possible to concentrate on one static facet, since we live in an interconnected and self-organizing universe of changing patterns and flowing energy. Everything has an intrinsic pattern which in turn is part of a greater pattern and all of it is in flux. To bring a sense of order out of this chaotic concept, let’s concentrate on water:

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, water is becoming controlled by corporate interests, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.[2] Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.

The textile industry is the #1 industrial polluter of fresh water on the planet. Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand the concept when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.

This is a complex subject and trying to map and analyze it often produces inconsistent and unreliable data. The only sure thing we know is that we have to change – the faster the better.

 We want our customers to depend on us to sell fabrics that do no harm… to them, their families or our world. Our company was founded on that bedrock – each and every fabric has met these standards.

Concurrently, we committed to showing our warts too – it’s complicated and difficult to follow these standards, so we would tell customers if and when we failed at any point and why. We want to empower consumers by providing as much information as they want to absorb.

Given a cursory glance, our fabrics may look like many others on the market. But like Antoine de Saint Exupery said in The Little Prince, “What is essential is often invisible to the eye”. One of our sales reps tells her clients to smell the fabrics! There is no synthetic smell – in fact some smell like new mown hay.  So although you can find other fabrics that may look like ours, when you buy  25 yards of fabric  from O Ecotextiles you’re also buying, at the very least, better health:   your body will not have had to deal with the many chemicals used in processing (which remain in the fabric) – chemicals which have been proven to cause harm (remember Erin Brokovich?).  If you choose a GOTS certified fabric, you also get:

  • Clean air and water:  approximately 500 gallons of chemically-infused effluent was prevented from entering your ecosystem and the troublesome chemicals which evaporate into the air in your homes and offices is eliminated ;
  • A better environment:  soils used to grow the fibers have been renewed rather than depleted, and in the growing of the fibers you’ve conserved water, mitigated climate change and ensured biodiversity.

And – most importantly –  you’re using your purchasing power to put these changes into place!

 

[1] Ravasio, Dr. Pamela, “Sustainable luxury: impossible paradox, or inherent synergy?”, Ecotextile News, February/March 2014

[2] Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007





Fabric and your carbon footprint

3 10 2013

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change.  (I only use the term altruistic  because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly, like the one in USA Today that explains that wet regions will be wetter, causing flash flooding;  dry regions will get drier, resulting in drought. And  …  a heat wave that used to occur once every 100 years now happens every five years (1)).

Bill Schorr

Bill Schorr


Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2]  And the US textile industry is small potatoes when compared with some other countries I could mention.  Last week we explained that a typical “quality” sofa  uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric – in one sofa.

The textile industry is huge, and it is a huge producer of greenhouse gasses.  Today’s textile industry is one of the largest sources of greenhouse gasses (GHG’s) on Earth, due to its huge size.[3] In 2008,  annual global textile production was estimated at  60 billion kilograms (KG) of fabric.  The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of  electricity  or 132 million metric tons of coal and
  • between 6 – 9  trillion liters of water[4]

Fabrics are the elephant in the room.  They’re all around us  but no one is thinking about them.  We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous:  sheets, blankets, sofas, curtains, and of course clothing.  Textiles, including clothing,  accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]

Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.

How do you evaluate the carbon footprint in any fabric?  Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric.   Not an easy thing to do!  To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

(1)  Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn.  The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.

(2) Next, add the energy used to weave those yarns into fabric.  Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton,  or synthetic.[7]

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

For synthetics, a crucial fact is that the fibers are made from fossil fuels.   Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun   fiber:
crop cultivation fiber production TOTAL
polyester USA 0.00 9.52 9.52
cotton, conventional, USA 4.20 1.70 5.90
hemp, conventional 1.90 2.15 4.05
cotton, organic, India 2.00 1.80 3.80
cotton, organic, USA 0.90 1.45 2.35

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

Embodied   Energy used in production of various fibers:
energy use in   MJ per KG of fiber:
flax fibre   (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional  benefits:

  1. being able to be degraded by micro-organisms and composted (improving soil structure); in  this way the fixed CO2 in the fiber will be released and the cycle closed.   Synthetics do not decompose: in landfills they release  heavy metals and other additives into soil and groundwater.       Recycling requires costly separation, while incineration produces  pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned  fishing nets in the world’s oceans.
  2. sequestering  carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.       Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production,
  • emits fewer greenhouse gases
  • and supports organic farming (which has myriad environmental, social and health benefits).

A study published by Innovations Agronomiques (2009) found that 43% less GHG are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims      (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water  (making the soil more friable so rainwater is absorbed better – lessening      irrigation requirements and erosion)
  • ensures sustained  biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric      carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton.   So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time.   Best of all is an organic natural fiber.

And next let’s look at #2, the energy needed to weave those yarns into fabric.

There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:   thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

(1)    http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/

(2)    Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

(3)    Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html

(4)    Rupp, Jurg, “Ecology and Economy in Textile Finishing”,  Textile World,  Nov/Dec 2008

(5)    Rose, Coral, “CO2 Comes Out of the Closet”,  GreenBiz.com, September 24, 2007

(6)     U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.

(7)    Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint.  The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings.  We do not take this component into consideration because

  1. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
  2. is biodegradeable detergent used?
  3. Is the washing machine used a new low water machine?  Is the water treated by a municipal facility?
  4. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.

Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome.  Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.

(8)     Ibid.

(9)    “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

(10)  Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13

(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html

(12)  Ibid.

(13) Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL);    Organic Farming and Climate Change; Geneva: ITC, 2007.

(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

(16)  “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296





What kind of fabric for your new sofa?

26 09 2013

We’ve looked at the frame, suspension system and cushioning on a sofa;  next up:  fabric.  We consider fabric to be a very important, yet certainly misunderstood, component of furniture.  It can make up 40 – 45% of the price of a sofa.    So we’ll be breaking this topic up into several smaller bite size portions:  after a general discussion of what kind of fabric to choose for your lifestyle,  we’ll look at the embodied energy in your fabric choice, and then why an organic fabric is better for you as well as the rest of us.

One thing to remember is that there is much  more fabric used in constructing an  upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind.  A fabric with densely woven yarns tends to be more durable than a loosely woven fabric.  Often people assume leather is the best choice for a busy family.  We did a post about leather – if you’re at all considering leather, please read this first (https://oecotextiles.wordpress.com/2012/05/22/leather-furniture-what-are-you-buying/ ).  Another choice  widely touted is to use Ultrasuede.  Please see our post about this fabric: https://oecotextiles.wordpress.com/2010/09/08/is-ultrasuede%c2%ae-a-green-fabric/.

Equally important in evaluating durability as the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable – no matter how durable it appears on the showroom floor.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.

2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.

3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[2]  http://www.globalhemp.com/Archives/Magazines/historic_fiber_remains.html

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.





Textile chemicals – beginning with the one used the most

16 01 2013

saltLet’s begin our review of chemicals used in textile processing with the one chemical that is used most often and in far greater quantity than any other: salt. That’s right. Common table salt, the kind you probably use every day. But in the quantities used by this industry it becomes a monster – we’ll get to that in a minute.

Salt is used in the dye process. The way the dyestuff bonds to the fibers is very important – and the most permanent, colorfast dyes are the ones that are most tightly attached to the fiber molecules (called reactive dyes). Here’s how salt comes into the picture:

When fabrics made of cellulosic (i.e., cotton, linen, hemp or viscose) are dyed, they’re immersed in water which contains dyes which have been dissolved in the water. The surface of the fabric gets covered in negative ionic charges. The reactive dyes used most often to dye cellulosic fabrics also develop a negative charge, so the fibers actually repel the dye – like two magnets repelling each other. If we try to dye a cellulosic fabric without using salt, the dye molecules just roll off the surface of the fibers and the fabric does not show much color change. So these reactive dyes need the addition of salt to “push” the dyes out of solution and into the cloth by neutralizing the negative charge.

The salt acts like a glue to hold the dye molecules in place, and with the addition of alkali, a certain percentage of the dyestuff (called the “fixation rate”) will permanently grab hold of the fiber and become a part of the fiber molecule rather than remaining as an independent chemical entity. For conventional reactive dyes, the fixation rate is often less than 80%, resulting in waste of dyestuff, and also the need to remove that 20% (which is not fixed) from the fabric.(1) But this is incredibly difficult when the “unreacted” dyes are still “glued” onto the fabric by salt. So vast amounts of water are required to simply dilute the salt concentrations to a point where it no longer acts as glue.

That means the textile effluent contains both dyestuff and salt (lots of salt!) The concentrations of salt in the dye bath can be as high as 100 gm per liter. In the worst cases, equal weights of salt to fabric is used to apply reactive dye (i.e., if dyeing 10 lbs of fabric, you need 10 lbs of salt). Think of the billions of yards of fabric that’s produced each year: In Europe alone, 1 million tons of salt is discharged into waterways each year.(2) In areas where salt is discharged into the ecosystem, it takes a long, long time for affected areas to recover, especially in areas of sparse rainfall – such as Tirupur, India.

Tirupur is one of the world’s centers for clothing production , home of 765 dyeing and bleaching industries. These dyehouses had been dumping untreated effluent into the Noyyal River for years, rendering the water unsuitable or irrigation – or drinking. In 2005, the government shut down 571 dyehouses because of the effluent being discharged into the Noyyal. The mill owners said they simply couldn’t afford to put pollution measures into place. The industry is too important to India to keep the mills closed for long, so the government banned the discharge of salt and asked for an advance from the mills before allowing them to re-open. But … on February 4, 2011, the Madras high court ordered 700 dye plants to be shut down because of the damage the effluent was doing to the local environment. Sigh. (Read more about Tirupur here.)

Unfortunately, the salt in textile effluent is not made harmless by treatment plants and can pass straight through to our rivers even if it has been treated. The salt expelled into waterways (untreated) coupled with salt from roadway de-icing has led to the increase in salt in our waters in the United States – salt levels in Lake George have nearly tripled since 1980,(3) which mirrors many other parts of the U.S. Highest levels occur during the annual ice-out and snowmelt where high salt concentrations in streams flowing into Lake George have been linked to die offs of fish, and is known as “spring shock”. A study in Toronto found that half the wells tested exceeded the limit of 20mg of salt per liter of water, 20% exceeded 100mg/liter and 6% exceeded 250mg/liter. (4) It becomes a public health concern for people who drink this water, because it can exacerbate high blood pressure and hypertension in humans. This increase in our drinking water can also cause problems with water balance in the human body. Salt in water is also responsible for the release of mercury into the water system.

Recycling the salt used during the dye process is possible, and this has been used by many of the dyers in Tirupur, and elsewhere, who operate zero discharge facilities. The effluent is cleaned and then the salt is recovered using an energy intensive process to evaporate the water and leave the solid, re-useable salt. This sounds like a good idea – it reduces the pollution levels – but the carbon footprint goes through the roof, so salt recovery isn’t necessarily the best option. In fact, in some areas of the world where water is plentiful and the salt can be diluted in the rivers adequately, it may be better to simply discharge salt than to recover it.

There are some new “low salt” dyes that require only half the amount of “glue”: Ciba Specialty Chemicals, a Swiss manufacturer of textile dyes (now part of BASF) produces a dyestuff which requires less salt. As the company brochure puts it: “Textile companies using the new dyes are able to reduce their costs for salt by up to 2 percent of revenues, a significant drop in an industry with razor-thin profit margins” but these dyes are not widely used because they’re expensive – and manufacturers are following our lead in demanding ever cheaper costs. There are also new low-liquor-ratio (LLR) jet dyeing machines – but that doesn’t mean zero salt, so there is still salt infused effluent which must be treated. And these new ultra low liquor ratio machines are very expensive.

The best option is to avoid salt altogether. Though the salt itself is not expensive, using less salt delivers substantial benefits to the mill because the fabric requires less rinsing in hot water (and hence reductions in energy and water) as well as cost savings of up to 10% of the total process costs.(5) So what about using no salt at all?

There are two ways to dye fabrics without salt: “continuous dyeing” and “cold pad batch dyeing”. Continuous dyeing means that the dye is applied with alkali to activate the dye fixation; the fabric is then steamed for a few minutes to completely fix the dyestuff. Cold pad batch dyeing applies the dyestuff with alkali and the fabric is simply left at room temperature for 24 hours to fix the dye.

Both of these methods don’t use salt, so the unfixed dye chemicals are easier to remove because there is no salt acting as the “glue” – and therefore less water is used. An additional benefit is having a lower salt content in the effluent. So why don’t companies use this method? Continuous dyeing requires investment in big, expensive machines that only make environmental sense if they can be filled with large orders – because they use lots of energy even during downtime.

Cold pad batch machines are relatively inexpensive to buy and run, they are highly productive and can be used for a wide range of fabrics. Yet only 3% of knitted cotton fabric is dyed in Asia using cold pad batch machines.
Why on earth don’t these mills use cold pad batch dyeing? I would love to hear from any mill owners who might let us know more about the economics of dyeing operations.

(1) http://lifestylemonitor.cottoninc.com/Supply-Chain-Insights/Sustainable-Dyeing-Solutions-02-10/
(2) Dyeing for a change: Current Conventions and New Futures in the Textile Color Industry (2006, July) http://www.betterthinking.co.uk
(3) http://www.fundforlakegeorge.org/assets/pdf_files/Fact%20Sheet%2011%20Salt.pdf
(4) http://www.digitaltermpapers.com/a2206.htm
(5) “A Practical Guide For Responsible Sourcing”, The National Resources Defense Council (NRDC), February 2010.