Why do we offer safe fabrics?

3 10 2016

Why do we say we want to change the textile industry?  Why do we say we want to produce fabrics in ways that are non-toxic, ethical and sustainable?  What could be so bad about the fabrics we live with?

The textile industry is enormous, and because of its size its impacts are profound.  It uses a lot of three ingredients:

  • Water
  • Chemicals
  • Energy

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, corporate interests are controlling water, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.(1) Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN. Our global water consumption rose six fold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, and bleaching use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used before moving on to the next step.  The water is usually returned to our ecosystem without treatment – meaning that the wastewater, which is returned to our streams, contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.  The textile industry is the #1 industrial polluter of fresh water on the planet – the 9 trillion liters of water used annually in textile processing is usually expelled into our rivers without treatment and is a major source of groundwater pollution.  Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.  Just Google “Greenpeace and the textile industry” to find out what Greenpeace is doing to make people aware of this issue.

Over 8,000 chemicals are used in textile processing, some so hazardous that OSHA requires textile scraps be handled as hazardous waste.   The final product is, by weight, about 23% synthetic chemicals – often the same chemicals that are outlawed in other products.  The following is by no means an all-inclusive list of these chemicals:

  • Alkylphenolethoxylates (APEOs), which are endocrine disruptors;
    • o Endocrine disruptors are a wide range of chemicals which interfere with the body’s endocrine system to produce adverse developmental, reproductive, neurological and immune effects in both humans and wildlife; exposure us suspected to be associated with altered reproductive function in both males and females, increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children.(2)
  • Pentachlorophenols (PCP)
    • o Long-term exposure to low levels can cause damage to the liver, kidneys, blood, and nervous system. Studies in animals also suggest that the endocrine system and immune system can also be damaged following long-term exposure to low levels of pentachlorophenol. All of these effects get worse as the level of exposure increases.(3)
  • Toluene and other aromatic amines
    • carcinogens (4)
  • Dichloromethane (DCM)
    • Exposure leads to decreased motor activity, impaired memory and other neurobehavioral deficits; brain and liver cancer.(5)
  • Formaldehyde
    • The National Toxicology Program named formaldehyde as a known human carcinogen in its 12th Report on Carcinogens.(6)
  • Phthalates –
    • Associated with a range of effects from liver and kidney diseases to developmental and reproductive effects, reduced fetal weight.(7)
  • Polybrominated diphenyl ethers (PBDE’s)
    • A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, decreased sperm count, fetal malformations and, possibly, cancer.(8)
  • Perfluorooctane sulfonates (PFOS)
    • To date, associations have been found between PFOS or PFOA levels in the general population and reduced female fertility and sperm quality, reduced birth weight, attention deficit hyperactivity disorder (ADHD), increased total and non-HDL (bad) cholesterol levels, and changes in thyroid hormone levels.(9)
  • Heavy metals – cadmium, lead, antimony, mercury among others
    • Lead is a neurotoxin (affects the brain and cognitive development) and affects the reproductive system; mercury is a neurotoxin and possibly carcinogenic; cadmium damages the kidneys, bones and the International Agency for Research on Cancer has classified it as a human carcinogen; exposure to antimony can cause reproductive disorders and chromosome damage.

The textile industry uses huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.  For example, steam used in the textile manufacturing process is often generated in inefficient and polluting coal-fired boilers.  Based on estimated annual global textile production of 60 billion kilograms (KG) of fabric, the estimated energy needed to produce that fabric boggles the mind:  1,074 billion KWh of electricity (or 132 million metric tons of coal).  It takes 3886 MJ of energy to produce 25 yards of nylon fabric (about the amount needed to cover one sofa).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(10)

Today’s textile industry is also one of the largest sources of greenhouse gasses on the planet: in the USA alone, it accounts for 5% of the country’s CO2 production annually; China’s textile sector alone would rank as the 24th– largest country in the world.(11)

We succeeded in producing the world’s first collection of organic fabrics that were gorgeous and green – and safe.    In 2007, those fabrics won “Best Merchandise” at Decorex (www.decorex.com).    In 2008, our collection was named one of the Top Green Products of 2008 by BuiltGreen/Environmental Building News. As BuiltGreen/EBN takes no advertising dollars, their extensive research is prized by the green building industry (www.buildinggreen.com).

We are a tiny company with an oversized mission.  We are challenged to be a triple bottom line company, and we want to make an outsized difference through education for change  – so that a sufficiently large number of consumers will know which questions to ask that will force change in an industry.  We believe that a sufficiently large number of people will respond to our message to force profound positive change: by demanding safe fabric, produced safely, our environment and our health will be improved.

The issues that distinguish us from other fabric distributors, in addition to offering fabrics whose green pedigree is second to none:

    1. We manage each step of the production process from fiber to finished fabric, unlike other companies, which buy mill product and choose only the color palette of the production run.    Those production process steps include fiber preparation, spinning, weaving, dyeing, printing and finishing; with many sub-steps such as sizing and de-sizing, bleaching, slashing, etc.
    2. We educate consumers and designers on the issues that are important to them – and to all of us. Our blog on the topic of sustainability in the textile industry has grown from about 2 hits a day to 2,000, and is our largest source of new customers.
    3. We are completely transparent in all aspects of our production and products.    We want our brand to be known not only as the “the greenest”, but for honesty and authenticity in all claims.  This alignment between our values, our claims and our products fuels our passion for the business.
    4. We are the only collection we know of which sells only “safe” fabrics.

We serve multiple communities, but we see ourselves as being especially important to two communities:  those who work to produce our fabric and those who use it, especially children and their parents.

    • By insisting on the use of safe chemicals exclusively, we improve the working conditions for textile workers.  And by insisting on water treatment, we mitigate the effects of even benign chemicals on the environment – and the workers’ homes and agricultural land.  Even salt, used in copious amounts in textile processing, will ruin farmland and destroy local flora and fauna if not neutralized before being returned to the local waters.
    • For those who use our fabric, chemicals retained in the finished fibers do not add to our “body burden “, which is especially important for children, part of our second special community.  A finished fabric is, by weight, approximately 23% synthetic chemicals. Those chemicals are not benign.  Textile processing routinely uses chemicals with known toxic profiles such as lead, mercury, formaldehyde, arsenic and benzene – and many other chemicals, many of which have never been tested for safety.

Another thing we’d like you to know about this business is the increasing number of people who contact us who have been harmed by fabric (of all things!) because we represent what they believe is an honest attempt at throwing light on the subject of fabric processing.   Many are individuals who suffer from what is now being called “Idiopathic Environmental Intolerance” or IEI (formerly called Multiple Chemical Sensitivity), who are looking for safe fabrics.  We’ve also been contacted on behalf of groups, for example,   flight attendants, who were given new uniforms in 2011, which caused allergic reactions in a large number of union members.

These incidences of fabric-induced reactions are on the rise.   As we become more aware of the factors that influence our health, such as we’re seeing currently with increased awareness of the effects of interior air quality, designers and others will begin to see their way to specifying “safe” fabrics  just as their code of ethics demands.(12)  We feel certain that the trajectory for such an important consumer product as fabric, which surrounds us most of every hour of the day, will mimic that of organic food.

We say our fabrics are luxurious – because luxury has become more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends, the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.  In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

 

(1) Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

(2)World Health Organization, http://www.who.int/ceh/risks/cehemerging2/en/

(3)Agency for Toxic Substances & Disease Registry 2001, https://www.atsdr.cdc.gov/phs/phs.asp?id=400&tid=70

(4)Centers for Disease Control and Prevention, Publication # 90-101; https://www.cdc.gov/niosh/docs/90-101/

(5)Cooper GS, Scott CS, Bale AS. 2011. Insights from epidemiology into dichloromethane and cancer risk. Int J Environ Res Public Health 8:3380–3398.

(6)National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.

(7)Hauser, R and Calafat, AM, “Phthalates and Human Health”, Occup Environ Med 2005;62:806–818. doi: 10.1136/oem.2004.017590

(8)Environmental Working Group, http://www.ewg.org/research/mothers-milk/health-risks-pbdes

(9)School of Environmental Health, University of British Columbia; http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf

(10) Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

(11)Based on China carbon emissions reporting for 2010 from Energy Information Administration (EIA); see U.S. Department of Energy, Carbon Emissions from Energy Generation by Country, http://www.eia.gov/ cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed September 28, 2012). Estimate for China textile sector based on industrial emissions at 74% of total emissions, and textile industry
as 4.3% of total industrial emissions; see EIA, International Energy Outlook 2011, U.S. Department of Energy.

(12)Nussbaumer, L.L, “Multiple Chemical Sensitivity: The Controversy and Relation to Interior Design”, Abstract, South Dakota State University





Subtle effects of climate change

18 02 2015

I’m becoming anxious about climate change, and in particular what that means to my life. We humans are still in denial about climate change, and even though I’ve been told that climate change could  destroy ecosystems and economies within a generation – I like to look at the little changes that overpopulation and climate change bring about. Because the textile industry is a major contributor to the emissions which bring about these changes, I thought the topic was apt!

I was visiting a friend in Virginia recently. She and her friends were complaining about hiking conditions and how it’s so important to check for ticks after a hike because Lyme disease is so prevalent – complete with lots of stories of friends who had contracted the disease.

Less than four decades ago, scientists identified a spiral-shaped bacteria transmitted by the bite of a tiny hard-bodied tick as the cause of an arthritis outbreak among children in southern Connecticut. Since then, Lyme disease has emerged from obscurity to become the leading vector-borne (i.e., transmitted by mosquitos, ticks and/or fleas) disease in the United States. The 27,203 confirmed new cases reported to federal health authorities in 2013 marked nearly a 25 percent jump over the previous year,[1] and the total number of cases of Lyme disease has doubled since 1991. The CDC estimates that the number of infections is likely 10 times higher than reported, nearly 300,000 new cases per year based on lab test data.  Yale University researchers say that 10 percent of the population of southern New England has evidence of a previous Lyme disease infection. Why is this happening?

annual-cases-lyme-disease-us copy

While the disease is reported coast-to-coast, it is highly concentrated on the Eastern Seaboard, with a range expanding north into Canada and south through Virginia. Tick habitat and populations are influenced by many factors, but one of them is climate. This spring the U.S. Environmental Protection Agency added Lyme disease to its list of climate change indicators.

Scientists from Yale University have determined that climate impacts the severity of Lyme disease by influencing the feeding patterns of deer ticks that carry and transmit it.[2]  Deer ticks live for two years and have three stages of life – larval, nymphal and adult. They obtain one blood meal during each stage in order to survive. If the source of the first meal (a mouse, bird or other small animal) is infected with the bacterium that causes Lyme disease, the tick also becomes infected and passes it on to its next meal source – be it wildlife or human – in its second life stage as a nymph.

The researchers found that this cycle is heavily influenced by climate, which has the following effects on Lyme disease: An acceleration of the tick’s developmental cycle, a prolonged developmental cycle, increased egg production, increased population density, and a broader range of risk areas. Once the larvae have molted into the nymphal stage, the winter forces them to remain dormant until spring. An adult tick no longer needs to hibernate during the winter, so these ticks may become active on warm winter days, yielding a larger nymph population the following year. With an earlier winter thawing, nymphal-staged ticks will become active sooner. The warmer winters will also allow for a higher survival rate of the white-footed mouse, a popular host for the ticks, meaning an increased tick population in the spring and summer.

In the Midwest, where there are greater extremes of temperature, there is a shorter window of opportunity for tick feeding, and therefore a shorter gap between nymphal and larval feedings. Because of this, report the scientists, Midwestern wildlife and ticks are infected with less persistent strains, which correlates with fewer cases of Lyme disease reported in the Midwest.

The clear implication of this research, say the researchers, is that, as the planet warms, the Upper Midwest could find itself in the same situation as the Northeast: longer gaps between nymphal and larval feeding, and therefore, stronger, more persistent strains of Lyme disease.

Deer have been the main suspect in being the carrier of Lyme disease, but research shows that the new suspect is the white-footed mouse. Both deer and white-footed mouse populations have exploded recently – largely due to forest fragmentation. Forest fragments generally have fewer species than larger forest tracts, including the predators of deer and white-footed mice, which have allowed both of these populations to explode. “Our results suggest that efforts to reduce the risk of Lyme disease should be directed toward decreasing fragmentation of deciduous forests of the northeastern United States, particularly in areas with a high incidence of Lyme disease,” says Felicia Keesing of Bard College in Annandale, New York. “The creation of forest fragments smaller than five acres should especially be avoided.”

 

[1] Lavelle, Marianne, “Has Climate Change Made Lyme Disease worse?”, Scientific American, September 22, 2014

[2] Gatewood et al, “Climaate and Tick Seasonality are Predictors of Borrelia burgdorferl Genotype Distribution”, Applied and Environmental Microbiology, 2009; 75 (8): 2476 DOI: 10.1128/AEM.02633-08





Climate change and the textile industry

15 10 2014

Time sure flies doesn’t it?  I’ve been promising to reiterate the effects the textile industry has on climate change, so I’m re-posting a blog post we published in 2013:

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change. (I only use the term altruistic because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly,like the one in USA Today that explains that wet regions will be wetter, causing flash flooding; dry regions will get drier, resulting in drought. And … a heat wave that used to occur once every 100 years now happens every five years (1)).

Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2] And the U.S. textile industry is small potatoes when compared with some other countries I could mention.

The textile industry is huge, and it is a huge producer of greenhouse gasses (GHG’s). Today’s textile industry is one of the largest sources of greenhouse gasses  on Earth, due to this huge size.[3] In 2008, annual global textile production was estimated at 60 billion kilograms (KG) of fabric. The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of electricity or 132 million metric tons of coal and
  • between 6 – 9 trillion liters of water[4]

Fabrics are the elephant in the room. They’re all around us but no one is thinking about them. We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous: sheets, blankets, sofas, curtains, and of course clothing. Textiles, including clothing, accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]
Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.
How do you evaluate the carbon footprint in any fabric? Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric. Not an easy thing to do! To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

  1. Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn. The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.
  2. Next, add the energy used to weave those yarns into fabric. Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton, or synthetic.[7)

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made):

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields. Synthetic fertilizer use is a major component of the high cost of conventional agriculture: making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.
For synthetics, a crucial fact is that the fibers are made from fossil fuels. Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.
A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:
crop cultivation fiber production TOTAL
polyester USA 0 9.52 9.52
cotton, conventional, USA 4.2 1.7 5.9
hemp, conventional 1.9 2.15 4.05
cotton, organic, India 2 1.8 3.8
cotton, organic, USA 0.9 1.45 2.35

 

The table above only gives results for polyester; other synthetics have more of an impact: acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.
Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers. Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation. In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

 

Embodied Energy used in production of various fibers:
Energy use in MJ per KG of fiber:
flax fibre (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250
SOURCE: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow, http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional benefits:

  • being able to be degraded by micro-organisms and composted (improving soil structure); in this way the fixed CO2 in the fiber will be released and the cycle closed. Synthetics do not decompose: in landfills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned fishing nets in the world’s oceans.
  • sequestering carbon. Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils. Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production, emits fewer greenhouse gases and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques (2009) found that 43% fewer GHGs are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming. When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton. So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time. Best of all is an organic natural fiber.
And next let’s look at #2, the energy needed to weave those yarns into fabric.
There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester: thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels – both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production. In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

#######
(1) http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/
(2) Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html
(3) Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html
(4) Rupp, Jurg, “Ecology and Economy in Textile Finishing”, Textile World, Nov/Dec 2008
(5) Rose, Coral, “CO2 Comes Out of the Closet”, GreenBiz.com, September 24, 2007
(6) U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.
(7) Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint. The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings. We do not take this component into consideration because
. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
. is biodegradeable detergent used?
. Is the washing machine used a new low water machine? Is the water treated by a municipal facility?
. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.
Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome. Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.
(8) Ibid.
(9) “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/
(10) Fletcher, Kate, Sustainable Fashion and Textiles, Earthscan, 2008, Page 13
(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html
(12) Ibid.
(13) Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at
(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL); Organic Farming and Climate Change; Geneva: ITC, 2007.
(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations
(16) “Improving profits with energy-efficiency enhancements”, December 2008, Journal for Asia on Textile and Apparel, http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296





Climate change and Newtok

26 08 2014

How does this topic relate to the textile industry?   Well, it just so happens that the textile industry is huge – and a huge producer of greenhouse gasses.  The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.  Your textile choices do make a difference – next week we’ll take a look at why.

Newtok is one example of what the United Nations Intergovernmental Panel on Climate Change warns is part of a growing climate change crisis that will displace 150 million people by 2050.

Climate change is impacting Alaska and Arctic areas disproportionately because shiny ice and snow reflect a high proportion of the sun’s energy into space while the exposed rock and water absorb more and more of the sun’s energy, making it even warmer.   Arctic areas, including Alaska, are warming about twice as fast as the rest of the world. In 2012, Arctic sea ice coverage hit the lowest level ever recorded, and by 2040, it is predicted that summer sea ice could be limited to the northern coasts of Greenland and Canada.[1] But the cities and towns of the east coast of the United States are waking up to their own version of climate change – in the form of storm surges from hurricane Sandy. About half of America’s population lives within 50 miles of a coastline.

This video is an Emmy nominated documentary, Melting Point Greenland – winner of the 2013 National Headliners Award First Prize Environmental:

Today, more than 180 native communities in Alaska are facing flooding and losing land as warming temperatures are melting coastal ice shelves and frozen sub-soils, which act as natural barriers to protect villages against summer deluges and ocean storm surges. One of these villages is Newtok, an Eskimo village on the banks of the Ninglick River and home to indigenous Yup’ik Eskimos. The river coils around Newtok on three sides before emptying into the Bering Sea. The river has steadily been eating away at the land, carrying away 100 feet or more in some years, in a process accelerated by climate change.  It is estimated that the local school, on the highest point of land in the village, will be under water by 2017.

There are other changes too: Historically, Newtok would expect snow by October. In early December of 2013, snow had not yet fallen. Residents have told media that geese have been altering migratory patterns that had been unchanged for centuries and moose are migrating into caribou country. Comments Nathan Tom, a Yup’ik villager, “The snow comes in a different timing now. The snow disappears way late. That is making the geese come at the wrong time. Now they are starting to lay their eggs when there is still snow and ice and we can’t go and pick them.  It’s changing a lot. It’s real, global warming, it’s real.” [2]

Permafrost

Newtok may well be the site of some of the planet’s first climate refugees.

“Climate refugee” usually refers to a people displaced from their homes by the impact of a changing climate – although the strict definition of a refugee in international law is more narrow – including people displaced by war, violence or persecution, but not environmental changes.

The first image that usually springs to mind for climate refugees are small tropical islands in the Pacific or of a low-lying delta like those in Bangladesh, where inhabitants have been forced out of their homes by sea-level rise. But given the rapidity of the changes in the Arctic regions, this image is about to become more diverse.

But as with most things these days, the variables are complex: As applied to Newtok, the term “climate refugees” is somewhat ironic, given that the Yup’ik were nomadic by nature, migrating over the permafrost.  In the 1950s the U.S. government told the Yup’ik that their nomadic lifestyle was no longer acceptable, they had to settle in one location so their children could go to school.  The Yup’ik begrudgingly accepted, settling in Kayalavik, a village of sod huts, farther north.

When Alaska became a state in 1959, federal officials began to pressure the Yup’ik to relocate, as the Kayalavik village was harder for supply barges to access.  Eventually the ill-fated decision was made to relocate the tribe to Newtok — a seasonal stopping place for the tribe’s late-summer berry picking.

“The places are often where they are because it was easy to unload the building materials and build the school and the post office there,” said Larry Hartig, who heads the state’s Commission on Environmental Conservation. “But they weren’t the ideal place to be in terms of long-term stability and it’s now creating a lot of problems that are exacerbated by melting permafrost and less of the seasonal sea ice that would form barriers between the winter storms and uplands.”[3]

The U.S. Army Corps of Engineers has estimated that moving Newtok could cost $130 million. Twenty-six other Alaskan villages are in immediate danger, with an additional 60 considered under threat in the next decade, according to the corps. But as the villagers of Newtok are discovering, recognizing the gravity of the threat posed by climate change – and responding in time are two very different matters. Since the first meeting in December 2007, at which the villagers held the first public meeting about the move, little has been done, tethered to a dangerous location by bureaucratic obstacles and lack of funds.

 

 

 

[1] http://wwf.panda.org/what_we_do/where_we_work/arctic/what_we_do/climate/

[2]http://www.dailytech.com/Government+Creates+Global+Warming+Refugee+Crisis+in+Alaska/article31546.htm

[3] http://www.theguardian.com/environment/interactive/2013/may/13/newtok-alaska-climate-change-refugees





Fabric and your carbon footprint

3 10 2013

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change.  (I only use the term altruistic  because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly, like the one in USA Today that explains that wet regions will be wetter, causing flash flooding;  dry regions will get drier, resulting in drought. And  …  a heat wave that used to occur once every 100 years now happens every five years (1)).

Bill Schorr

Bill Schorr


Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2]  And the US textile industry is small potatoes when compared with some other countries I could mention.  Last week we explained that a typical “quality” sofa  uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric – in one sofa.

The textile industry is huge, and it is a huge producer of greenhouse gasses.  Today’s textile industry is one of the largest sources of greenhouse gasses (GHG’s) on Earth, due to its huge size.[3] In 2008,  annual global textile production was estimated at  60 billion kilograms (KG) of fabric.  The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of  electricity  or 132 million metric tons of coal and
  • between 6 – 9  trillion liters of water[4]

Fabrics are the elephant in the room.  They’re all around us  but no one is thinking about them.  We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous:  sheets, blankets, sofas, curtains, and of course clothing.  Textiles, including clothing,  accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]

Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.

How do you evaluate the carbon footprint in any fabric?  Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric.   Not an easy thing to do!  To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

(1)  Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn.  The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.

(2) Next, add the energy used to weave those yarns into fabric.  Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton,  or synthetic.[7]

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

For synthetics, a crucial fact is that the fibers are made from fossil fuels.   Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun   fiber:
crop cultivation fiber production TOTAL
polyester USA 0.00 9.52 9.52
cotton, conventional, USA 4.20 1.70 5.90
hemp, conventional 1.90 2.15 4.05
cotton, organic, India 2.00 1.80 3.80
cotton, organic, USA 0.90 1.45 2.35

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

Embodied   Energy used in production of various fibers:
energy use in   MJ per KG of fiber:
flax fibre   (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional  benefits:

  1. being able to be degraded by micro-organisms and composted (improving soil structure); in  this way the fixed CO2 in the fiber will be released and the cycle closed.   Synthetics do not decompose: in landfills they release  heavy metals and other additives into soil and groundwater.       Recycling requires costly separation, while incineration produces  pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned  fishing nets in the world’s oceans.
  2. sequestering  carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.       Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production,
  • emits fewer greenhouse gases
  • and supports organic farming (which has myriad environmental, social and health benefits).

A study published by Innovations Agronomiques (2009) found that 43% less GHG are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims      (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water  (making the soil more friable so rainwater is absorbed better – lessening      irrigation requirements and erosion)
  • ensures sustained  biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric      carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton.   So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time.   Best of all is an organic natural fiber.

And next let’s look at #2, the energy needed to weave those yarns into fabric.

There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:   thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

(1)    http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/

(2)    Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

(3)    Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html

(4)    Rupp, Jurg, “Ecology and Economy in Textile Finishing”,  Textile World,  Nov/Dec 2008

(5)    Rose, Coral, “CO2 Comes Out of the Closet”,  GreenBiz.com, September 24, 2007

(6)     U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.

(7)    Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint.  The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings.  We do not take this component into consideration because

  1. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
  2. is biodegradeable detergent used?
  3. Is the washing machine used a new low water machine?  Is the water treated by a municipal facility?
  4. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.

Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome.  Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.

(8)     Ibid.

(9)    “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

(10)  Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13

(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html

(12)  Ibid.

(13) Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL);    Organic Farming and Climate Change; Geneva: ITC, 2007.

(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

(16)  “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296





Our finite pool of worry

14 04 2010

Earth Day is coming up and I am having a hard time with climate change.  It’s such a big, complicated issue.  Climate change, according to Columbia University’s Center for Research on Environmental Decisions (CRED),  is  inherently abstract, scientifically complex, and globally diffused in causes and consequences.  People have a hard time grasping the concept, let alone taking action.  What can one person do to have an impact on such an overriding problem?

Turns out I’m not the only one who thinks that way.

Research shows that most Americans are  aware of climate change and even rank it as a concern,  but they don’t perceive it on a par with, say, the economic downturn or health care reform.   According to CRED,  most Americans do not currently associate climate change with disastrous impacts, such as drought, extreme weather events, and coastal flooding. And although most people can recite at least a few things they could do to help mitigate global climate change (like replacing light bulbs or carrying  reuseable grocery bags) – most are not doing them.

I’m ashamed to say,  I’m in that category.  I forget my grocery bags.  I use the car when I should really walk.  I  wash dishes by hand rather than using the dishwasher.  (What’s that?  Did you know that a running faucet can waste 2.5 gallons of water every minute!  So if I do the dishes by hand and it takes me 15 minutes, I’ve just wasted 37.5 gallons of water.  It’s better for me to run the dishwasher  – which uses only 11 gallons of water per use – even if it isn’t full. But I’m an old dog and habits die hard.)    It’s not easy, is it?  Don’t you just feel like throwing up your hands?

I’m faced with decisions every day in our fabric collection that could have far reaching effects – for example, a supplier wants to know if it’s o.k. to use the mill which has antiquated water treatment because that mill is closer (thereby reducing the energy needed for transport) and, not least, they’re cheaper!  There it is again –   Cost.  The bottom line in most decisions.  And if we decide to go with the sub optimal water treatment,  we might gain a cost advantage (so YOU might buy the fabric) but what will it mean in terms of the health of our children and the kind of world we leave them?

Each day I do more research into the effects that synthetic chemicals are having on us and our environment.  It chills me and I really believe that we’re causing ourselves harm.  We’re playing Russian roulette with the chemical mix we allow in our systems – thinking that since we’re not sick now it’s really nothing we have to worry about.   I absolutely believe that long term effects of our love affair with synthetic chemicals will be profound and that we must do something to stem the tide.  I proselytize to expectant mothers (I can’t help myself) about using organic fabrics and mattresses for their infants and themselves – because much of the research shows exposure in utero is when the most harm can be done.  But research also shows that future consequences are discounted, so people think they’ll just put off thinking of this until they have more time.

I guess what I’m getting at is the fact that we still behave in destructive ways – we don’t buy organic foods because it costs more (and it’s not gonna kill us – tomorrow, anyway),  we forget our reuseable grocery bags and we don’t take the time to replace light bulbs.  It’s like losing weight or exercising – we know it’s good for us, but we still don’t do it.

A report entitled The Psychology of Climate Change Communication, released  by CRED, looks at how people process information and decide to take action …  or not.  It seems people can deal with only so much bad news at a time before they tune out.   Social scientists call this the “finite pool of worry”.   And for really big threats like climate change, people are likely to alleviate their worries by taking only one action, even if it’s in their best interest to take more than one action.

For Americans, recycling has become the catchall green measure, the one action that anybody can do and feel that they’re doing something.  As with every action, there are costs and benefits.  The recycling of some products, such as computers and other electronics, creates a more severe strain on the environment that do other types of products, such as newsprint.  Again, even this topic is so fraught with subtleties and variety that dissecting it is hard.

I’d like to focus on plastics because the textile industry has concentrated sustainability efforts on recycled polyesters – many fabric collections claim green credentials because certain of their fabrics are made of recycled, rather than virgin, polyester.  And we all smile and pat ourselves on the back because we’re doing something – and hey, it doesn’t even cost any more.

Polyester is just one of the many plastics that are in use today;  plastic recycling – bottles, packaging, bags – has been adopted  as the mascot of our green efforts – as one school program says, it “teaches children social responsibility and reinforces learning to respect and take care of the environment”.   But what does plastic recycling really accomplish?

Stay tuned.