What kind of filling for your sofa cushions?

12 05 2015

 

One thing that most people care about is how the cushions feel to them – do you like to sink down into the cushions or you like a denser, more supportive cushion? Either way, the cushions are important.

Before plastics, our grandparents filled cushions with feathers, horsehair, wool or cotton batting – even straw (one of the earliest stuffing materials). This stuff often shifted, meaning that you’d have to plump up the feathers, horsehair or batting to make the sofa look, and feel, good.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 55 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP and it behaved!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is: start with good foam and you won’t be sorry.”

Polyurethane foam for cushions are generally measured by two values:

  1. The density or weight per cubic foot. The higher the number, the more it weighs.   Foam that has a density of 1.8, for example, contains 1.8 lbs. of foam per cubic foot and foam that has a density of 2.5 would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  2. The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35.

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block 33%.

After choosing which foam to use, it is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually:

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is considered the ‘workhorse’ of flexible foam production.
  • Both methyloxirane and TDI have been formally identified as carcinogens by the State of California
  • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
  • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.  However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2] The fact that California has amended the old law that required fire retardants in polyurethane foam doesn’t affect the fact that in a fire, the toxic gasses released by the foam (such as hydrogen cyanide) would incapacitate the occupants of a house in just a few minutes.

The newest entry in the green sweepstakes is what’s called a bio-based foam made from soybeans. This “soy foam” is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe. To begin, let’s look at why they claim soy foam is green:

  • it’s made from soybeans, a renewable  resource
  • it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’. It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”. Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain; the EPA finds nervous system effects such as depression, loss of concentration and a potential for cancer(4).  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

 

[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

(4) Technical Fact Sheet on: Styrene; Environmental Protection Agency; http://www.epa.gov/ogwdw/pdfs/factsheets/voc/tech/styrene.pdf

 

 

Advertisements




What will nanotechnology mean to you?

2 04 2014

A hot topic in the media right now is the toxicity of chemical flame retardants that are in our furniture and are migrating out into our environment.  Tests have shown that Americans carry much higher levels of these chemicals in their bodies than anyone else in the world, with children in California containing some of the highest levels ever tested.   According to Ronald Hites of Indiana University, these concentrations have been “exponentially increasing, with a doubling time of 4 to 5 years.”[1]  These toxic chemicals are present in nearly every home – packed into couches, chairs and many baby products including (but not limited to) mattresses, nursing pillows, carriers and changing table pads (scary!).  Recent studies have found that most couches in America have over 1 pound of the toxic chemical Chlorinated Tris inside them[2], even though it was banned in children’s pajamas over cancer concerns over a generation ago.[3]

Why the concern?  Fire retardant chemicals, called PBDE’s (polybrominated diphenyl ethers) have been linked to cancer, reproductive problems and impaired fetal brain development, as well as decreased fertility.  And even though they’ve been banned in the U.S. and European Union, they persist in the environment and accumulate in your body – and they’re still being used today.

So its probably no surprise that there is a mad scramble on to produce a fire retardant that does not impact our health or the environment.   The current front runners, touted as being “exceptionally” effective yet safer and more environmentally friendly than the current fire retardants, use nanotechnology – specifically “nanocoatings” and “nanocomposites”[4] .  These composites and coatings are based on what are called “multiwalled carbon nanotubes” or MWCNTs.

Based on a final report published by the U.S. EPA in September 2013 about the assessment of the risks of using these  MWCNTs, the EPA found that there will be releases of these MWCNTs into the environment throughout the life cycle of textiles – to our air and water during production,  in the form of abraded particles of the textiles falling into the dust in our homes, and in the disposal of furniture in municipal landfills or incineration facilities.[5]

While it is reasonable to propose that substituting nanomaterials for polybrominated diphenyl ether (PBDEs)  or chlorinated triss  and calling it “sustainable”, the fact is that no quantitative study has ever been done to support this assertion . [6]

Please don’t misunderstand me – I am all for finding safer alternatives to the current crop of chemical fire retardants (assuming I buy into the argument that we actually need them).  However, I don’t want us to jump from the frying pan into the fire by rushing to use a technology which is still controversial.  But the race is on:  the US patent office published some 4000 patents under “977 – nanotechnology” in 2012, a new record.

patents nanotech

Here’s an interesting video which helps to explain how nano works – and why we will need extensive study to absorb the many implications of this emerging science.

Consider these science fiction type scenarios of how nano can be used to profoundly change our lives:

  • “nanomedicine” offers the promise of diagnosis and treatment of a disease – before you even have the symptoms.  Or it promises to rebuild neurons for people with Alzheimers or Parkinson’s disease – and stem cells for whatever ails you!   Bone regeneration.  [7]
  • Surfaces can be modified to be scratchproof, unwettable, clean or sterile, depending on the application.[8]
  • Quantum computing.
  • Solar cells capturing the sun’s visible spectrum – as well as infrared photons –  doubling the solar energy available to us.  How about zero net carbon emissions.
  • Nanoscale bits of metals can detoxify hazardous wastes.
  • Clothing that recharges your cell phone as you stroll, or an implant that measures blood pressure powered by your own heartbeat.

And yet.  The unknowns are great, and as Eric Drexler has said, the story involves a tangle of science and fiction linked with money, press coverage, Washington politics and sheer confusion.  Scientists and governments agree that the application of nanotechnology to commerce poses important potential risks to human health and the environment, and those risks are unknown. Examples of high level respected reports that express this concern include:

  • Swiss Federation (Precautionary Matrix 2008)[9]
  • Commission on Environmental Pollution (UK 2008)[10];
  • German Governmental Science Commission (“SRU”)[11];
  • Public testimony sought by USA National Institute for Occupational Safety and Health (NIOSH, Feb 2011)[12] ;
  • OECD working group (since 2007)[13];
  • World Trade Organization (WTO)[14]
  • as well as several industrial groups and various non-governmental organizations.

Nanotechnology is already transforming many products – water treatment, pesticides, food packaging and cosmetics to name a few – so the cat is already out of the bag.  Consider this small example of the nano particle  argument:  When ingested the nanoparticles pass into the blood and lymph system, circulate throughout the body and reach potentially sensitive sites such as the spleen, brain, liver and heart.[15]   The ability of nanoparticles to cross the blood brain barrier makes them extremely useful as a way to deliver drugs directly to the brain.  On the other hand, these nanoparticles may be toxic to the brain.  We simply don’t know enough about the size and surface charge of nanoparticles to draw conclusions.[16]  In textiles, silver nano particles are used as antibacterial/antifungal agents to prevent odors.

But there are almost no publications on the effects of engineered nanoparticles on animals and plants in the environment.

So it’s still not clear what nanoscience will grow up to be – if it doesn’t kill us, it might just save us.


[2] Stapleton HM, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol 43(19):7490–7495. (2009); http://dx.doi.org/10.1021/es9014019.

[3] Callahan, P and Hawthorne, M; “Chemicals in the Crib”, Chicago Tribune, December 28, 2012, http://articles.chicagotribune.com/2012-12-28/news/ct-met-flames-test-mattress-20121228_1_tdcpp-heather-stapleton-chlorinated-tris

[5] Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report), Environmental Protection Agency, http://cfpub.epa.gov/ncea/nano/recordisplay.cfm?deid=253010

[6] Gilman,  Jeffrey W., “Sustainable Flame Retardant Nanocomposites”; National Institute of Standards and Technology

[7] Hunziker, Patrick,  “Nanomedicine: The Use of Nano-Scale Science for the Benefit of the Patient” European Foundation for Clinical Nanomedicine (CLINAM) Basel, Switzerland 2010.

[9] Swiss National Science Foundation, Opportunities and Risks of Nanomaterials Implementation Plan of the National Research Programme NRP 64 Berne, 6 October 2009; see also Swiss Precautionary Matrix, and documents explaining and justifying its use, available in English from the Federal Office of Public Health.

[10] Chairman: Sir John Lawton CBE, FRS Royal Commission on Environmental Pollution, Twenty-seventh report: Novel Materials in the Environment: The case of nanotechnology. Presented to Parliament by Command of Her Majesty November 2008.

[11] SRU, German Advisory Council on Environment, Special Report “Precautionary strategies for managing nanomaterials” Sept 2011. The German Advisory Council on the Environment (SRU) is empowered by the German government to make “recommendations for a responsible and precautionary development of this new technology”.

[12] See: Legal basis and justification: Niosh recommendations preventing risk from carbon nanotubes and nanofibers ”post-hearing comments Niosh current intelligence bulletin: occupational exposure to carbon nanotubes and nanofibers Docket NO. NIOSH-161 Revised 18 February 2011; Testimony on behalf of ISRA (International Safety Resources Association) Before NIOSH, USA. Comments prepared by Ilise L Feitshans JD and ScM, Geneva, Switzerland. Testimony presented by Jay Feitshans, Science Policy Analyst; ISRA Draft Document for Public Review and Comment NIOSH Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers, Docket Number NIOSH-161-A.

[13] The OECD Working Party for Manufactured Nanomaterials (WPMN) “OECD Emission Assessment for Identification of Sources of release of Airborne Manufactured Nanomaterials in the Workplace: Compilation of Existing Guidance”, ENV/JM/MONO (2009)16, http://www.oecd.org/dataoecd/15/60/43289645.pdf. “OECD Preliminary Analysis of Exposure Measurement and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials” OECD ENV/JM/MONO(2009)6, 2009. http://www.oecd.org/dataoecd/36/36/42594202.pdf.
“OECD Comparison of Guidance on selection of skin protective equipment and respirators for use in the workplace: manufactured nanomaterials”, OECD ENV/JM/MONO(2009) 17, 2009. www.oecd.org/dataoecd/15/56/43289781.pdf.

[14] WHO Guidelines on “Protecting Workers from Potential Risks of Manufactured Nanomaterials” (WHO/NANOH), (Background paper) 2011

[15] Dixon, D., “Toxic nanoparticles might be entering human food supply, MU study finds”, August 22, 2013, http://munews.missouri.edu/news-releases/2013/0822-toxic-nanoparticles-might-be-entering-human-food-supply-mu-study-finds/

[16] Scientific Committee on Emerging and Newly Identified health Risks (SCENIHR), The European Commission, 2006

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html





What is intrinsically flame retardant polyester?

11 02 2014

Polyester is the terminal product in a chain of very reactive and toxic precursors. Most are carcinogens; all are poisonous. And even if none of these chemicals remain entrapped in the final polyester structure (I don’t know enough chemistry to figure that one out – can anybody help?), the manufacturing process requires workers and our environment to be exposed to some or all of these toxic precursors. ( To see our blog post about polyester, click here ).  So I’m just not a fan of synthetics – even polyester.  Just so you know.

To make an intrinsically flame retardant polyester,  the most common method is to add  brominated flame retardants (BFR’s)  to the polymer during the melt phase.   This means the chemicals are “trapped” in the polymer.  Included in this huge class of BFR’s is:

  • Polybrominated diphenyl ethers (PBDE’s):  besides PBDE, the group includes DecaBDE, OctaBDE and PentaBDE (neither Octa nor Penta is manufactured anymore)
  • Polybrominated biphenyls (PBB) – also not manufactured anymore
  • Brominated cyclohydrocarbons

Brominated flame retardants are persistent, accumulate in the food chain, and toxic to both humans and the environment and are suspected of causing neurobehavioral effects, endocrine disruption,  cancer and other degenerative diseases.

So now you have a polyester fabric which is made from toxic monomers, which in turn come from crude oil, a precious non-renewable resource. It becomes  “intrinsically flame retarded” by having PBDE’s mixed into the polymer at the melt stage.  Personally, I wouldn’t want to live with that mixture.  Think about it:  It’s generally assumed that PBDE’s in plastics (of all kinds)  volatilize –  but even if they didn’t, each time you sit on your sofa microscopic particles of the fabric are abraded and fall into the dust in your homes, where you can breathe them in.

Many manufacturers advertise the use of “intrinsically flame retardant” polyester fabrics on their sofas.  But why would you need an intrinsically flame retarded fabric on a sofa in your home?  There is no law that says the fabric in a residential setting must have flame retardants (unlike the laws that exist to cover public areas, like offices, airports, hotels, etc.)  Can’t you use a fabric without flame retardants?





What does the new TB117-2013 mean to you?

16 12 2013

California has approved a new  flammability standard for residential furniture that is receiving widespread praise among environmentalists.  But we’d like you to examine, with us, some details about the new standard that you’ll need to know to keep you and your family safe from these extremely toxic chemicals.

California is the only state in the U.S. with a mandatory flammability standard for residential furniture.  The original law, TB117, was passed with all the good will in the world – to protect people from dying in house fires by giving them time to escape.  But  as is often the case, there were unintended consequences – we have found that the fire retardant chemicals are linked to cancer, developmental problems, reduced IQ and impaired fertility –  and more.  These chemicals  both persist (i.e, last a long time) and  bioaccumulate (i.e., are absorbed at a rate greater than that at which the substance is lost – leading to a risk of chronic poisoning) in human systems.  And the final straw:  ironically, the chemicals don’t protect us from fires – they just allow the material not to fail the flammability test.  In actual fires, the materials do burn, and just as massively as untreated foam,  and that releases toxic smoke into the air; one pundit has said that firefighters have more to fear from the smoke  than from the actual fire.

Recently, there has been growing pressure to change California’s “Technical Bulletin 117”, which required furniture manufacturers to inject flame retardant chemicals into the polyurethane foam used in all upholstered furniture sold in the state.  (Please note: the law only pertained to filling materials.) Because California is such a huge market, this law has become a de facto national standard. This pressure was fueled by a series of articles in the Chicago Tribune entitled “Playing with Fire” (click here to read the articles) , and more recently by the HBO film, Toxic Hot Seat, both of which exposed the considerable health risks of flame retardant chemicals, as well as the attempts by the chemical industry to thwart attempts at reform.

Why are flame retardant chemicals required in polyurethane foam?  Answer:  Because polyurethane is basically solid gasoline, which means it’s basically an accelerant.   The old test required that it pass a test by withstanding an open flame for 12 seconds before igniting.  Because this is impossible, the chemicals were added to prevent ignition.

What makes the new TB117-2013 different is that the test methods have changed.  Legislators decided to amend the manner in which flammability is measured.  They reasoned that most house fires start from smoldering cigarettes, which cause the fabric to smolder and catch fire – not from within the cushion in the foam.   They thought that upholstery cover fabrics play a more important role in fire behavior performance than filling materials – flames start on the fabric,  not from deep within the cushions, so the best way to prevent the foam from igniting is to make sure that the surface materials do not smolder in the first place.

So the new test did away with the 12 second open flame test and replaced it with a smolder-only test.  In this test, a lighted cigarette (not an open flame) is placed on the surface of the furniture.   If charring occurs which is 2 inches or less, the furniture is considered to pass.  This is a much easier test to pass than the open flame test.

So the new TB117-2013 enables foam manufacturers to reduce or eliminate flame retardant chemicals – but it doesn’t forbid their use.   The new law was designed to enable manufacturers to eliminate the flame retardants, but if they choose to use them it’s not illegal.  It’s up to manufacturers to decide how they plan to meet the new standard.

Most fabrics used in upholstery today are  synthetics or synthetic blends (natural fiber/synthetic).  And synthetics are created from crude oil – so they too are basically solid gasoline.  An accelerant.  Fabrics can be fire retarded easily and cheaply, and it’s very commonly done.  So although the foam manufacturers can (if they so choose) eliminate flame retardant chemicals in the foam, the burden of passing a smolder test now falls on the fabric.  It seems to me that the flame retardant chemicals are now just going to be found in the fabrics rather than the foam.

The new law was originally supposed to go into effect on July 1, 2014, but manufacturers, who said they “needed the additional times to deplete current supplies and effectuate the new regulatory changes” extended the new date to January 1, 2015.  However, starting in January, 2014, manufacturers will be able to sell furniture with a “TB117-2013” tag – so consumers should make sure to ask whether the sofa or chair has been treated with flame retardant chemicals.  Manufacturers are not required to disclose whether they use flame retardants or not, and few label their products.

If you really want to be sure, the Center for Environmental Health can test foam to detect the presence of flame retardants.  The tests only indicate whether certain elements are present, such as chlorine or bromine.  If so, it is likely the foam was treated with flame retardants.  If you want information on how to use this free service, click here.

Even if the foam is  tested and found not to contain flame retardants, that is by no means a clean bill of health for your sofa, because the fabrics may well contain flame retardants.  And a TB117-2013 label on a piece of furniture is not a guarantee that there are no flame retardants used in the piece.

And we think it’s pretty critical to add this final caveat – flame retardant chemicals are just ONE of the many chemicals which may be found in your fabrics.  Textile production uses a lot of chemicals,  most of which have toxicity profiles as equally unsavory as flame retardants: consider formaldehyde, perfluorocarbons (PFC’s), benzene, APEO’s, polychlorinated biphenyls (PCB’s) and Bisphenol A in synthetics, and heavy metals such as lead, mercury and cadmium.  So to limit yourselves to eliminating flame retardant chemicals from the fabrics or furniture you live with  – as wonderful as that is – means you’re not seeing the forest for the trees.





10 reasons to make sure your sofa choices are upholstered with safely processed fabrics.

28 10 2013

If a fabric is identified as 100%  “cotton” – or even 100% “organic cotton”  —  it’s important to remember that processing the fiber, and then weaving it into fabric, is very chemically intense.  One-quarter of the total weight of the finished fabric is made up of synthetic chemicals, so it’s important to know that the chemicals used in your fabrics are safe! [1]

There have not been a lot of studies which show the effects that chemicals contained in a fabric have on humans as a result of using that fabric, perhaps because there are no interested parties other than universities and government entities.   But there are numerous studies which document the effects which the individual chemicals have on humans – perhaps because the textile industry is so fragmented that the few really large corporations with the resources to do this kind of research tend to finance research which supports  new products (such as DuPont’s PLA fibers or Teijin’s recycling efforts).  But there have been some, and we found the following:

  1. Formaldehyde is used often in finishing textiles to give the fabrics easy care properties (like wrinkle resistance, anti cling, stain resistance, etc.).  Formaldehyde resins are used on almost all cotton/poly sheet sets in the USA.
    1. Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-linking with proteins, DNA and unsaturated fatty acids.13 These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption. [3]
      1. In January 2009, new blue uniforms issued to Transportation Security Administration officers gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers.
      2. In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras.
      3. Contact dermatitis is a well-known condition, and there are many websites which feature ways to get help.
      4. A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[2]
    2. Dioxins:  Main uses of dioxin in relation to textiles is as a preservative for cotton and other fibers during sea transit,  and in cotton bleaching. It is also found in some dyestuffs.  Dioxin is known as one of the strongest poisons which man is able to produce. It causes cancer of the liver and lung, and interferes with the immune system, resulting in a predisposition to infectious diseases and embrional misgrowth.
      1. Studies have found dioxin leached from clothing  onto  the skin of participants:[3]  It was shown that these contaminants are transferred from textiles to human skin during wearing. They were also present in shower water and were washed out of textiles during washing. Extensive evidence was found indicating that contaminated textiles are a major source of chlorinated dioxins and furans in non-industrial sewage sludge, dry cleaning residues and house dust.
    3. Perfluorocarbons (PFC’s)  break down within the body and in the environment to PFOA, PFOS and similar chemicals. (Note: the chemistry here is quite dense; I’ve tried to differentiate between the groups. Please let me know if I’ve made a mistake!) They are the most persistent synthetic chemicals known to man. Once they are in the body, it takes decades to get them out – assuming you are exposed to no more. They are toxic in humans with health effects from increased chloesterol to stroke and cancer. Although little PFOA can be found in the finished product, the breakdown of the fluorotelomers used on paper products and fabric treatments might explain how more than 90% of all Americans have these hyper-persistent, toxic chemicals in their blood. A growing number of researchers believe that fabric-based, stain-resistant coatings, which are ubiquitous, may be the largest environmental source of this  controversial chemical family of PFCs.

PFC’s are used in stain resistant finishes/fabrics such as Scotchgard, GoreTex, Crypton, Crypton Green, GreenShield, Teflon:

  1. PFC’s cause developmental and other adverse effects in animals.[4]
  2. According to a study published in the Journal of the American Medical Association, the more exposure children have to PFC’s (perfluorinated compounds), the less likely they are to have a good immune response to vaccinations (click here to read the study).[5]

According to the U.S. Environmental Protection Agency, PFC’s:

  • Are very persistent in the environment.
  • Are found at very low levels both in the environment and in the blood of the U.S. population.
  • Remain in people for a very long time.
  • Cause developmental and other adverse effects in laboratory animals.

The levels of PFC’s globally are not going down – and in fact there are places (such as China) where the PFC level is going up. And as there is not a “no peeing” part of the pool, the exposure problem deserves international attention.

4. Tributylphosphate – or TBP – is used in the production of synthetic resins and as a flame-retarding plasticizer. It is also used as a primary plasticizer in the manufacture of plastics and as a pasting agent for pigment pastes used in printing. Because it is a strong wetting agent, it is used often in the textile industry.  In addition to being a known skin irritant (click here to see the MSDS with a warning that it causes eye and skin irritation), TBP also causes bladder cancer in rats. (2)

  1. Alaska Airlines flight attendants were given new uniforms in 2010; shortly thereafter many reported “dermal symptoms” (e.g., hives, rash, blisters, skin irritation), while some also referenced respiratory symptoms and eye irritation; some have more recently been diagnosed with abnormal thyroid function. The symptoms apparently occurred only while wearing the new uniforms. (To read the report filed with the Consumer Product Safety Commission by the Association of Flight Attendants, click here. )

The only fact which can be agreed upon between the union, the CPSC and the manufacturer is that some unknown percent of the fabric used to make the uniforms was “contaminated” with TBP, tributylphosphate, as reported by the manufacturer – but since not all the fabric was tested, it is unknown the final percentage of contaminated fabric.

5.  Acrylic fibers are made from acrolynitrile  (also called vinyl cyanide), which is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system. According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  It is not easily recycled nor is it biodegradeable.

  1. Women who work in factories which produce acrylic fibers have seven times the rate of breast cancer as the normal population [6] – those working with nylon have double the risk.

6.  Chemicals used in textile processing which are associated with the immune system include formaldehyde, benzenes, toluene, phthalates. In 2007, The National Institutes of Health and the University of Washington released the findings of a 14 year study that demonstrates those who work with textiles were significantly more likely to die from an autoimmune disease than people who didn’t [7].

  1. Allergies and asthma are both thought to be associated with impaired immune systems.   Twice as many Americans (not just children) have asthma now as 20 yrs ago[8] and 10% of American children now have asthma.[9]
  2. As well as allergies and asthma, there are numerous other ‘chronic inflammatory diseases’ (CIDs) such as Type 1 diabetes and multiple sclerosis which seem to stem from impaired regulation of our immune systems.[10]

7.  Chemicals commonly used in textiles which contribute to developmental disorders (such as (ADD, ADHA, autism, Dyslexia): Bisphenol A, flame retardants, heavy metals (lead, mercury, cadmium), phthalates, PCB’s:

  1. Currently one of every six American children has a developmental disorder of some kind.[11]
  2. Bisphenol A  – used as a finish in the production of synthetic fibers: It mimics estrogens (is an endocrine disruptor) and can cause infertility and cancer.[12] 

8.  PCB’s :  used in flame retardants on fabrics; they are neurotoxins, endocrine disruptors and carcinogenic

  1. The Environmental Protection Agency (EPA) commissioned psychologists to study children whose mothers were exposed to PCB’s during pregnancy. The researchers found  that the more PCBs  found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2 [13].

9.  Cancer – chemicals used in textile processing which are linked to cancer include formaldehyde, lead, cadmium, pesticides, benzene, vinyl chloride – as well as pesticides on crops: 

  1. all childhood cancers have grown at about 1% per year for the past two decades[14]
  2.  brain cancer in children increased nearly 40% from 1973 to 1994[15]
  3. the environmental attributable fraction of childhood cancer can be between 5% and 90%, depending on the type of cancer[16]

10.  Lead – used in the textile industry in a variety of ways and as a component in dyestuffs –  is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage  caused by lead are not reversible.        Specifically, it affects reading and reasoning abilities in  children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies.[17]     Children are uniquely susceptible to lead exposure over time,  and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware  that lead available from tested products would not be the only source of  exposure in a child’s environment.        Lead is used in the textile industry in a variety of ways and under a variety of names:

    1. Lead acetate:                        dyeing of textiles
    2. Lead  chloride                      preparation of lead salts
    3. Lead molybdate                   pigments used in dyestuffs
    4. Lead nitrate                         mordant in dyeing; oxidizer in dyeing(4)

Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[18]

Lead is a uniquely cumulative poison: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

 


[1] Lacasse and Baumann, Textile Chemicals, Springer, New York, 2004,  page 609; on behalf of the German Environmental Protection Agency.

[2] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[3] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[4] Philippe Grandjean, et al, “Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds”, Journal of the American Medical Association,  january 25, 2012

[6] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817 (abstract: http://oem.bmj.com/content/67/4/263.abstract)
SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp
AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[7] Nakazawa, Donna Jackson, “Diseases Like Mine Are a Growing Hazard”, Washington
Post
, March 16, 2008.

[11] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[12] Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”, www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf

[13] Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.

[15] New York Times, “New Toxins Suspected as Cancer Rate Rises in children”, September 29, 1997

[16] Gouveia-Vigeant, Tami and Tickner, Joel, “Toxic Chemicals and Childhood Cancer: a review of the evidence”, U of Massachusetts, May 2003

[17] ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

[18] Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead
Exposure”, PLoS Med 2008 5(5): e112.





Sofa cushions – foam, soy foam or latex?

12 09 2013

So we have produced the frame and put in the suspension system.  Next in line are the cushions – something soft to sit on.

In an upholstered piece of furniture, the cushions need a filler of some kind.  Before plastics, our grandparents used feathers, horsehair or wool or cotton batting.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is start with good foam and you won’t be sorry.”

Cushions are generally measured by two values:

  • The density or weight per cubic foot of polyurethane foam. The higher the number the more it weighs.   Foam that has a density of 1.8 foam, for example, contains 1.8 lbs of foam per cubic foot and foam that is 2.5 foam would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  • The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block one third.

The foam is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually, and explore issues other than embodied energy :

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is      considered the ‘workhorse’ of flexible foam production.
    • Both methyloxirane  and TDI have been formally identified as carcinogens by the State of California
    • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
    • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.       However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2]

Now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable  resource
  2. it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for      the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”.   Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain.  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

Is there really a question as to which to buy?


[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics





Fire retardants: the new asbestos

9 05 2013

My toxic couch:

I’d like to nominate flame retardant chemicals used in our furniture, fabrics and baby products – as well as a host of other products – as being in the running for the “new asbestos”. These chemicals (halogenated flame retardants, such as polybrominated diphenyl ethers) are commonly known as PBDE’s. An editorial in the Chicago Tribune, responding to the series published by that paper about flame retardants called “Playing with Fire” (click here to read the series), said the use of flame retardants is a public health debacle.

According to “Playing with Fire”, the average American baby is born with “10 fingers, 10 toes and the highest recorded level of flame retardants among infants in the world.” Many of these chemicals accumulate within the blood, fat, and even breast milk, causing a number of unknown health risks. One common ingredient in flame retardants, BDE-49, has recently been found to damage neural mitochondria, leading to brain damage. The same study also found evidence of autism effects being amplified by environmental factors.(1) The MIND Institute at UC Davis, responsible for the study, summarized it by saying the “chemical, quite literally, reduces brain power,” noting that the findings “bolster the argument that genetics and environment can combine to increase the risk of autism and other neurological disorders.”

These chemicals accumulate in human tissues – and they last a really long time . In addition, we’re being constantly re-exposed because they’re ubiquitous in the environment – they’re used for foam in cushions, but also in such things as baby strollers, carpeting, mattresses and electronics. These chemicals are also found in mother’s milk in every country of the world and in animals – from polar bears in the Arctic to hummingbirds in the Amazon.

In the United States, California has required flame retardants on everything from children’s pajamas to furniture. This standard is called Technical Bulletin 117, or TB 117, which was passed in 1975 and requires that polyurethane foam in upholstered furniture be able to withstand an open flame for 12 seconds without catching fire. Because California is such a large market, and also because there is no other state or federal standard, many manufacturers comply with the California rule, usually by adding flame retardants with the foam.

The startling and disturbing result of a published study in Environmental Health Perspectives is that Latino children born in California have levels of PBDE in their blood seven times higher than do children who were born and raised in Mexico.[2] In general, residents of California have higher rates of PBDE in their blood than do people in other parts of the United States – and people in the United States have levels of PBDE higher than anyone else in the world.

A home can contain a pound or more of fire retardants. These chemicals are similar in structure and action to substances such as PCBs and DDT that are widely banned. They leak out from furniture, settle in dust and are taken in by toddlers when they put their hands into their mouths. A paper published in Environmental Science & Technology [3] also finds high fire retardant levels in pet dogs. Cats, because they lick their fur, have the highest levels of all.

One troubling example is chlorinated Tris, a flame retardant that was removed from children’s pajamas in the 1970s largely based on research done by Dr. Arlene Blum, a biophysical chemist, after it was found to mutate DNA and identified as a probable human carcinogen. In the journal Environmental Science and Technology, new research published in 2011 shows that chlorinated Tris was found in more than a third of the foam samples tested – products such as nursing pillows, highchairs, car seats and changing pads.[4] Tris is now being used again at high levels in furniture being sold in California to meet the California standard.

The benefits of adding flame retardants have not been proved. Since the 1980s, retardants have been added to California furniture, yet from 1980 to 2004, fire deaths in states without such a standard declined at a similar rate as they did in California. And during a fire when the retardants burn, they increase the toxicity of the fire, producing dioxins, as well as additional carbon monoxide, soot and smoke, which are the major causes of fire deaths.

So why are we rolling the dice and exposing our children to substances with the potential to cause serious health problems when there is no proven fire safety benefit?

Under current law, it is difficult for the federal Environmental Protection Agency to ban or restrict chemicals – current federal oversight of chemicals is so weak that manufacturers are not required to label products with flame retardants nor are they required to list what chemicals are used.[5]. Even now, the agency has yet to ban asbestos!

And when a ban does go into effect, it’s usually severely restricted: for example, in the USA, BPA is now banned in baby bottles – but only in baby bottles. Many products tout the fact that they’re “BPA free” but that’s because the chemical has hit a nerve with consumers, who recognize that BPA isn’t a good thing to have in plastic water bottles, for example, so the manufacturers voluntarily restrict its use. Another example is lead, which has been banned in the USA in some products– paint and gasoline come quickly to mind – but is still used in others, such as plastics, printing, and dyes. New legislation restricts the amount of lead that can be present in products designed for children to 100 ppm, despite the fact that research shows that any detectable amount of lead can be harmful to kids.

The Consumer Product Safety Commission has been working on a federal flammability standard for upholstered furniture for 16 years. The current proposal would allow manufacturers to meet the flammability standard without fire retardants. An agency spokesman said that “additional research looking into consumer exposure and the impact of chemical alternatives is needed.”

California State Sen. Mark Leno sponsored California Senate Bill 147, the Consumer Choice Fire Protection Act, introduced in February, 2011. The bill called for an alternative furniture flammability standard that would give consumers the choice to purchase furniture that is fire-safe and nontoxic.

However, aggressive lobbying in the form of multimillion-dollar campaigns from “Citizens for Fire Safety” and other front groups funded by three bromine producers – Albemarle, Chemtura and Israeli Chemicals Ltd. – resulted in a defeat of this bill in March, 2011. Their main argument was that new flame retardants – similar in structure and properties to the old ones and lacking any health information – were safe. This despite opposition which included 30 eloquent firefighters, scientists, physicians and health officers representing thousands of Californians. But new life is again being breathed into this issue, and California has introduced a new TB117-2013 to address the problem by changing the testing parameters so as not to need flame retardants.

But stay tuned – the chemical industry has a lot at stake and they won’t go down without a fight.

Although we stopped most uses of asbestos decades ago, workers and others inadvertently exposed continue to die from its long-term effects. Let’s not add more chemicals to this sad list.

(1) Napoli E, Hung C, Wong S, Giulivi C., “Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background” Toxicol Sci. 2013 Mar;132(1):196-210.
[2] Eskenazi, B., et al., “A Comparison of PBDE Serum Concentrations in Mexican and Mexican-American
Children Living in California”, http://ehp03.niehs.nih.gov/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1289%2Fehp.1002874
[3] Vernier, Marta and Hites, Ronald; “Flame Retardants in the Serum of Pet Dogs and in their Food”, Environmental Science and Technology, 2011, 45 (10), pp4602-4608. http://pubs.acs.org/action/doSearch?action=search&searchText=PBDE+levels+in+pets&qsSearchArea=searchText&type=within&publication=40025991
[4] Martin, Andrew, “Chemical Suspected in Cancer is in Baby products”, The New York Times, May 17, 2011.
[5] Ibid.