Remember the children

28 09 2015

We’ve been really busy – one of the things that has delayed our blog post is our new website:  Two Sisters Ecotextiles (twosistersecotextiles.com).  It is a retail website, because we feel everybody should have access to safe fabrics.  If you go to our new site, you’ll notice that it features lots of pictures of kids, because kids are more at risk than adults from the chemicals in our environment.  We did a blog post about this a few years ago, and it’s reproduced here.

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering – a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD – and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease” trumpeted Time magazine in 2011.[6]

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals – chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders that affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day – including textiles.

What is different now?

  • The chief argument used by manufacturers to defend their chemical use is that the amounts used in products are so low that they don’t cause harm.  Yet we now know that the old belief that “the dose makes the poison” (i.e., the higher the dose, the greater the effect) is simply wrong.  Studies are finding that even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window.[9] Surprisingly, low doses may even exert more potent effects than higher doses. 
Endocrine disrupting chemicals may affect not only the exposed individual but also their children and subsequent generations.[10] Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.
  • We also now know that time of exposure is critical – because during gestation and through early childhood the body is rapidly growing under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted – and so on – until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which subsequently impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  • There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years. The developmental basis of adult disease has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases that can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations – is called “epigenetics”. Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[11] Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[12]
  • Age at time of exposure is critical. Fetuses are most at risk, because their rapidly developing bodies can be altered and reprogrammed before birth.
  • Finally, exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[13] It is well documented that chemicals can make each other more toxic, and because we can’t know what exposures we’re being subjected to (given the cocktail of smog, auto exhaust, cosmetics, cleaning products and countless other chemicals we’re exposed to every day) coupled with an individuals unique chemistry, we can’t know when exposure to a chemical will trigger a tipping point.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including newborn infants.  Of the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than adults, and their rapid development makes them more vulnerable to environmental interference. Pound for pound, children breathe more air, consume more food, and drink more water than adults, due to their substantial growth and high metabolism. For example, a resting infant takes in twice as much air per pound of body weight as an adult. Subject to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1 million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of toxic chemicals are released into the nation’s environment each year, including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for toxicity. Fewer than 20 percent have been studied for their capacity to interfere with children’s development. This failure to assess chemicals for their possible hazards represents a grave lapse of stewardship by the chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care centers and hospitals. The United States has only 1.3% of the world’s population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into the environment. Some will persist in the environment for decades and even centuries.

Let’s take a look at just the group of chemicals which are known as endocrine disruptors:

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals.[14] Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often – and in vast quantities – in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[15] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, the pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[16], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are throwing out our old notions of toxicology (i.e., “the dose makes the poison”). In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things.”

As the TEDX (The Endocrine Disruption Exchange, Inc.) website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken.

 

 

[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D; “No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much?” Environ Health Perspect 107:155–159, 1999

[10] Anway MD, Skinner MK “Epigenetic transgenerational actions of endocrine disruptors.” Endocrinology 147: S43–S49, 2006

[11] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[12] http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[13] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K “Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals”, Pure and Applied Chemistry, SCOPE/IUPAC Project Implications of Endocrine Active Substances for Humans and Wildlife 75:2305–2320, 2003

[14] http://www.greenpeace.org/international/Global/international/publications/toxics/Water%202012/TechnicalReport-06-2012.pdf     SEE ALSO: http://www.greenpeace.org/international/Global/international/publications/toxics/2014/A-Fashionable-Lie.pdf

[15] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[16] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Type 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

 





Phthalate concerns for pregnant women

29 01 2015

Three pregnant women

As if we needed something else to worry about, a peer-reviewed study from the Mailman School of Public Health at Columbia University, published in December 2014, found evidence that chemicals called phthalates can impact the children of pregnant women who were exposed to those chemicals. Children of moms who had the highest levels of phthalates during pregnancy had markedly lower IQs at age 7. [1] Phthalates had previously been linked to effects ranging from behavioral disorders and cancers to deformations of the sex organs.

Why are we talking about this in a blog about fabrics?

Because phthalates are in the fabrics we use.  Generally, phthalates are used to make plastic soft: they are the most commonly used plasticizers in the world and are pretty much ubiquitous. They’re found in perfume, hair spray, deodorant, almost anything fragranced (from shampoo to air fresheners to laundry detergent), nail polish, insect repellent, carpeting, vinyl flooring, the coating on wires and cables, shower curtains, raincoats, plastic toys, and your car’s steering wheel, dashboard, and gearshift. (When you smell “new car,” you’re smelling phthalates.) Medical devices are full of phthalates — they make IV drip bags and tubes soft, but unfortunately, DEHP is being pumped directly into the bloodstream of ailing patients. Most plastic sex toys are softened with phthalates.

Phthalates are found in our food and water, too. They are in dairy products, possibly from the plastic tubing used to milk cows. They are in meats (some phthalates are attracted to fat, so meats and cheeses have high levels, although it’s not entirely clear how they are getting in to begin with). You’ll find phthalates in tap water that’s been tainted by industrial waste, and in the pesticides sprayed on conventional fruits and vegetables.

And fabrics. People just don’t think to even mention fabrics, which we continue to identify as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% by weight of the fabric.[2] Phthalates are one of the main components of plastisol screen printing inks used on fabrics. These plasticizers are not chemically bound to the PVC, so they can leach out. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Phthalates are what is termed an “endocrine disruptor” – which means they interfere with the action of hormones. Hormones do a lot more than just make the sexual organs develop. During the development of a fetus, they fire on and off at certain times to affect the brain and other organs.

“The developing brain relies on hormones,” Dr. Factor-Litvak, the lead scientist of the study, said. Thyroid hormones affect the development of neurons, for example. There might be a window of vulnerability during pregnancy when certain key portions of the brain are forming, she said, and kids whose moms take in a lot of the chemicals during those times might be at risk of having the process disrupted somehow.

“These findings further suggest a potential role for phthalates on neurodevelopment,” said Dr. Maida P. Galvez, who did not work on the study but has a specialty in environmental pediatrics. The associate professor is in the Department of Preventive Medicine and Pediatrics at the Icahn School of Medicine at Mount Sinai. “While this requires replication in other study populations for confirmation, it underscores the fact that chemicals used in everyday products need to be rigorously evaluated for their full potential of human health impacts before they are made widely available in the marketplace.”[3]

In the United States, the new Consumer Product Safety Improvement Act of 2008 (CPSIA) banned certain phthalates from use in toys or certain products marketed to children. In order to comply with this law, a product must not contain more than 0.1% of any of six banned phthalates. But just these six – the class of phthalates includes more than 25 different chemicals.

Gwynne Lyons, policy director of the campaign group, CHEM Trust, said: “The number of studies showing that these substances can cause harm is growing, but efforts by Denmark to try and get EU action on some phthalates had run into difficulties, largely because of concerns about the costs to industry.” [4] (our highlight!)

[1] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[2] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[3] Christensen, “Exposure to common household chemicals may cause IQ drop”, CNN, December 11, 2014 http://www.cnn.com/2014/12/11/health/chemical-link-to-lower-iq/

[4] Sample, Ian, “Phthalates risk damaging children’s IQs in the womb, US researchers suggest”, The Guardian, December 10, 2014





Why our children are at risk

18 11 2013

We hear about deaths from cancer – and how the rates are going down  (1). And that’s fabulous – but the sad fact is that the incidence of cancer seems to be going up (2).   The reason is complicated – we’re getting older, true –  but we’re also getting better at fighting it:

Cancer Research UK

Cancer Research UK

The number of new cancer cases have increased 0.6% every year since 1975 – overall, that’s an increase of 21% in the past 36 years (3) . What I find particularly disturbing is the rise in the reported incidence of cancer among young children and adolescents, especially brain cancer, testicular cancer, and acute lymphocytic leukemia. Sadly, after injuries and violence, cancer is the leading cause of death in our children (4).

National Academy of Sciences

National Academy of Sciences

At the risk of showing my bias, in case there are those among you who didn’t already know, I think part of the problem is because our environment contains many chemicals that are known to cause these cancers. But I’m not alone: the New York Times, in a recent editorial, urged the reform of the current law which purports to protect Americans from these chemicals (5), and the 2011 report of the President’s Cancer Panel has said that the “true burden of environmentally induced cancers has been grossly underestimated.” (6)

Besides cosmetics, shampoos, detergents and building products, fabric processing uses a wide variety of synthetic chemicals, many of which remain in the fabrics. A short list of the many chemicals used in textile processing – many of which remain in the fabrics we live with – includes the following chemicals, which are all linked to cancer:

• Formaldehyde is known to cause cancer (and asthma), yet rates of formaldehyde in indoor air have grown from 14 ppb in 1980 to 200 ppb in 2010 – and these rates are increasing.
• Higher rates of chemicals called Polychlorinated Biphenyls, or PCBs, used in the production of plastics – and therefore all synthetic fabrics – also are linked with higher rates of leukemia.
• Benzene, used in the production of nylon and other synthetics, in textile dyestuffs and in the pigment printing process – is linked to leukemia, breast cancer, lymphatic and hematopoietic cancers.
• Chromium Hexavalent compounds, used in leather tanning, and the manufacture of dyes and pigments, are linked to lung, nasal and nasopharyngeal cancers.
• Bisphenol A, used in the production of polyester and other synthetic fibers and as an intermediate in the production of dyestuffs, is an endocrine disruptor linked to breast and prostate cancer.

Children are at greater risk because they are exposed at a higher rate than adults, their behaviors exacerbate exposure and they have increased susceptibility to the chemicals:

GREATER EXPOSURE:
Pound for pound, children breathe twice as much air as an adult, drink two and a half times as much water, and eat three to four times more. Also – the typical newborn weighs 1/20th that of an adult male, but the infant’s surface area is just 1/8th as great. This means that the infant’s total skin area is 2.5 times more per unit of body weight than an adult (7).
Their breathing rates, at rest, are higher than those of adults, and greater levels of physical activity can increase their breathing rates even further. Their play is often at ground level, while adults breathe four to six feet above the floor. So children have greater inhalation and dermal exposure to chemicals present on floors, carpets, grass or dirt, where heavier chemicals such as lead and particulates settle.

BEHAVIOR:
Children put everything into their mouths when exploring their environment. This increases their ingestion of substances in soil, household dust, floors and carpets, as well as the objects themselves.

Some children will gleefully jump into a lake – even before they could swim! This lack of fear as they grow can further increase their exposure to environmental hazards.

INCREASED SUSCEPTIBILITY:
Childhood is characterized by rapid physical and mental growth. Accordingly, certain organs may not be fully developed and may be more vulnerable to injury. Children absorb, metabolize, and excrete compounds differently than adults.
• In some instances, children may be more susceptible than adults due to their increased rates of absorption or decreased rates of elimination of foreign compounds. In other cases, the opposite may be true. Children will absorb about 50 percent of lead ingested, whereas adults will absorb only about 10 to 15 percent(8). Kidneys are the principal pathway for elimination of most chemicals from the body. At birth an infant’s kidney’s filtration rate is a fraction of adult values; by age one the rate is at adult levels. (9)
• Longer lifetimes: many diseases initiated by chemical hazards take decades to develop, so early exposure to toxicants may be more likely to lead to disease than the same exposures experienced later in life.

The fetus is particularly sensitive to environmental toxicants (10). Chemicals can affect the children born to women exposed during pregnancy, while the women remain unaffected. For example, the children of women from Michigan who ate two to three meals of fish contaminated with PCBs per month for six years before pregnancy had lower birth weights, memory deficits at seven months and four years of age, and cognitive deficits persisted at eleven years of age (11). In Iraq, children born to women who during pregnancy inadvertently ate seed grain treated with mercury to prevent fungus had severe developmental and mental deficits  (12).

(1) Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: A Cancer Journal for Clinicians 2009;59(4):225–249.
(2) Data from cancer tracking suggest that childhood cancer is increasing, although the data is not consistent from year to year; the National Cancer Institute reported that for infants less than one year old, the rate of cancer rose by 36% from 1976-84, but some say that these increases are due to improved detection rather than representing true increases in cancer.
(3) Center for Children’s Health and the Environment, Mt. Sinai School of Medicine (http://www.pbs.org/odyssey/odyssey/toxics_brain_cancer.pdf)
(4) Ibid.
(5) http://www.nytimes.com/2013/04/19/opinion/a-toothless-law-on-toxic-chemicals.html?emc=eta1&_r=0
(6) http://www.environmentalhealthnews.org/ehs/news/presidents-cancer-panel/
(7) Our Children at Risk, The Natural Resrouces Defense Council, http://www.nrdc.org/health/kids/ocar/chap2.asp
(8) Royce, S. and H. Needleman, Case Studies in Environmental Medicine: Lead Toxicity, Agency for Toxic Substances and Disease Registry, 1995.
(9) Bearer, C., “How Are Children Different from Adults?” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 7-12.
(10) Birnbaum, L.S., “Endocrine Effects of Prenatal Exposures to PCBs, Dioxins, and Other Xenobiotics: Implications for Policy and Future Research,” Environmental Health Perspectives, vol. 102, no. 8, 1994, pp.676-679. Y.L. Guo et al., “Growth Abnormalities in the Population Exposed in Utero and Early Postnatally to Polychlorinated Biphenyls and Dibenzrofurans,” Environmental Health Perspectives, vol. 105, suppl. 6, September 1995, pp.117-122.
(11) Jacobson, J.L. et al., “The Transfer of Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs) across the Human Placenta and into Maternal Milk,” American Journal of Public Health, vol. 74, 1984, pp.378-9. J. Jacobson et al., “Effects of In Utero Exposure to Polychlorinated Biphenyls and Related Contaminants on Cognitive Functioning in Young Children,” Pediatrics, vol. 116, 1990, pp.38-45. S.W. Jacobson et al., “The Effect of Intrauterine PCB Exposure on Visual Recognition Memory,” Child Dev, vol. 56,1985, pp.853-60. J.L. Jacobson et al., “Effects of Exposure to PCBs and Related Compounds on Growth and Activity in Children,” Neurotoxicol. Teratol., vol.12, 1990, pp. 319-26.
(12) Gilbert, S. G. and K. Grant-Webster, “Neurobehavioral Effects of Developmental Methyl-Mercury Exposure,” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 135-142.





True cost of a conventional sofa

8 11 2013

Buying a sofa is a big committment: it dominates the room, costs a lot, and should be presentable for at least 10 years. So let’s say that you’ve cruised the stores, sat in the sofas, lifted them, pushed and probed – and decided on a version that looks and feels right. And you’ve made sure that your choice contained all the ingredients for a high quality sofa – hardwood frame (check), 8 way hand-tied springs (check); high density foam (check), and a decorative fabric that will last the entire 10 – 20 year estimated life of the sofa.

But is it organic?

Most people wouldn’t give that question a second thought, but we think it’s a critical question. Why? Well, let’s just assume you’ve chosen a conventionally produced sofa. That means:

1. The hardwood is not FSC certified, which means it comes from a forest that is not managed. That means you’ve chipped away at your children’s inheritance of this Earth by supporting practices which don’t support healthy forests, which are critical to maintaining life: forests filter pollutants from the air, purify the water we drink, and help stabilize the global climate by absorbing carbon dioxide, the main greenhouse gas. They provide habitat for 90% of the animal and plant species which live on land. Forests are commercially important, too; they yield valuable resources like wood, rubber and medicinal plants, including plants used to create cancer drugs. Forest certification is like organic labeling for forest products. If you have chosen a sofa which uses plywood, medium density fiberboard (MDF) or Glue Laminated Beams (Glulam), then you will also be living with formaldehyde emissions. To read more about why FSC certification is important, click here.

2. The sofa uses either polyurethane or soy foam. Even high density polyurethane foam – as well as soy foam, the new media darling – emits methyloxirane, which causes cancer and genetic mutations , and toluene, a neurotoxin . Your polyurethane/soy foams oxidize over time, sending these chemicals into the air, where you can breathe them in.  Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development. And because polyurethane and soy foams are basically solid gasoline, they often require flame retardant chemicals. To read more about soy and poly foams, click here  and here.

From blog.greensciencepolicy.org

From blog.greensciencepolicy.org

3. Your sofa uses fabric – made of anything from cotton to linen or polyester – which was produced without regard to the kinds of chemicals used in dyestuffs, processing or finishes. Fabrics are, by weight, about 25% synthetic chemicals, and textile processing uses some of the most dangerously toxic chemicals known – among them, lead, mercury, arsenic, formaldehyde, Bisphenol A (BPA), flame retardants such as pentaBDE, PFOA.

There are no requirements that manufacturers disclose the chemicals used in processing – chemicals which remain in the finished fabrics. Often the chemicals are used under trade names, or are protected by legislation as “trade secrets” in food and drug articles – but fabrics don’t even have a federal code to define what can/cannot be used  –  because fabrics are totally unregulated in the U.S., except in terms of fire retardancy or intended use. It’s pretty much a free-for-all. Many studies have linked specific diseases with work in the textile industry – such as autoimmune diseases, leukemia and breast cancer. Some of the chemicals used in processing evaporate into your home’s air (such as formaldehyde), others (like lead) will be available in house dust – because every time you sit down or brush against the fabric, microscopic particles abrade and fly into the air. And remember, your skin is a permeable membrane. We are just beginning to understand how even tiny doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive periods of development, and how the endocrine system involves a myriad of chemical messengers and feedback loops. A fetus might respond to a chemical at one hundred-fold less concentration or more, yet when you take that chemical away, the body is nonetheless altered for life.  So infants may seem fine at birth, but might carry within them a trigger only revealed later in life, often in puberty, when endocrine systems go into hyperdrive. This increases the adolescent’s or adult’s chances of falling ill, getting fat, or becoming infertile, for example. For more on these issues, click here  and here

4. Finally, glues, varnishes, paint all contribute to the toxic load of evaporating chemicals if conventional products have been used on your sofa.

We are often asked about the perceived higher cost of going organic – but really, isn’t the true cost of a conventional sofa more than anybody should have to bear?





Bisphenol A – in fabrics?

14 02 2013

From: Center for Health Environment & Justice

From: Center for Health Environment & Justice

If you’ve bought baby bottles or water bottles recently, I’m sure you’ve seen a prominent “BPA Free” sign on the container.

BPA stands for Bisphenol A, a chemical often used to make clear, polycarbonate plastics (like water and baby bottles and also eyeglass lenses, medical devices, CDs and DVDs, cell phones and computers). And though it has been formally declared a hazard to human health in Canada and banned in baby bottles in both Canada as well as the EU, U.S. watchdog agencies have wildly differing views of BPA: The National Toxicology Program (NTP) reported “some concern” that BPA harms the brain and reproductive system, especially in babies and fetuses. The FDA declared that “at current levels of exposure” BPA is safe.

But consider this: Of the more than 100 independently funded experiments on BPA, about 90% have found evidence of adverse health effects at levels similar to human exposure. On the other hand, every single industry-funded study ever conducted — 14 in all — has found no such effects. David Case made the argument in the February 1, 2009 issue of Fast Company that this is a story about protecting a multibillion-dollar market from regulation.

But that’s beside the point which is: nobody disputes the fact that people are constantly exposed to BPAs and babies are most at risk. It’s also undisputed that BPA mimics the female sex hormone estrogen, and that some synthetic estrogens can cause infertility and cancer.

From David Case: “What is in dispute is whether the tiny doses of BPA we’re exposed to are enough to trigger such hormonal effects. For decades, the assumption was that they didn’t. This was based on traditional toxicology, which holds that “the dose makes the poison.” In other words, a threshold exists below which a compound is harmless. This makes intuitive sense. Consider alcohol: The more you drink, the drunker you get; but if you drink just a little — below the threshold — you may not feel anything. In the 1970s and 1980s, government scientists used standard toxicology to test BPA. They concluded that, at doses far higher than those found in humans, it may cause organ failure, leukemia, and severe weight loss. Yet as BPA products have made their way into every part of our lives, biologists have discovered evidence that very low doses may have a completely different set of effects — on the endocrine system, which influences human development, metabolism, and behavior.” Studies showed that exposure levels 25,000 times lower than the EPA’s toxic threshold produced developmental disorders in the offspring of pregnant mice.

If you’d like to read more about this click here.

Bisphenol A is now deeply imbedded in an extraordinary range of products in our modern consumer society – so many, in fact that it’s pretty much upiquitous. This is cause for grave concern, because it is extremely potent in disrupting fetal development. BPA contamination is also widespread in the environment. For example, BPA can be measured in rivers and estuaries at concentrations that range from under 5 to over 1900 nanograms/liter.(1)

What this all means is that most of us live our lives in close proximity to bisphenol A.
Because it’s used to make plastic hard, I never thought it would have a place in the textile industry. So it was with some concern that I came across articles which explain the use of bisphenol A in the manufacturing of synthetic fibers.

Producing synthetic fibers and yarns is almost impossible without applying a processing aid to the fibers during the extrusion and spinning processes. The fibers and yarns are frequently in contact with hot surfaces, or they pass through hot ovens. In order to withstand these extreme conditions, the yarns and fibers have processing aids or finishes applied. This applied processing aid or ‘finish’, in addition to helping the yarns withstand extreme temperatures, also reduces static electricity, fiber-fiber and metal-fiber friction, provides integrity to the filaments, and altogether eases the manufacturing processes.

But because modern manufacturing equipment runs at higher speeds and subsequently at higher temperatures, the finish degrades in the high temperatures – yielding lower quality fibers – and generates unwanted decomposition products. These byproducts can be in the form of:

  1.  Toxic and nontoxic gases which have environmental and safety issues;
  2.  Liquids, which leave a sticky residue on the yarns,
  3.  Or they may form a solid varnish on hot surfaces that is very difficult to remove; the presence of the varnish interferes with continuous, efficient production leading to economic losses due to equipment shutdown and product failure.

To overcome the problems caused by the degradation of finishes, several additives are introduced to prevent or delay the reactions of oxidation and degradation. Several classes of antioxidants are typically used as these additives in these finishes.

In a study sponsored by the National Textile Center, a research consortium of eight universities, three North Carolina State University professors investigated the thermal stability of textiles, specifically with respect to the antioxidants used in the finishes. They investigated four different antioxidants – one of which is based on Bisphenol A. (2)

So I got interested, and began a bit of poking around for other mentions of Bisphenol A in the textile industry. I found two scientific references to use of Bisphenol A in the production of polyester fabrics. Both reported similar use of Bisphenol A as is found in this quote, which states: “ a woven polyester fabric was … finished with an aqueous compound containing 5% polyethylene glycol bisphenol A ether diacrylate for 30 min at 60° to give a hygroscopic, antistatic fabric with good washfastness.” (3)

I found that Bisphenol A is used in the production of flame retardants, and as an intermediate in the manufacture of polymers, fungicides, antioxidants (mentioned above), and dyes. Because it is often used as an intermediate it’s hard to pin down, and manufacturers keep their ingredients trade secrets so we often will not know – unless somebody funds a study which is published.

I have not seen any studies which report finding Bisphenol A in a finished fabric, so this may be a tempest in a teacup. But isn’t it worth noting that this chemical, which has been found in the blood of 95% of all Americans, and which some say may be the “new lead”, can exist in products in which we previously never would have thought to look?

(1) http://www.ourstolenfuture.org/newscience/oncompounds/bisphenola/bpauses.htm
(2) Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”, http://www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf
(3) http://www.lookchem.com/cas-644/64401-02-1.html?countryid=0





Why buy safe fabrics for your children – isn’t organic food enough?

28 11 2012

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering –  a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD –  and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease”[6].

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  It may be that future parents may be just as shocked by the kinds of exposures we’re living with as we are by these Marlboro cigarette ads from the 1950’s:

Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders which affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of  exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including  newborn infants.  Have you seen the slogan that states babies are born pre-polluted?   Of  the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than  adults, and their rapid development makes them more vulnerable to      environmental interference. Pound for pound, children breathe more  air, consume more food, and drink more water than adults, due to their  substantial growth and high metabolism. For example, a resting infant  takes in twice as much air per pound of body weight as an adult. Subject  to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1  million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of  toxic chemicals are released into the nation’s environment each year,  including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for  toxicity. Fewer than 20 percent have been studied for their capacity to  interfere with children’s development. This failure to assess chemicals  for their possible hazards represents a grave lapse of stewardship by the  chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of  them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care      centers and hospitals. The United States has only 1.3% of the world’s  population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into  the environment. Some will persist in the environment for decades and even centuries.

What does the industry say in their defense?  The chief argument they use is that the amounts used in products are so low that they don’t cause harm.  We now know that the old belief that “the dose makes the poison” (i.e.,  the higher the dose, the greater the effect)  is simply wrong.  Studies are finding that even tiny quantities of chemicals – in the parts-per-trillion range – can have significant impacts on our health.  Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.

We also now know that time of exposure is critical – because during gestation and  through early childhood  the body is rapidly growing  under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted –  and so on –  until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life.

There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years.   So one could unwittingly be setting the stage for a devastating disease down the road.

And this is where it gets really interesting (or scary):

Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations –  is called “epigenetics”.

Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great grand-daughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[9]  Another recent study has shown that men who started smoking before  puberty caused their sons to have significantly higher rates of obesity. And  obesity is just the tip of the iceberg—many researchers believe that epigenetics  holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[10]  For those of you who are interested, the book by Richard Francis makes a fascinating read.


[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607





Bisphenol A in textile processing?

16 12 2011

If you’ve bought baby bottles or water bottles recently, I’m sure you’ve seen a prominent “BPA Free” sign on the container.

BPA stands for Bisphenol A, a chemical often used to make clear, polycarbonate plastics (like water and baby bottles and also eyeglass lenses, medical devices, CDs and DVDs, cell phones and computers).  And though it has been formally declared a hazard to human health in Canada and banned in baby bottles in both Canada as well as the EU,  U.S. watchdog agencies have wildly differing views of BPA:  The National Toxicology Program (NTP) reported “some concern” that BPA harms the brain and reproductive system, especially in babies and fetuses.  The Food and Drug Administration declared that “at current levels of exposure” BPA is safe.

But consider this:  Of  the more than 100 independently funded experiments on BPA, about 90% have found evidence of adverse health effects at levels similar to human exposure. On the other hand, every single industry-funded study ever conducted — 14 in all — has found no such effects.  David Case made the argument in the February 1, 2009 issue of Fast Company that this is a story about protecting a multibillion-dollar market from deregulation.  But that’s beside the point  which is:    nobody disputes the fact that people are constantly exposed to BPAs and babies are most at risk.  It’s also undisputed that BPA mimics the female sex hormone estrogen, and that some synthetic estrogens can cause infertility and cancer.  If you’d like to read more about this click here.

Bisphenol A is now deeply imbedded in the products of modern consumer society.  This is important because it’s used in so many modern products (making it pretty much ubiquitous), and because it is extremely potent in disrupting fetal development. BPA contamination is also widespread in the environment. For example, BPA can be measured in rivers and estuaries at concentrations that range from under 5 to over 1900 nanograms/liter.(1)

What this all means is that most of  us live our lives in close proximity to bisphenol A.

Because it’s used to make plastic hard, I never thought it would have a place in the textile industry.  So it was with some concern that I came across articles which explain the use of bisphenol A in the manufacturing of synthetic fibers.

Producing synthetic fibers and yarns is almost impossible without applying a processing aid to the fibers during the extrusion and spinning processes.   The fibers and yarns are frequently in contact with hot surfaces, or they pass through hot ovens.  In order to withstand these extreme conditions, the yarns and fibers have processing aids or finishes applied.    This applied processing aid or ‘finish’, in addition to helping the yarns withstand extreme temperatures, also  reduces static electricity, fiber-fiber and metal-fiber friction, provides integrity to the filaments,  and altogether eases the manufacturing processes.

But because modern manufacturing equipment runs at higher speeds and subsequently at higher temperatures, the finish degrades in the high temperatures – yielding lower quality fibers –  and generates unwanted decomposition products.  These byproducts can be in the form of:

  1. Toxic and nontoxic gases which have environmental and safety issues;
  2. Liquids, which leave a sticky residue on the yarns,
  3. Or they may form a solid varnish on hot surfaces that is very difficult to remove; the presence of the varnish interferes with continuous, efficient production leading to economic losses due to equipment shutdown and product failure.

To overcome the problems caused by the degradation of finishes, several additives are introduced to prevent or delay the reactions of oxidation and degradation.  Several classes of antioxidants are typically used as these additives in these finishes.

In a study sponsored by the National Textile Center, a research consortium of eight universities, three North Carolina State University professors investigated the thermal stability of textiles, specifically with respect to the antioxidants used in the finishes.  They investigated four different antioxidants – one of which is based on Bisphenol A. (2)

So I got interested, and began a bit of poking around for other mentions of Bisphenol A in the textile industry. I found two scientific references to use of bisphenol A in the production of  polyester fabrics.  Both reported similar use of Bisphenol A as this quote,  which states:  “ a woven polyester fabric was … finished with an aqueous compound  containing 5% polyethylene glycol bisphenol A ether diacrylate for 30 min at 60° to give a hygroscopic, antistatic fabric with good washfastness.” (3)

I found that Bisphenol A is used  in the production of flame retardants, and as an intermediate in the manufacture of polymers, fungicides, antioxidants (mentioned above), and dyes.   Because it is often used as an intermediate it’s hard to pin down, and manufacturers keep their ingredients trade secrets so we often will not know – unless somebody funds a study which is published.

I have not seen any studies which report finding Bisphenol A in a finished fabric, so this may be a tempest in a teacup.  But isn’t it worth noting that this chemical, which has been found in the blood of 95% of all Americans, and which some say may be the “new lead”, can exist in products in which we previously never would have thought to look?

(1)  http://www.ourstolenfuture.org/newscience/oncompounds/bisphenola/bpauses.htm

(2) Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”,  www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf

(3)  http://www.lookchem.com/cas-644/64401-02-1.html?countryid=0





Why use organic fabrics for your new baby?

5 10 2011

Illnesses — including remarkable combinations of symptoms — are on the rise.

  • Over the past 50 years, there has been a steady increase in the incidence of children developing cancer[1], asthma[2], attention deficit disorders[3], allergies[4], autoimmune disorders[5],  and others.

So too are the numbers of chemicals getting mixed inside us (studies have shown that babies are born pre-polluted)[6].   Chemicals accumulate, interact within the body, cause illness.

  • This is due to industrial chemicals being used in products that weren’t even formulated prior to about 1950.  Our children are subjected to an endless barrage of artificial pathogens that tax their systems to the max.

Is there a connection between the rise in illnesses and products you use in your home?

Yes.

  • But inadequate data exists regarding the chronic (long term, low level) health risks of most chemicals, and proving an absolute link between chemicals and these disorders isn’t easy, because in most cases it’s a slow-brewing condition that can smolder for decades before symptoms appear.  Furthermore, the timing of toxic exposure plays a much more significant role than previously recognized – babies exposed during critical periods of development often have a more severe reaction than those exposed at other times.

The chemicals used in textile processing are among the most toxic known, yet the fabrics themselves are often overlooked as a source of pollution.

Using organic products (like fabrics) is especially important for children, because children tend to be more influenced by their environment than adults.  Children are still developing, and many of these developmental processes are very sensitive to environmental contaminants, which can easily disrupt development.  Also, children take in much more of their environment relative to their body weight.   This amount, called the dose, has a much greater effect on children than on the adults around them, because children’s bodies are much smaller.  And finally, children tend to come in contact with environmental contaminants more often than adults do, simply because of their habits – like the two year olds who put everything in their mouths, or toddlers who spend a lot of time in the dust on the floor, where contaminants collect.

In outfitting your nursery, you see lots of information about baby products – lotions, powders, foods.  But please remember that there are other products that impact your child’s health, such as mattresses and fabrics.  You almost never hear somebody mention fabrics as a source of pollution – are they really so important?  Remembering that new studies are demonstrating that even nano doses of chemicals can contribute to disease over time, there are also many studies which specifically linked diseases to chemicals found in textiles:

  • In 2007, The National Institutes of health and the University of Washington released the findings of a 14 year study that demonstrates those who work with textiles were significantly more likely to die from an autoimmune disease than people who didn’t.[7]
  • A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[8]
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[9]
  • Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[10] Note:  lead is a common component in textile dyestuffs.
  • Many of the chemicals found in fabrics (which are, after all, about 27% synthetic chemicals, by weight) are known to have negative health effects, such as:
    • Disruptions during development (including autism, which now occurs in 1 of every 110 births in the US); attention deficit disorders (ADD) and hyperactivity (ADHD).   Chemicals commonly used in textiles which contribute:
  • Breathing difficulties, including asthma ( in children under 5 asthma has increased 160%  between 1980-1994[11])  and allergies. Chemicals used in textiles which contribute:
    • Formaldehyde, other aldehydes
    • Benzene, toluene
    • phthalates
  • Cancer  –  all childhood cancers have grown at about 1% per year for the past two decades[12]; the environmental attributable fraction of childhood cancer can be between 5% and 90%, depending on the type of cancer[13].  Chemicals linked to cancers, all of which are used in textile processing:
    • Formaldehyde
    • Lead, cadmium
    • Pesticides
    • Benzene
    • Vinyl chloride

So how do you try to limit your child’s exposure to this chemical contamination?

  • Our #1 recommendation is to use only natural fiber fabrics, rather than synthetics (including those ubiquitous cotton/poly blends), which are petroleum based and made entirely of toxic chemicals.   On top of that, synthetics are highly flammable.  So ditch the synthetics.
  • And don’t think that a fabric made of “organic cotton” is safe, because that doesn’t address the question of processing, where all the chemical contamination occurs.  If you use natural fibers, try to find GOTS  or Oeko Tex certified fabrics.
  • Don’t buy clothing or bedding (or anything made of fabric) that has a stain resistant or wrinkle resistant finish on it:  stain resistant finishes contain perfluorochemicals (Teflon, Scotchguard, Stainmaster, Crypton, Nanotex, Gore-Tex) and wrinkle resistant finishes use formaldehyde.
  • Crib mattresses are often made of polyurethane foam enclosed in vinyl covers.  These plastic products are made by combining highly toxic chemicals together to form the final material. When your child is asleep, every breath pulls in air that is literally inches away from the petroleum chemical materials used in the manufacturing of the bed itself.  With each breath, these chemical molecules are pulled across the child’s airways and then transferred to the blood from deep within the lungs. This process is repeated with each breath 365 nights a year.[14]
    Best choice:  Buy a natural latex core covered in organic GOTS or Oeko Tex certified fabric.
  • Sleepwear, bedding, even curtains and upholstery fabric – because they’re  made of fabric!  Why should you use organic fabrics – not just fabrics made with organic fibers –  for your baby?  The skin is the largest organ of the body and the skin allows many chemicals to pass into your baby through absorption.  Also, a baby’s skin is thinner and more permeable than an adult’s skin.  Not to mention the fact that many chemicals evaporate, to be breathed in.   Best choice:  GOTS or Oeko Tex certified fabrics.
  • Diapers – first choice would be organic diapers made of natural fibers (GOTS or Oeko Tex certified) – even though it probably means you’ll have to do the diaper laundering.   Hey, there are worse things.

[1] Reinberg,
“US Cancer Rates Continue to Fall”, Business Week, March 31, 2011; all
childhood cancers have grown at about 1% per year for the past two decades[1]

[5]
Type 1 diabetes has increased fivefold in past 40 years, in children 4 and
under, it’s increasing 6% per year. http://www.washingtonpost.com/wp-dyn/content/article/2008/03/14/AR2008031403386.html

[6]
Goodman, Sarah,  “Tests Find More than
200 Chemicals in Newborn Umbilical Cord Blood”, Scientific American, December,
2009.

[7]
Nakazawa, Donna Jackson, “Diseases Like Mine Are a Growing Hazard”, Washington
Post
, March 16, 2008.

[8]
Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[9]
Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817  SEE ALSO:  http://www.breastcancer.org/risk/new_research/20100401b.jsp  AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[10]
Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead
Exposure”, PLoS Med 2008 5(5): e112.

[13] Gouveia-Vigeant,
Tami and Tickner, Joel,  “Toxic Chemicals
and Childhood Cancer:  a review of the
evidence”, U of Massachusetts, May 2003

[14] http://www.chem-tox.com/beds/frame-beds.htm.  See also “Respiratory Toxicity of mattress
emissions in mice”, Archives of Environmental health, 55 (1): 38-43, 2000.





Lead and fabrics

27 10 2010

We published a post about lead in fabrics about a year ago, but I thought it was important enough to remind you of the dangers of lead in fabrics, because we’re starting to see claims of “heavy metal free” dyestuffs used in fabrics.  What does that mean?

Lead is considered one of those “heavy metals’ , along with mercury, cadmium, copper and others – all highly toxic to humans.  “Heavy metal” is defined as any metallic element that has a relatively high density and is toxic or poisonous at low concentrations.

Heavy metals are natural components of the Earth’s crust. They cannot be degraded or destroyed.  Interestingly, small amounts of these elements are common in our environment and diet and are actually necessary for good health. Lead can even be found in natural fibers, such as cotton, flax and hemp, which can absorb it from the environment.
It’s when our bodies have to deal with large amounts of these heavy metals that we get into trouble.   Heavy metal poisoning could result, for instance, from drinking-water contamination (e.g. lead pipes), high ambient air concentrations near emission sources,  intake via the food chain or through skin absorption – and in the case of  crawling children, from inhaling carpet particles or other abraded textiles in dust.  For some heavy metals, toxic levels can be just above the background concentrations naturally found in nature. Therefore, it is important for us to inform ourselves about the heavy metals and to take protective measures against excessive exposure.  Lead accounts for most of the cases of pediatric heavy metal poisoning, according to the Agency for Toxic Substances and Disease Registry (ATSDR).

Lead is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage caused by lead are not reversible.  Specifically, it affects reading and reasoning abilities in children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies. (1)

A hundred years ago we were wearing lead right on our skin. I found this article funny and disturbing at the same time:

“Miss P. Belle Kessinger of Pennsylvania State College pulled a rat out of a warm, leaded-silk sack, noted that it had died of lead poisoning, and proceeded to Manhattan. There last week she told the American Home Economics Association that leaded silk garments seem to her potentially poisonous. Her report alarmed silk manufacturers who during the past decade have sold more than 100,000,000 yards of leaded silk without a single report of anyone’s being poisoned by their goods. Miss Kessinger’s report also embarrassed Professor Lawrence Turner Fairhall, Harvard chemist, who only two years ago said: ‘No absorption of lead occurs even under extreme conditions as a result of wearing this material in direct contact with the skin’. ”

This was published in Time magazine,  in 1934.  (Read the full article here. )

According to Ruth Ann Norton, executive director of the Coalition to End Childhood Lead Poisoning, “There are kids who are disruptive, then there are ‘lead’ kids – very disruptive, very low levels of concentration.” 
Children with a lead concentration of less than 10 micrograms ( µ) per deciliter (dl = one tenth of a liter) of blood scored an average of 11.1 points lower than the mean on the Stanford-Binet IQ test. (2)   Consistent and reproducible behavioral effects have been seen with blood levels as low as 7 µ/dl (micrograms of lead per tenth liter of blood), which is below the Federal standard of 10 µ/dl.   The image depicts what happens to human beings at the various levels of lead in blood.  Scientists are generally in agreement that there is no “safe” level of blood lead.  Lead is a uniquely cumulative poison:  the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

Lead is widely  used in consumer products, from dyestuffs made with lead (leading to lead poisoning in seamstresses at the turn of the century, who were in the habit of biting off their threads) (3), to lead in gasoline, which is widely credited for reduced IQ scores for all children born in industrialized countries between 1960 and 1980 (when lead in gasoline was banned).  Read more about this here.

Lead is used in the textile industry in a variety of ways and under a variety of names:

  • Lead acetate                     dyeing of textiles
  • Lead chloride                   preparation of lead salts
  • Lead molybdate             pigments used in dyestuffs
  • Lead nitrate                     mordant in dyeing; oxidizer in dyeing(4)

Fabrics sold in the United States, which are used to make our clothing, bedding and many other products which come into intimate contact with our bodies, are totally unregulated – except in terms of required labeling of percentage of fiber content and country of manufacture.  There are NO laws which pertain to the chemicals used as dyestuffs, in processing, in printing,  or as finishes applied to textiles, except those that come under the Toxic Substances Control Act (TSCA) of 1976, which is woefully inadequate in terms of addressing the chemicals used by industry.   With regard to lead, products cannot contain more than 100 ppm – despite many studies that show there is no safe level for lead. In fact, the Government Accounting Office (GAO) has announced that the 32 year old TSCA needs a complete overhaul (5), and the Environmental Protection Agency (EPA)  was quick to agree! (6).  Lisa Jackson, head of the EPA,  said on September 29, 2009 that the EPA lacks the tools it needs to protect people and the environment from dangerous chemicals.

Fabrics are treated with a wide range of substances that have been proven not to be good for us.  That’s why we feel it’s important to buy third party certified FABRICS, not just certified organic fibers (which do nothing to guarantee the dyestuffs or finish chemicals used in the fabric) such as GOTS (Global Organic Textile Standard) or Oeko Tex, both of which prohibit the use of lead in textile processing.

The United States has new legislation which lowers the amount of lead allowed in children’s products – and only children’s products.   (This ignores the question of  how lead  in products used by pregnant  women may affect their fetus.  Research shows that as the brains of fetuses develop, lead exposure from the mother’s blood can result in significant learning disabilities.)  The new Consumer Product Safety Improvement Act (CPSIA) had requirements to limit lead content in children’s products (to be phased in over three years) so that by August 14, 2011, lead content must be 100 ppm (parts per million) or less.

However there was an outcry from manufacturers of children’s bedding and clothing, who argued that the testing for lead in their products did not make sense, because:

  • it placed an unproductive burden on them, and
  • it required their already safe products to undergo costly or unnecessary testing.

The Consumer Product Safety Commission voted to exempt textiles from the lead testing and certification requirements of the CPSIA, despite the fact that lead accounts for most of the cases of pediatric heavy metal poisoning, according to the Agency for Toxic Substances and Disease Registry (ATSDR).

So let me repeat here: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

Children are uniquely susceptible to lead exposure over time, and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware that lead available from tested products would not be the only source of exposure in a child’s environment.  Although substantial and very successful efforts have been made in the past twenty years to reduce environmental lead, children are still exposed to lead in products other than toys or fabrics. Even though it was eliminated from most gasoline in the United States starting in the 1970s, lead continues to be used in aviation and other specialty fuels. And from all those years of leaded gasoline, the stuff that came out of cars as fuel exhaust still pollutes soil along our roadways, becoming readily airborne and easily inhaled.   All lead exposure is cumulative – so it’s important to eliminate any source that’s within our power to do so.

(1) “ ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

(2) Ibid.

(3) Thompson, William Gilmsn, The Occupational Diseases, 1914, Cornell University Library, p. 215

[4] “Pollution of Soil by Agricultural and Industrial Waste”, Centre for Soil and Agroclimate Research and Development, Bogor, Indonesia, 2002.   http://www.agnet.org/library/eb/521/

(4) http://www.atsdr.cdc.gov/toxprofiles/tp13-c5.pdf

(5) http://www.rsc.org/chemistryworld/News/2009/January/29010901.asp

(6) http://www.bdlaw.com/news-730.html





About pre polluted children

17 03 2009

The Environmental Working Group has a new campaign, to gather support for the new Kid Safe Chemicals Act.  To understand what the fuss is all about, we’ve copied the page from the EWGs web site, below, but you can go to http://www.ewg.org/kidsafe and see what you can do to help.  There is a declaration you can sign in support of the bill as well as lots of information.  This legislation is sorely needed in the US – Europe has already passed it’s own REACH legislation, which mandates replacing approximately 2,000 known toxic chemicals with more benign models.

KID SAFE CHEMICALS ACT:

“The nation’s toxic chemical regulatory law, the Toxic Substances Control Act, is in drastic need of reform. Passed in 1976 and never amended since, TSCA is widely regarded as the weakest of all major environmental laws on the books today.

When passed, the Act declared safe some 62,000 chemicals already on the market, even though there were little or no data to support this policy. Since that time another 20,000 chemicals have been put into commerce in the United States, also with little or no data to support their safety.

The human race is now polluted with hundreds of industrial chemicals with little or no understanding of the consequences. Babies are born pre-polluted with as many as 300 industrial chemicals in their bodies when they enter the world. Testing by Environmental Working Group has identified 455 chemicals in people, and again, no one has any idea if these exposures are safe.

We are at a tipping point, where the pollution in people is increasingly associated with a range of serious diseases and conditions from childhood cancer, to autism, ADHD, learning deficits, infertility, and birth defects. Yet even as our knowledge about the link between chemical exposure and human disease grows, the government has almost no authority to protect people from even the most hazardous chemicals on the market.

The Campaign: Pass the Kid-Safe Chemicals Act

This pollution in people is the direct result of a statute that does not require chemicals to be proven safe to get on the market, or stay on the market. Under federal law EPA does not have the authority to demand the information it needs to evaluate a chemical’s risk, and neither manufacturers nor the EPA are required to prove a chemical’s safety as a condition of use.

The Kid-Safe Chemical Act will change all this through a fundamental overhaul of our nation’s chemical regulatory law. Specifically, the Kid-Safe Chemicals Act:

  • requires that industrial chemicals be safe for infants, kids and other vulnerable groups;
  • requires that new chemicals be safety tested before they are sold;
  • requires chemical manufacturers to test and prove that the 62,000 chemicals already on the market that have never been tested are safe in order for them to remain in commerce;
  • requires EPA to review “priority” chemicals, those which are found in people, on an expedited schedule; babybath.jpg
  • requires regular biomonitoring to determine what chemicals are in people and in what amounts;
  • requires regular updates of health and safety data and provides EPA with clear authority to request additional information and tests;
  • provides incentives for manufacturers to further reduce health hazards;
  • requires EPA to promote safer alternatives and alternatives to animal testing;
  • protects state and local rights; and
  • requires that this information be publicly available.

Through the Kid-Safe Chemicals Act we can give our children a safer and healthier future.