Nichlos Kristof gets it!

24 04 2018

Nicholas Kristof had an editorial in the New York Times on February 25, 2018. This is a reproduction of his editorial:

 Our bodies are full of poisons from products we use every day. I know – I’ve had my urine tested for them. Surprised? So was I when I had my urine tested for these chemicals. (A urine or blood test is needed to confirm whether you have been exposed.)

Let me stress that mine should have been clean.

Almost a decade ago, I was shaken by my reporting! on a class of toxic chemicals called endocrine disruptors. They are linked to cancer and obesity and also seemed to feminize males, so that male alligators developed stunted genitalia and male smallmouth bass produced eggs.

In humans, endocrine disruptors were linked to two-headed sperm and declining sperm counts. They also were blamed for an increase in undescended testicles and in a birth defect called hypospadias, in which the urethra exits the side or base of the penis rather than the tip. Believe me, the scariest horror stories are found in urology journals. If you’re a man, you don’t wring your hands as you read; you clutch your crotch.

So I’ve tried for years now to limit my exposure to endocrine-disrupting chemicals. Following the advice of the President’s Cancer Panel, I eat organic to reduce exposure to endocrine disruptors in pesticides. I try to store leftover meals in glass containers, not plastic. I avoid handling A.T.M. and gas station receipts. I try to avoid flame-retardant furniture.

Those are all common sources of toxic endocrine disruptors, so I figured that my urine would test pristine. Pure as a mountain creek.

                        Here are 12 chemicals found in everyday products:

Chemical Details Found in products like:
Antimicrobials Can interfere with thyroid and other hormones Colgate Total toothpaste, soap, deodorant
Benzophenones Can mimic natural hormones like estrogen Sunscreen, lotions, lip balm
Bisphenols Can mimic natural hormones like estrogen Protective lining for canned goods, hard plastic water bottles, thermal paper register receipts.
1,4-Dichlorobenzene Can affect thyroid hormones and my increase risk of cancer Mothballs, toilet deodorizers
Parabens Can mimic natural hormones like estrogen Cosmetics, personal care products like shampoos, hair gels, lotions
Phthalates Can disrupt male reproductive development and fertility

 

Vinyl shower curtains, fast food, nail polish, perfume/cologne
Fragrance Chemicals Can exacerbate asthma symptoms and disrupt natural hormones. Perfume/cologne, cleaning products, dryer sheets, air fresheners
Per- and polyfluoroalkyl substances (PFAS) Can affect hormones, immune response in children, and may increase risk of cancer. Scotchgard and other stain-resistant treatments, fast-food wrappers.
Flame Retardants Can affect neurodevelopment and hormone levels, and may increase risk of cancer Nail polish, foam cushioning in furniture, rigid foam insulation.

The Silent Spring Institute near Boston, which studies chemical safety, offers a “Detox Me Action Kit” to help consumers determine what harmful substances are in their bodies. Following instructions, I froze two urine samples (warning my wife and kids that day to be careful what food they grabbed from the freezer) and Fed-Exed them off for analysis.

By the way, the testing is for women, too. Men may wince as they read about miniaturized alligator penises, but endocrine disruptors have also been linked to breast cancer and gynecological cancers. The American College of Obstetricians and Gynecologists warns women that endocrine disruptors can also cause miscarriages, fetal defects and much more.[1]

As I waited for the lab results, I continued to follow the latest research. One researcher sent a bizarre video of a mouse exposed to a common endocrine disruptor doing back flips nonstop, as a kind of nervous tic.

Finally, I heard back from Silent Spring Institute. I figured this was a report card I had aced. I avoid all that harmful stuff. In my columns, I had advised readers how to avoid it.

Sure enough, I had a low level of BPA, best known because plastic bottles now often boast “BPA Free.” But even a diligent student like me failed the test. Badly. I had high levels of a BPA substitute called BPF. Ruthann Rudel, a toxicologist who is the head of research at Silent Spring, explained that companies were switching to BPF even though it may actually be yet more harmful (it takes longer for the body to break it down). BPF is similar to that substance that made those mice do back flips.

“These types of regrettable substitutions — when companies remove a chemical that has a widely known bad reputation and substitute a little-known bad actor in its place — are all too common,” Rudel told me. “Sometimes we environmental scientists think we are playing a big game of whack-a-mole with the chemical companies.”

Sigh. I thought I was being virtuous by avoiding plastics with BPA, but I may have been causing my body even more damage.

My urine had an average level of an endocrine disruptor called triclosan, possibly from soap or toothpaste. Like most people, I also had chlorinated phenols (perhaps from mothballs in my closet).

I had a high level of a flame retardant called triphenyl phosphate, possibly from a floor finish, which may be “neurotoxic.” Hmm. Whenever you see flaws in my columns, that’s just my neurotoxins at work.

                            My lab results: high levels of FOUR chemicals were found

CHEMICAL DETAILS
1,4- DICHLOROBENZENE Can affect thyroid hormones and may increase risk of cancer
ANTIMICROBIALS Can interfere with thyroid and other hormones
BISPHENOLS Can mimic natural hormones like estrogen
FLAME RETARDANTS Can affect neurodevelopment and hormone levels, and may increase risk of cancer
BENZOPHENONES Can mimic natural hormones like estrogen
PARABENS Can mimic natural hormones like estrogen

Notes: Benzophenones and parabens were also found, but in lower levels than in most Americans. Tests for phthalates and fragrance chemicals were not included.

Will these endocrine disruptors give me cancer? Make me obese? Make my genitals fall off? Nobody really knows. At least I haven’t started doing random back flips yet.

The steps I took did help, and I recommend that others consult consumer guides such as at ewg.org to reduce their exposures to toxic chemicals. Likewise, if I had downloaded the Detox Me smartphone app, I would have known to get rid of those mothballs, along with air fresheners and scented candles. (Science lesson: A less fragrant house means cleaner pee.)

Yet my takeaway is also that chemical industry lobbyists have rigged the system so that we consumers just can’t protect ourselves adequately.

“You should not have to be a Ph.D toxicologist to be safe from so many of the chemicals in use,” Dr. Richard Jackson of U.C.L.A. told me. “So much of what we are exposed to is poorly tested and even less regulated.”

The Trump administration has magnified the problem by relaxing regulation of substances like chlorpyrifos, Dow Chemical’s nerve gas pesticide. The swamp has won.

So the saddest lesson is that even if you understand the peril and try to protect yourself and your family — as I strongly suggest you do — your body may still be tainted. The chemical companies spend tens of millions of dollars lobbying and have gotten the lightest regulation that money can buy.

They are running the show, and we consumers are their lab mice.

[1] “Exposure to Toxic Environmental Agents”, The American College of Obstetricians and Gynecologists, University of California San Francisco Program on Reproductive Health and the Environment.

Advertisements




Politically motivated

3 01 2018

Happy 2018!  I wish you all the best in the coming year.

I have tried to keep politics out of our blog posts, but I couldn’t resist Nicholas Kristof recent op-ed piece in the New York Times of October 28, 2017.  It strikes a cord, since we founded Two Sisters Ecotextiles and O Ecotextiles to give people options for safe fabrics.  We shouldn’t have to worry about what fabrics are doing to you! But neither should we worry about what Kristof calls Dow Chemical Company’s Nerve Gas Pesticide.

By Nicholas Kristof 10.28.17:

A pesticide, which belongs to a class of chemicals developed as a nerve gas made by Nazi Germany, is now found in food, air and drinking water. Human and animal studies show that it damages the brain and reduces I.Q.s while causing tremors among children. It has also been linked to lung cancer and Parkinson’s disease in adults.  This chemical, chlorpyrifos,  is hard to pronounce, so let’s just call it Dow Chemical Company’s Nerve Gas Pesticide. Even if you haven’t heard of it, it may be inside you: One 2012 study[1] found that it was in the umbilical cord blood of 87 percent of newborn babies tested.

And now the Trump administration is embracing it, overturning a planned ban that had been in the works for many years.

The Environmental Protection Agency actually banned Dow’s Nerve Gas Pesticide for most indoor residential use 17 years ago — so it’s no longer found in the Raid you spray at cockroaches (it’s very effective, which is why it’s so widely used; then again, don’t suggest this to Dow, but sarin nerve gas might be even more effective!). The E.P.A. was preparing to ban it for agricultural and outdoor use this spring, but then the Trump administration rejected the ban on March 29, 2017.[2]

That was a triumph for Dow, but the decision stirred outrage among public health experts. They noted that Dow had donated $1 million for President Trump’s inauguration.

So Dow’s Nerve Gas Pesticide will still be used on golf courses, road medians and crops that end up on our plate. Kids are told to eat fruits and vegetables, but E.P.A. scientists found levels of this pesticide on such foods at up to 140 times the limits deemed safe.[3]

“This was a chemical developed to attack the nervous system,” notes Virginia Rauh, a Columbia professor who has conducted groundbreaking research on it. “It should not be a surprise that it’s not good for people.”

Remember the brain-damaging lead that was ignored in drinking water in Flint, Michigan? What’s happening under the Trump administration is a nationwide echo of what was permitted in Flint: Officials are turning a blind eye to the spread of a number of toxic substances, including those linked to cancer and brain damage.

“We are all Flint,” Professor Rauh says. “We will look back on it as something shameful.”

Here’s the big picture: The $800 billion chemical industry lavishes money on politicians and lobbies its way out of effective regulation. This has always been a problem, but now the Trump administration has gone so far as to choose chemical industry lobbyists to oversee environmental protections. The American Academy of Pediatrics protested the administration’s decision on the nerve gas pesticide, but officials sided with industry over doctors. The swamp won.

The chemical industry lobby, the American Chemistry Council, is today’s version of Big Tobacco. One vignette: Chemical companies secretly set up a now-defunct front organization called Citizens for Fire Safey that purported to be a coalition of firefighters, doctors and others alarmed about house fires. The group called for requiring flame retardant chemicals in couches, to save lives, of course. A photo was posted on the Facebook page of Citizens for Fire Safety. Despite its name, the organization represented chemical companies, not concerned members of the public.

In fact, this was an industry hoax, part of a grand strategy to increase sales of flame retardants — whose principal effect seems to be to cause cancer. The American Chemistry Council was caught lying about its involvement in this hoax.

Yet these days, Trump is handing over the keys of our regulatory apparatus to the council and its industry allies. An excellent New York Times article by Eric Lipton (click here) noted that to oversee toxic chemicals, Trump appointed a council veteran along with toxicologist with a history of taking council money to defend carcinogens. In effect, Trump appointed two foxes to be Special Assistant for Guarding the Henhouse.

Some day we will look back and wonder: What were we thinking?! I’ve written about the evidence that toxic chemicals are lowering men’s sperm counts[4], and new research suggests by extrapolation that by 2060[5], a majority of American and European men could even be infertile. These days we spew fewer toxins into our air and rivers, and instead we dump poisons directly into our own bodies.

A Dow spokeswoman, Rachelle Schikorra, told me that “Dow stands by the safety of chlorpyrifos”.   Given Dow’s confidence, I suggest that the company spray it daily in its executive dining rooms.

Look, it’s easy to get diverted by the daily White House fireworks. But long after the quotidian craziness is forgotten, Americans will be caring for victims of the chemical industry’s takeover of safety regulation.

Democrats sometimes gloat that Trump hasn’t managed to pass significant legislation so far, which is true. But he has been tragically effective at dismantling environmental and health regulations — so that Trump’s most enduring legacy may be cancer, infertility and diminished I.Q.s for decades to come.

[1] Huen, et al; “Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community”, Environ Res., 2012 Aug; 117-8-16.

[2] Scott Pruitt, head of the EPA, said the agency needed to study the science more, and the matter will not likely be revisited until 2022.

[3] According to EarthJustice, there is no safe level of chlorpyrifos in drinking water; pesticide drift reaches unsafe levels at 300 feet from the field’s edge; chlorpyrifos is found at unsafe levels in the air at schools, homes and communities in agricultural areas.

[4] Kristof, Nicholas, “Are Your Sperm in Trouble?, New York Times, March 11, 2017

[5] Sifferlin, Alexandra; “Men’s Sperm Counts are Down Worldwide: Study”, Time, 7.25.17





Tips on how to avoid chemicals

25 10 2017

We are always being asked about how to avoid chemicals which can harm you, so we thought it would be good to put together a list of how to go about it. Considering all the potential sources of toxic chemicals, it’s virtually impossible to avoid all of them. However, you CAN limit your exposure by keeping a number of key principles in mind.

  • Eat a diet focused on locally grown, fresh, and ideally organic whole foods. Processed and packaged foods are a common source of chemicals such as BPA and phthalates. Wash fresh produce well, especially if it’s not organically grown.
  • Choose grass-pastured, sustainably raised meats and dairy to reduce your exposure to hormones, pesticides, and fertilizers. Avoid milk and other dairy products that contain the genetically engineered recombinant bovine growth hormone (rBGH or rBST).
  • Rather than eating conventional or farm-raised fish, which are often heavily contaminated with PCBs and mercury, supplement with a high-quality krill oil, or eat fish that is wild-caught and lab tested for purity, such as wild caught Alaskan salmon.
  • Buy products that come in glass bottles rather than plastic or cans, as chemicals can leach out of plastics (and plastic can linings), into the contents; be aware that even “BPA-free” plastics typically leach other endocrine-disrupting chemicals that are just as bad for you as BPA.
  • Store your food and beverages in glass, rather than plastic, and avoid using plastic wrap.
  • Use glass baby bottles.
  • Replace your non-stick pots and pans with ceramic or glass cookware.
  • Filter your tap water for both drinking AND bathing. If you can only afford to do one, filtering your bathing water may be more important, as your skin absorbs contaminants. To remove the endocrine disrupting herbicide Atrazine, make sure your filter is certified to remove it. According to the EWG, perchlorate can be filtered out using a reverse osmosis filter.
  • Look for products made by companies that are Earth-friendly, animal-friendly, sustainable, certified organic, and GMO-free. This applies to everything from food and personal care products to building materials, carpeting, paint, baby items, furniture, mattresses, and others.
  • Use a vacuum cleaner with a HEPA filter to remove contaminated house dust. This is one of the major routes of exposure to flame retardant chemicals.
  • When buying new products such as furniture, mattresses, or carpet padding, consider buying flame retardant free varieties, containing naturally less flammable materials, such as leather, wool, cotton, silk, and Kevlar.
  • Avoid stain- and water-resistant clothing, furniture, and carpets to avoid perfluorinated chemicals (PFCs).
  • Make sure your baby’s toys are BPA-free, such as pacifiers, teething rings and anything your child may be prone to suck or chew on — even books, which are often plasticized. It’s advisable to avoid all plastic, especially flexible varieties.
  • Use natural cleaning products or make your own. Avoid those containing 2-butoxyethanol (EGBE) and methoxydiglycol (DEGME) — two toxic glycol ethers that can compromise your fertility and cause fetal harm.
  • Switch over to organic toiletries, including shampoo, toothpaste, antiperspirants, and cosmetics. EWG’s Skin Deep (click here) database can help you find personal care products that are free of phthalates and other potentially dangerous chemicals.
  • Replace your vinyl shower curtain with a fabric one or glass doors.
  • Replace feminine hygiene products (tampons and sanitary pads) with safer alternatives.
  • Look for fragrance-free products. One artificial fragrance can contain hundreds — even thousands — of potentially toxic chemicals. Avoid fabric softeners  and dryer sheets, which contain a mishmash of synthetic chemicals and fragrances.

 

 





Microplastics found in tap water

21 09 2017

The Guardian, in early September 2017, released a report that microplastic contamination has been found in tap water in countries around the world. What this means for the seven billion people on earth, no one yet knows. All the experts can agree on is that, given the warning signs being given by life in the oceans, the need to find out is urgent.

Scores of tap water samples from more than a dozen nations were analysed by scientists for an investigation by Orb Media .[1] Overall, 83% of the samples were contaminated with plastic fibres. Bottled water may not provide a microplastic-free alternative to tapwater, as the as it was also found in a few samples of commercial bottled water tested in the United States for Orb.

The US had the highest contamination rate, at 94%, with plastic fibres found in tap water sampled at sites including Congress buildings, the US Environmental Protection Agency’s headquarters, and Trump Tower in New York. Lebanon and India had the next highest rates.

Why should you care? Microplastics have been shown to absorb toxic chemicals linked to cancer and other illnesses, and then release them when consumed by fish and mammals. If fibers are in your water, experts say they’re surely in your food as well – baby formula, pasta, soups and sauces whether from the kitchen or the grocery. It gets worse. Plastic is all but indestructible, meaning plastic waste doesn’t biodegrade; rather it only breaks down into smaller pieces of itself, even down to particles in nanometer scale. Studies show that particles of that size can migrate through the intestinal wall and travel to the lymph nodes and other bodily organs.

The new analyses indicate the ubiquitous extent of  microplastic contamination in the global environment. Previous work has been largely focused on plastic pollution in the oceans, which suggests people are eating microplastics via contaminated seafood. But the wholesale pollution of the land was hidden. Tap water is gathered from hills, rivers, lakes and wells, sampling the environment as it goes. It turns out that tiny fibres of plastic are everywhere.

Orb Media

“We have enough data from looking at wildlife, and the impacts that it’s having on wildlife, to be concerned,” said Dr Sherri Mason, a microplastic expert at the State University of New York in Fredonia, who supervised the analyses for Orb. “If it’s impacting [wildlife], then how do we think that it’s not going to somehow impact us?”

Plastics often contain a wide range of chemicals to change their properties or color and many are toxic or are hormone disruptors. Plastics can attract other pollutants too, including dioxins, metals and some pesticides. Microplastics have also been shown to attract microbial pathogens. Research on wild animals shows conditions in animal guts are also known to enhance the release of pollutants from plastics. “Further,” as the review puts is, “there is evidence that particles may even cross the gut wall and be translocated to other body tissues, with unknown consequences”. Prof Richard Thompson, at Plymouth University, UK, told Orb: “It became clear very early on that the plastic would release those chemicals and that actually, the conditions in the gut would facilitate really quite rapid release.” His research has shown microplastics are found in a third of fish caught in the UK.

This planktonic arrow worm, Sagitta setosa, has eaten a blue plastic fibre about 3mm long. Plankton support the entire marine food chain. Photograph: Richard Kirby/Courtesy of Orb Media

Does any of this affect people? The only land animals in which the consumption of microplastic has been closely studied are two species of earthworm and a nematode.[2]

The scale of global microplastic contamination is only starting to become clear, with studies in Germany finding fibers in all of 24 beer brands tested[3] , as well as in honey and sugar .[4] A study revealed a rain of microplastics falling on Paris from the air, dumping between 3 and 10 tons a year on the city.[5] The same team found microplastics in an apartment and hotel room. “We really think that the lakes [and other water bodies] can be contaminated by cumulative atmospheric inputs,” said Johnny Gasperi, at the University Paris-Est Créteil, who did the Paris studies. “What we observed in Paris tends to demonstrate that a huge amount of fibres are present in atmospheric fallout.”

This research led Frank Kelly, professor of environmental health at King’s College London, to tell a UK parliamentary inquiry in 2016: “If we breathe them in they could potentially deliver chemicals to the lower parts of our lungs and maybe even across into our circulation.” Having seen the Orb data, Kelly told the Guardian that research is urgently needed to determine whether ingesting plastic particles is a health risk.[6]

Another huge unanswered question is how microplastics get into our water and food. A report from the UK’s Chartered Institution of Water and Environmental Management[7] says the biggest proportion are fibers shed by synthetic textiles and tire dust from roads, with more from the breakdown of waste plastics. It suggests the plastic being dumped on land in Europe alone each year is between four and 23 times the amount dumped into all the world’s oceans.

A lot of the microplastic debris is washed into wastewater treatment plants, where the filtering process does capture many of the plastic fragments. But about half the resulting sludge is ploughed back on to farmland across Europe and the US, according to recent research published in the Journal Environmental Science & Technology[8]. That study estimates that up to 430,000 tons of microplastics could be being added to European fields each year, and 300,000 tons in North America. “It is striking that transfers of microplastics – and the hazardous substances bound to them – from urban wastewater to farmland has not previously been considered by scientists and regulators,” the scientists concluded. “This calls for urgent investigation if we are to safeguard food production,” they say in a related publication.

Plastic fibres may also be flushed into water systems, with a recent study finding that each cycle of a washing machine could release 700,000 fibers into the environment. Tumble dryers are another potential source, with almost 80% of US households having dryers that usually vent to the open air. Rains could also sweep up microplastic pollution, which could explain why the household wells used in Indonesia were found to be contaminated.

A magnified image of clothing microfibres from washing machine effluent. One study found that a fleece jacket can shed as many as 250,000 fibres per wash. Photograph: Courtesy of Rozalia Project

In Beirut, Lebanon, the water supply comes from natural springs but 94% of the samples were contaminated. “This research only scratches the surface, but it seems to be a very itchy one,” said Hussam Hawwa, at the environmental consultancy Difaf,  which collected samples for Orb.

Like so many environmental problems – climate change, pesticides, air pollution – the impacts only become clear years after damage has been done. If we are lucky, the plastic planet we have created will not turn out to be too toxic to life. If not, cleaning it up will be a mighty task. Dealing properly with all waste plastic will be tricky: stopping the unintentional loss of microplastics from clothes and roads even more so.

But above all we need to know if we are all drinking, eating and breathing microplastic every day and what that is doing to us, and we need to know urgently.

[1] https://orbmedia.org/stories/Invisibles_plastics

[2] Carrington, Damian, “We are living on a plastic planet. What does it mean for our health?”, The Guardian, https://www.theguardian.com/environment/2017/sep/06/we-are-living-on-a-plastic-planet-what-does-it-mean-for-our-health

[3] Liebezeit, Gerd; “Synthetic particles as contaminants in German beers”, Journal of Food Additives & Contaminants: Part A, Vol 31, 2014, Issue 9

[4] Liebezeit, Gerd; “Non-pollen particulates in honey and sugar”, Journal of Food Additives & Contaminants: Part A, Vol. 30, 2013, Issue 12

[5] Dris, Rachid, et al., “Microplastic contamination in an urban area: case of greater Paris”, Society of Environmental Toxicology and Chemistry, 2015, https://hal-enpc.archives-ouvertes.fr/hal-01150549v1

[6] Carrington, Damian, “People may be breathing in microplastics, health expert warns”, The Guardian https://www.theguardian.com/environment/2016/may/09/people-may-be-breathing-in-microplastics-health-expert-warns

[7] http://www.ciwem.org/wp-content/uploads/2017/09/Addicted-to-plastic-microplastic-pollution-and-prevention.pdf

[8] Nizzetto, Luca; Futter, Martyn and Langaas, Sindre; “Are agricultural soils dumps for microplastics of urban origin?”; Journal of Envornmental Science & Technology, Sept. 29, 2016, 50 (20), pp 10777-10779





Not Michael Pollan’s Food Rules

26 07 2017

One of the presenters at the 2011 Living Building Challenge (whose name I’ve been trying to find, but cannot – so apologies to the presenter who remains unnamed), inspired by writer Michael Pollan’s Food Rules, shared a list of ways to choose products that remove the worst of the chemical contamination that plagues many products. These rules apply to all products, including fabrics:

  • If it is cheap, it probably has hidden costs.
  • If it starts as a toxic input (like ethylene glycol in the manufacture of polyester), you probably don’t want it in your house or office.
  • Use materials made from substances you can imagine in their raw or natural state.
  • Use carbohydrate-based materials (i.e., natural fibers) when you can.
  • Just because almost anything can kill you doesn’t mean fabrics should.
  • Pay more, use less.
  • Consult your nose – if it stinks, don’t use it.
  • If they can’t tell you what’s in it, you probably don’t want to live with it. (Note: this is not just the fibers used to weave the fabric – did the processing use specific chemicals, like heavy metals in the dyestuff, or are there any finishes on the fabric?)
  • Avoid materials that are pretending to be something they are not (like polyester mimicking linen).
  • Question materials that make health claims.
  • Regard space-age materials with skepticism.

 





Why do we offer safe fabrics?

3 10 2016

Why do we say we want to change the textile industry?  Why do we say we want to produce fabrics in ways that are non-toxic, ethical and sustainable?  What could be so bad about the fabrics we live with?

The textile industry is enormous, and because of its size its impacts are profound.  It uses a lot of three ingredients:

  • Water
  • Chemicals
  • Energy

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, corporate interests are controlling water, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.(1) Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN. Our global water consumption rose six fold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, and bleaching use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used before moving on to the next step.  The water is usually returned to our ecosystem without treatment – meaning that the wastewater, which is returned to our streams, contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.  The textile industry is the #1 industrial polluter of fresh water on the planet – the 9 trillion liters of water used annually in textile processing is usually expelled into our rivers without treatment and is a major source of groundwater pollution.  Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.  Just Google “Greenpeace and the textile industry” to find out what Greenpeace is doing to make people aware of this issue.

Over 8,000 chemicals are used in textile processing, some so hazardous that OSHA requires textile scraps be handled as hazardous waste.   The final product is, by weight, about 23% synthetic chemicals – often the same chemicals that are outlawed in other products.  The following is by no means an all-inclusive list of these chemicals:

  • Alkylphenolethoxylates (APEOs), which are endocrine disruptors;
    • o Endocrine disruptors are a wide range of chemicals which interfere with the body’s endocrine system to produce adverse developmental, reproductive, neurological and immune effects in both humans and wildlife; exposure us suspected to be associated with altered reproductive function in both males and females, increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children.(2)
  • Pentachlorophenols (PCP)
    • o Long-term exposure to low levels can cause damage to the liver, kidneys, blood, and nervous system. Studies in animals also suggest that the endocrine system and immune system can also be damaged following long-term exposure to low levels of pentachlorophenol. All of these effects get worse as the level of exposure increases.(3)
  • Toluene and other aromatic amines
    • carcinogens (4)
  • Dichloromethane (DCM)
    • Exposure leads to decreased motor activity, impaired memory and other neurobehavioral deficits; brain and liver cancer.(5)
  • Formaldehyde
    • The National Toxicology Program named formaldehyde as a known human carcinogen in its 12th Report on Carcinogens.(6)
  • Phthalates –
    • Associated with a range of effects from liver and kidney diseases to developmental and reproductive effects, reduced fetal weight.(7)
  • Polybrominated diphenyl ethers (PBDE’s)
    • A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, decreased sperm count, fetal malformations and, possibly, cancer.(8)
  • Perfluorooctane sulfonates (PFOS)
    • To date, associations have been found between PFOS or PFOA levels in the general population and reduced female fertility and sperm quality, reduced birth weight, attention deficit hyperactivity disorder (ADHD), increased total and non-HDL (bad) cholesterol levels, and changes in thyroid hormone levels.(9)
  • Heavy metals – cadmium, lead, antimony, mercury among others
    • Lead is a neurotoxin (affects the brain and cognitive development) and affects the reproductive system; mercury is a neurotoxin and possibly carcinogenic; cadmium damages the kidneys, bones and the International Agency for Research on Cancer has classified it as a human carcinogen; exposure to antimony can cause reproductive disorders and chromosome damage.

The textile industry uses huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.  For example, steam used in the textile manufacturing process is often generated in inefficient and polluting coal-fired boilers.  Based on estimated annual global textile production of 60 billion kilograms (KG) of fabric, the estimated energy needed to produce that fabric boggles the mind:  1,074 billion KWh of electricity (or 132 million metric tons of coal).  It takes 3886 MJ of energy to produce 25 yards of nylon fabric (about the amount needed to cover one sofa).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(10)

Today’s textile industry is also one of the largest sources of greenhouse gasses on the planet: in the USA alone, it accounts for 5% of the country’s CO2 production annually; China’s textile sector alone would rank as the 24th– largest country in the world.(11)

We succeeded in producing the world’s first collection of organic fabrics that were gorgeous and green – and safe.    In 2007, those fabrics won “Best Merchandise” at Decorex (www.decorex.com).    In 2008, our collection was named one of the Top Green Products of 2008 by BuiltGreen/Environmental Building News. As BuiltGreen/EBN takes no advertising dollars, their extensive research is prized by the green building industry (www.buildinggreen.com).

We are a tiny company with an oversized mission.  We are challenged to be a triple bottom line company, and we want to make an outsized difference through education for change  – so that a sufficiently large number of consumers will know which questions to ask that will force change in an industry.  We believe that a sufficiently large number of people will respond to our message to force profound positive change: by demanding safe fabric, produced safely, our environment and our health will be improved.

The issues that distinguish us from other fabric distributors, in addition to offering fabrics whose green pedigree is second to none:

    1. We manage each step of the production process from fiber to finished fabric, unlike other companies, which buy mill product and choose only the color palette of the production run.    Those production process steps include fiber preparation, spinning, weaving, dyeing, printing and finishing; with many sub-steps such as sizing and de-sizing, bleaching, slashing, etc.
    2. We educate consumers and designers on the issues that are important to them – and to all of us. Our blog on the topic of sustainability in the textile industry has grown from about 2 hits a day to 2,000, and is our largest source of new customers.
    3. We are completely transparent in all aspects of our production and products.    We want our brand to be known not only as the “the greenest”, but for honesty and authenticity in all claims.  This alignment between our values, our claims and our products fuels our passion for the business.
    4. We are the only collection we know of which sells only “safe” fabrics.

We serve multiple communities, but we see ourselves as being especially important to two communities:  those who work to produce our fabric and those who use it, especially children and their parents.

    • By insisting on the use of safe chemicals exclusively, we improve the working conditions for textile workers.  And by insisting on water treatment, we mitigate the effects of even benign chemicals on the environment – and the workers’ homes and agricultural land.  Even salt, used in copious amounts in textile processing, will ruin farmland and destroy local flora and fauna if not neutralized before being returned to the local waters.
    • For those who use our fabric, chemicals retained in the finished fibers do not add to our “body burden “, which is especially important for children, part of our second special community.  A finished fabric is, by weight, approximately 23% synthetic chemicals. Those chemicals are not benign.  Textile processing routinely uses chemicals with known toxic profiles such as lead, mercury, formaldehyde, arsenic and benzene – and many other chemicals, many of which have never been tested for safety.

Another thing we’d like you to know about this business is the increasing number of people who contact us who have been harmed by fabric (of all things!) because we represent what they believe is an honest attempt at throwing light on the subject of fabric processing.   Many are individuals who suffer from what is now being called “Idiopathic Environmental Intolerance” or IEI (formerly called Multiple Chemical Sensitivity), who are looking for safe fabrics.  We’ve also been contacted on behalf of groups, for example,   flight attendants, who were given new uniforms in 2011, which caused allergic reactions in a large number of union members.

These incidences of fabric-induced reactions are on the rise.   As we become more aware of the factors that influence our health, such as we’re seeing currently with increased awareness of the effects of interior air quality, designers and others will begin to see their way to specifying “safe” fabrics  just as their code of ethics demands.(12)  We feel certain that the trajectory for such an important consumer product as fabric, which surrounds us most of every hour of the day, will mimic that of organic food.

We say our fabrics are luxurious – because luxury has become more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends, the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.  In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

 

(1) Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

(2)World Health Organization, http://www.who.int/ceh/risks/cehemerging2/en/

(3)Agency for Toxic Substances & Disease Registry 2001, https://www.atsdr.cdc.gov/phs/phs.asp?id=400&tid=70

(4)Centers for Disease Control and Prevention, Publication # 90-101; https://www.cdc.gov/niosh/docs/90-101/

(5)Cooper GS, Scott CS, Bale AS. 2011. Insights from epidemiology into dichloromethane and cancer risk. Int J Environ Res Public Health 8:3380–3398.

(6)National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.

(7)Hauser, R and Calafat, AM, “Phthalates and Human Health”, Occup Environ Med 2005;62:806–818. doi: 10.1136/oem.2004.017590

(8)Environmental Working Group, http://www.ewg.org/research/mothers-milk/health-risks-pbdes

(9)School of Environmental Health, University of British Columbia; http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf

(10) Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

(11)Based on China carbon emissions reporting for 2010 from Energy Information Administration (EIA); see U.S. Department of Energy, Carbon Emissions from Energy Generation by Country, http://www.eia.gov/ cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed September 28, 2012). Estimate for China textile sector based on industrial emissions at 74% of total emissions, and textile industry
as 4.3% of total industrial emissions; see EIA, International Energy Outlook 2011, U.S. Department of Energy.

(12)Nussbaumer, L.L, “Multiple Chemical Sensitivity: The Controversy and Relation to Interior Design”, Abstract, South Dakota State University





Our response to the Flint water crisis

22 06 2016

 

An editorial by Nicholas Kristof was published in the February 13, 2016, issue of the New York Times entitled: “Are you a Toxic Waste Disposal Site?” We think Mr. Kristof makes some great points, so we’ve published the entire editorial below:

EVEN if you’re not in Flint, Mich., there are toxic chemicals in your home. For that matter, in you.

Scientists have identified more than 200 industrial chemicals — from pesticides, flame retardants, jet fuel — as well as neurotoxins like lead in the blood or breast milk – of Americans, indeed, in people all over our planet.

These have been linked to cancer, genital deformities, lower sperm count, obesity and diminished I.Q. Medical organizations from the President’s Cancer Panel to the International Federation of Gynecology and Obstetrics have demanded tougher regulations or warned people to avoid them, and the cancer panel has warned that “to a disturbing extent, babies are born ‘pre-polluted.’”

They have all been drowned out by chemical industry lobbyists.

So we have a remarkable state of affairs:

■ Politicians are (belatedly!) condemning the catastrophe of lead poisoning in Flint. But few acknowledge that lead poisoning in many places in America is even worse than in Flint. Kids are more likely to suffer lead poisoning in Pennsylvania or Illinois or even most of New York State than in Flint. More on that later.

■ Americans are panicking about the mosquito-borne Zika virus and the prospect that widespread infection may reach the United States. That’s a legitimate concern, but public health experts say that toxic substances around us seem to pose an even greater threat.

“I cannot imagine that the Zika virus will damage any more than a small fraction of the total number of children who are damaged by lead in deteriorated, poor housing in the United States,” says Dr. Philip Landrigan, a prominent pediatrician and the dean for global health at the Icahn School of Medicine at Mount Sinai. “Lead, mercury, PCBs, flame retardants and pesticides cause prenatal brain damage to tens of thousands of children in this country every year,” he noted.

Yet one measure of our broken political system is that chemical companies, by spending vast sums on lobbying— $100,000 per member of Congress last year — block serious oversight.[1] Almost none of the chemicals in products we use daily have been tested for safety.

Maybe, just maybe, the crisis in Flint can be used to galvanize a public health revolution.

In 1854, a British doctor named John Snow started such a revolution. Thousands were dying of cholera at the time, but doctors were resigned to the idea that all they could do was treat sick patients. Then Snow figured out that a water pump on Broad Street in London was the source of the cholera[2]. The water company furiously rejected that conclusion, but Snow blocked use of the water pump, and the cholera outbreak pretty much ended. This revelation led to the germ theory of disease and to investments in sanitation and clean water. Millions of lives were saved.

Now we need a similar public health revolution focusing on the early roots of many pathologies.

For example, it’s scandalous that 535,000 American children ages 1 to 5 still suffer lead poisoning, according to the Centers for Disease Control and Prevention[3]. The poisoning is mostly a result of chipped lead paint in old houses or of lead-contaminated soil being tracked into homes, although some areas like Flint also have tainted tap water. (Note:  fabrics often contain lead in the dyes used and as a catalyst in the dyeing process.)

lead paint

While the data sets are weak, many parts of America have even higher rates of child lead poisoning than Flint, where 4.9 percent of children tested have had elevated lead levels in their blood. In New York State outside New York City, it’s 6.7 percent. In Pennsylvania, 8.5 percent. In parts of Detroit, it’s 20 percent. The victims are often poor or black.[4]

Infants who absorb lead are more likely to grow up with shrunken brains and diminished I.Q.[5] They are more likely as young adults to engage in risky sexual behavior, to disrupt school and to commit violent crimes. Many researchers believe that the worldwide decline in violent crime beginning in the 1990s is partly a result of lead being taken out of gasoline in the late 1970s. The stakes are enormous, for individual opportunity and for social cohesion.

Fortunately, we have some new Dr. Snows for the 21st century.

A group of scholars, led by David L. Shern of Mental Health America, argues that the world today needs a new public health revolution focused on young children, parallel to the one mounted for sanitation after Snow’s revelations about cholera in 1854. Once again, we have information about how to prevent pathologies, not just treat them — if we will act.

The reason for a new effort is a vast amount of recent research showing that brain development at the beginning of life affects physical and mental health decades later. That means protecting the developing brain from dangerous substances and also from “toxic stress”— often a byproduct of poverty — to prevent high levels of the stress hormone cortisol, which impairs brain development.

A starting point of this public health revolution should be to protect infants and fetuses from toxic substances, which means taking on the companies that buy lawmakers to prevent regulation. Just as water companies tried to obstruct the 19th-century efforts, industry has tried to block recent progress.

Back in 1786, Benjamin Franklin commented extensively on the perils of lead poisoning, but industry ignored the dangers and marketed lead aggressively. In the 1920s, an advertisement for the National Lead Company declared, “Lead helps to guard your health,” praising the use of lead pipes for plumbing and lead paint for homes. And what the lead companies did for decades, and the tobacco companies did, too, the chemical companies do today.

lead

Lead poisoning is just “the tip of the iceberg,” says Tracey Woodruff, an environmental health specialist at the University of California at San Francisco. Flame-retardant chemicals have very similar effects, she says, and they’re in the couches we sit on.

The challenge is that the casualties aren’t obvious, as they are with cholera, but stealthy and long term. These are silent epidemics, so they don’t generate as much public alarm as they should.

“Industrial chemicals that injure the developing brain” have been linked to conditions like autism and attention deficit hyperactivity disorder, noted The Lancet Neurology, a peer-reviewed medical journal. Yet we still don’t have a clear enough sense of what is safe, because many industrial chemicals aren’t safety tested before they are put on the market. Meanwhile, Congress has dragged out efforts to strengthen the Toxic Substances Control Act and test more chemicals for safety.

The President’s Cancer Panel recommended that people eat organic if possible, filter water and avoid microwaving food in plastic containers. All good advice, but that’s like telling people to avoid cholera without providing clean water.

And that’s why we need another public health revolution in the 21st century.

 

[1] http://www.opensecrets.org/lobby/indusclient.php?id=N13&year=2015

[2] http://www.bbc.co.uk/history/historic_figures/snow_john.shtml

[3] http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6213a3.htm

[4] http://www.nytimes.com/2016/02/07/opinion/sunday/america-is-flint.html

[5] http://journalistsresource.org/studies/society/public-health/lead-poisoning-exposure-health-policy?utm_source=JR-email&utm_medium=email&utm_campaign=JR-email&utm_source=Journalist%27s+Resource&utm_campaign=63b82f94eb-2015_Sept_1_A_B_split3_24_2015&utm_medium=email&utm_term=0_12d86b1d6a-63b82f94eb-79637481