Defining luxury

29 04 2014

The most recent issue of Ecotextile News had an article about “sustainable luxury”[1] and it got me thinking.  The article asked the question whether “luxury” and “sustainability” were opposing concepts.   One would think so.

Although luxury and sustainability both focus on rarity and beauty,  both have durability at the heart of the concept.  Just look at Louis Vuitton, which provides after sale service to any genuine product of theirs, wherever it was bought.   A product  seen as “luxurious” is one of lasting worth and timeless design, which is at the opposite end of the spectrum of the fashion and mass market industry where obsolescence is locked into a product at the design stage.

But I think the concept of luxury has an added dimension today – it is more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends,  the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.

In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

Luxury today is more about the one perfectly plain organic lettuce salad from the farmers market near your home than a rich meal made of food from the other side of the globe. It’s about craftsmanship, art, intimacy, and service.

We want to eliminate the guilt of our throwaway culture. Things we buy should be produced in ways that, at the very least, do no harm, and that either biodegrade or are infinitely recyclable – or they should exhibit the timeless aesthetics and natural qualities that make them heirlooms to be passed down to future generations. This is exactly what we at O Ecotextiles have committed ourselves to providing.

Our designs are classic and therefore timeless, and our choice of natural fabrics respects a time-honored tradition.

By protecting our planet, and the flora and fauna it supports, we are assured of being able to live with linen sheets, silk velvet upholstery and pure hemp draperies – forever.  The fibers are eternal; how we choose to weave and color them varies by designer and is part of the colorful history of design.

We want to make sure the fibers endure.

 Once you start tinkering with the ecosystem it’s not possible to concentrate on one static facet, since we live in an interconnected and self-organizing universe of changing patterns and flowing energy. Everything has an intrinsic pattern which in turn is part of a greater pattern and all of it is in flux. To bring a sense of order out of this chaotic concept, let’s concentrate on water:

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, water is becoming controlled by corporate interests, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.[2] Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.

The textile industry is the #1 industrial polluter of fresh water on the planet. Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand the concept when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.

This is a complex subject and trying to map and analyze it often produces inconsistent and unreliable data. The only sure thing we know is that we have to change – the faster the better.

 We want our customers to depend on us to sell fabrics that do no harm… to them, their families or our world. Our company was founded on that bedrock – each and every fabric has met these standards.

Concurrently, we committed to showing our warts too – it’s complicated and difficult to follow these standards, so we would tell customers if and when we failed at any point and why. We want to empower consumers by providing as much information as they want to absorb.

Given a cursory glance, our fabrics may look like many others on the market. But like Antoine de Saint Exupery said in The Little Prince, “What is essential is often invisible to the eye”. One of our sales reps tells her clients to smell the fabrics! There is no synthetic smell – in fact some smell like new mown hay.  So although you can find other fabrics that may look like ours, when you buy  25 yards of fabric  from O Ecotextiles you’re also buying, at the very least, better health:   your body will not have had to deal with the many chemicals used in processing (which remain in the fabric) – chemicals which have been proven to cause harm (remember Erin Brokovich?).  If you choose a GOTS certified fabric, you also get:

  • Clean air and water:  approximately 500 gallons of chemically-infused effluent was prevented from entering your ecosystem and the troublesome chemicals which evaporate into the air in your homes and offices is eliminated ;
  • A better environment:  soils used to grow the fibers have been renewed rather than depleted, and in the growing of the fibers you’ve conserved water, mitigated climate change and ensured biodiversity.

And – most importantly –  you’re using your purchasing power to put these changes into place!

 

[1] Ravasio, Dr. Pamela, “Sustainable luxury: impossible paradox, or inherent synergy?”, Ecotextile News, February/March 2014

[2] Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

Advertisements




How to buy a sofa: part 4: so which fabric will it be?

16 09 2011

So for the past two weeks we’ve discussed the differences between synthetic and natural fibers.  But there’s more to consider than just the fiber content of the fabric you buy.  There is the question of whether a natural fiber is organically grown, and what kind of processing is used to create the fabric.

First, by substituting organic fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits.  Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers) [1] , which helps to mitigate climate change, but it also:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health  and agrobiodiversity;
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • ensures sustained biodiversity;
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not  vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles.  As such it can be seen as more than a set of agricultural practices, but also as a tool for social change.[2]  For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But if you start with organic natural fibers (a great choice!)  but process those fibers conventionally, then you end up with a fabric that is far from safe.  Think about making applesauce:  if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stablizers and who knows what else – do you end up with organic applesauce?  The US Department of Agriculture would not let you sell that mixture as organic applesauce, but there is no protection for consumers when buying fabric.  And the same issues apply, because over 2000 chemicals are used routinely in textile processing.(4)  Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates,  benzenes and others).   In fact, one yard of fabric made with organic cotton fiber  is about 25% by weight synthetic chemicals – many of which are proven toxic to humans. (5)

I know you’re saying that you don’t eat those fabrics, so what’s the danger?  Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body).  Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in.  Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern?  Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry.  Greenpeace also did a study on specific items manufactured by Disney, but I would guess the results pertain all across the spectrum:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis,  for example, and linked to many of the chemicals used in textile processing) are reaching epidemic rates,  and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t (6);
  • We know formaldehyde is bad for us, but in fabric?  A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[7]  Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.(9)
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.(10)

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides. (11)
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys.   They are ubiquitous –  and are also found  in most  textile inks.[12]  So parents careful not to bring toxic toys into their homes for  can be  nevertheless  unknowingly putting their kids to sleep on cute printed sheets full of phthalates.

Though some argue that we’re less prepared because we’re confronting fewer natural pathogens, it’s also true that we’re  encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum.  And our children are the pawns in this great experiment.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis?   Some argue that we’re less prepared because we’re confronting fewer natural pathogens.  All plausible.   But if you think they are the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the maximum  has replaced bacteria and viruses as the major cause of human illness.  We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized –  certainly not the darling of venture capatalists who look for the next big thing.  So not many research dollars are going into new ways of producing fabrics.    Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible:   in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge (13).

 


[1] Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2]  Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf  Also see:  Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

(4)  See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

(5) Lacasse and Baumann, Textile Chemicals:  Environmental Data and Facts, Springer, New York, 2004, page 609

(6) Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

(7) Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

(8) Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817  SEE ALSO:  http://www.breastcancer.org/risk/new_research/20100401b.jsp  AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

(9) Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

(10)  http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp

(11) http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

(12)  “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week,  September 22, 2008  SEE ALSO:  Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

(13) Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.

 





Organic cotton fraud?

7 04 2010

A recent report in The Financial Times of Germany alleged  that a ‘gigantic fraud’ was taking place in the sale of cotton garments marked as organic by leading European retailers like H&M, C&A and Tchibo, because they actually contained genetically modified (GM)  cotton.   GM cotton (often called Bt cotton in India) is prohibited in organic cotton.  The source of fabrics, it said, was India.
Interestingly, the paper quoted Sanjay Dave, director of Apeda (Indian Agricultural and Processed Food Products Export Development Authority), as saying that the fraud was on a large-scale and that two European certifying agencies had been fined for lax processes.  Lothar Kruse, director of the laboratory which ran the tests, was quoted as saying that around 30% of  organic cotton samples from India  were found to be contaminated with GM cotton.   There were charges and countercharges by all involved – and Indian organic cotton has become suspect.  How did this happen?

In August, 2009, the Indian Ministry of Textiles took several initiatives to strengthen their textiles industry  —  among them was a commitment to “safeguard and promote” organic cotton.  Organic cotton had become an important crop in India:  according to the Organic Exchange, India accounted for about 65% of all the organic cotton produced worldwide in 2008-09, making India the No.1 producer of organic cotton in the world. And since the global market for organic cotton is growing by as much as 150 per cent per year (based on 2008-09 figures) its make sense for India to support organic cotton where it is already a market leader in a product for which an assured market exists and is growing.

And yet at the same time, the Indian government (through the Department of Biotechnology of the Ministry of Science and Technology) is supporting and promoting genetically modified cotton.  India allowed the commercial cultivation of genetically modified (GM) cotton in 2002, and by 2006, GM cotton accounted for 42% of the total Indian cotton crop. This makes India the country with the largest area of GM cotton in the world, surpassing China.  According to Reuters,  Indian farmers will grow genetically modified cotton on 90 % of the area under cotton cultivation by 2012.  See our blog posts on GMO crops:  Reasons for concern regarding GMOs and GMO Cotton.

Organic cotton  and genetically engineered cotton are mutually self-excluding commodities –  organic cotton prohibits the inclusion of any genetically engineered cotton.  So the Indian government is bumbling in two contradictory directions at the same time.  There have been warnings from opponents of genetically engineered crops that if GM cotton were to contaminate traces of organic cotton, the consignments of organic cotton would lose the certification that gets them a premium price advantage and be rejected by markets interested in buying organic cotton.  Organizations such as Gene Watch (UK) and Greenpeace have warned that it is impossible to keep agricultural produce like cotton or rice or strawberries apart once they are ready for the market.  These organizations also maintain a register of instances where genetically engineered crops have contaminated conventional or organic crops. The contamination cases run into hundreds across the world, often with grave economic consequences. Not so long ago, consignments of US rice exported to several countries had to be recalled because traces of GM rice was found in rice that was declared as conventional, non GM rice. The cost of recall was prohibitive but the greater damage was done to America’s future rice exports. Once countries returned the contaminated US rice, other rice exporting nations like Thailand entered the newly available markets in Europe, Japan and South Korea and established themselves there.

And the warnings by Gene Watch and Greenpeace have just come true in the form of the scandal which broke in January, 2010 based on  the report in the German edition of Financial Times

This casts a cloud over all exports of organic products from India, of which cotton is the leading item.

But in all this uproar, who is losing the most?  Once again it’s the small farmer in India.   The African proverb that when two elephants fight, it’s the grass that suffers, is certainly true in this case.

A bit of history:  The Indian government, in a desperate bid to promote the uptake of GM seeds, banned traditional seed varieties from many government seed banks in 2002  and allowed Monsanto to sell their new seed creations.  In return for this access, India was granted International Monetary Fund loans.

Because the family livelihood of Indian farmers depends entirely on good decisions being made, they often seek advice or take a lead from someone she/he thinks knows best. The average farmer is illiterate and ignorant of the implications of planting a GM crop, but lives in the hope that money borrowed to produce a cash crop will be more than repaid after a good harvest.   Monsanto began advertising the new GM seed heavily;  it was pervasive, with utterly misleading claims,  emanating from  celebrities, government officials, journalists, agricultural and corporate scientists, larger landowners and seed dealers who had either jumped on the media bandwagon or had vested interests in GM cotton sales. Bollywood personalities such as Nana Patekar attributed almost miraculous powers to the product on TV. Punjab Chief Minister Amrinder Singh  personally endorsed the Bollgard brand (one of Monsanto’s GM seed varieties sold in India). Local opinion leaders such as larger landowners received seed and pesticide discounted or free, and ‘poor farmers’ who extolled the virtues of GM cotton locally  turned out not to be farmers at all.

In the past, if a crop failed, the farmer could use his seed from prior years to replant his crop.  But with GM seeds they could not do this, because the seeds contain “terminator technology” meaning that the crops do not produce viable seeds of their own.  So farmers must buy seeds each year – at punitive prices:  GM seed costs about $15 for 4 ounces of seed, compared to $15 for 4,000 ounces of traditional seeds.

Farmers are also desperate to avoid the spiraling cost of pesticides, and were taken in by GM cotton advertising and Monsanto’s extravagant claims. For example, at the point of sale, when farmers are vulnerable, seed dealers  hyped up the yield of a hypothetical farmer’s GM cotton (based on Monsanto claims that yields are 30 – 40% higher than conventional hybrid seed) because the seed dealers profit is four times greater per drum than for non GM seed.  In addition,  Monsanto claims pesticide use will be 70% less because their Bollgard variety is supposed to  kill 90% of bollworms.

This perfect storm led to widespread adoption of GM seeds by Indian farmers.  But the promises made by Monsanto have proven to be false over time: GM cotton required double the amount of water that non GM varieties required (proving to be a matter of life and death for many),  many crops have been devastated by bollworms and there have been widespread crop failures.  (read  more here ).   Farmers, beguiled by  promises, incurred debts that they could not repay.  Thousands of farmers, according to the Mail Online in November, 2008, “are committing suicide”.  The crisis, branded the ‘GM Genocide’ by campaigners, was highlighted recently when Prince Charles claimed that the issue of GM had become a ‘global moral question’ – and condemned ‘the truly appalling and tragic rate of small farmer suicides in India, stemming… from the failure of many GM crop varieties’.
Read more here and here.

Many organizations have been trying to convert Indian farmers to organic practices –  “desperate times call for organic measures”.  The fact that farmers don’t have to spend money on pesticides and fertilizers coupled with the premium of 15 – 20% over conventional cotton that organic cotton commands in the marketplace has helped convince many farmers that organic agriculture is worth a try.   Yet now  organic cotton from India has been reported to be contaminated with GM cotton, leading many to cry fraud.

This was not unforeseen:  drift or contamination of GM with non-GM crops has long been a concern, especially now that 65-75% of total cotton production is made up of  GM cotton.  According to P.  Gouri, adviser on organic products to Apeda,   “measures to prevent contamination through strict implementation of a 50-meter refuge (buffer zones around farms growing GM cotton to prevent the pollens from contaminating neighboring farms) are absolutely essential.  If GM farming practices are regulated strictly, we can keep contamination at manageable-levels, specially if farmers use non-cotton as a buffer.”  Yet,   there have been  many violations of biosafety regulations; in addition there are no standards for the permissible amount of contamination in organic cotton.    Nobody is addressing the problem of gene transfer to conventional plants; and a general disregard of separation distances between the GM and non-GM crop makes contamination a fait acompli . Similarly, there is a general lack of enforcement of 20 percent non-GM refugia, designed to slow the evolution of pest resistance. The several generations of bollworm that live annually on a crop can lead to 60 percent resistance in a single year.

According to the Human Genome Project, the act of genetically modifying something like organic cotton has its own ripple effect from the potential environmental impacts of unintended transfer of trans genes through cross-pollination and unknown effects on other organisms (e.g., soil microbes), to the loss of flora and fauna biodiversity.  With no regulation of GM cotton, GM produce is entering our food and feed chain as cottonseed oil and cake.  (Did you know that we eat more of the cotton crop than we wear?)  Genetically engineered cotton has all kinds of stuff we’ve never eaten before: viral promoters, antibiotic-resistant genes, special bacteria.  Organic food producers are very concerned. This problem will continue to grow as fourteen new GM varieties of India’s staple crops were approved for field trials that began in 2005.

 

 

Currently, India and her customers rely on third party certifying agencies, such as Control Union, to substantiate organic claims.  Certification is being done as per GOTS, or Global Organic Textile Standards, but India is formulating its own standards. The biggest innovation is TraceNet, a web-based traceability system that has been introduced in the country, to trace and track all organic certifications for exports to ensure purity.   Inspectors employed by certification agencies will use GPS devices for capturing data so that wrong certifications are eliminated.

Fingers crossed.

 





What does organic wool mean?

11 08 2009

Last week we talked about the importance of livestock management in the battle against climate change.  It came as a real revelation to this city girl that large grazing animals are a vital and necessary part of the solution to climate change.   Sheep can actually help to improve soils, which improves the soil’s ability to absorb water and maintain its original nutrient balance – and most importantly, by increasing the organic matter in the soil, it makes the soil a highly effective carbon bank.

many sheep

So the management of the livestock can be beneficial – but it’s a long way from a sheep in the pasture to a wool fabric.  So let’s look at the wool produced by these sheep and examine  what “organic wool” means.

In order for wool to be certified organic in the U.S., it must be produced in accordance with federal standards for organic livestock production, which are:

  • Feed and forage used for the sheep from the last third of gestation must be certified organic.
  • Synthetic hormones and genetic engineering of the sheep is prohibited.
  • Use of synthetic pesticides on pastureland is prohibited and the sheep cannot be treated with parasiticides, which can be toxic to both the sheep and the people exposed to them.
  • Good cultural and management practices of livestock must be used.

A key point to remember about the USDA and OTA organic wool designations:  the organic certification extends only to livestock – it doesn’t  cover the  further processing of the raw wool. Should that be a concern?

Wool as shorn from the sheep is known as greasy (or raw) wool. Before it is suitable for further processing it must be washed to remove dirt, water soluble contaminants (called suint), and woolgrease – and there are a lot of these contaminants.  On average, each ton of greasy wool contains:

  • 150 KG woolgrease (when refined this is known as lanolin)
  • 40 KG suint
  • 150 KG dirt
  • 20 KG vegetable matter
  • 640 KG wool fiber

This process of washing the wool is known as scouring.  Scouring uses lots of water and  energy :

  • water for washing:  The traditional method of wool scouring uses large amounts of water to wash the wool – the wool is passed through a series of 4 – 8 wash tanks (bowls), each followed by a squeeze to remove excess water.   Typical scouring plants can consume up to half a million litres of water per day.
  • pollution: The scouring water uses detergents and other chemicals in order to remove contaminants in the greasy wool,  which creates the problem of disposing of the waste water without contaminating the environment.  In unmodified plants, a single scouring line produces a pollution load equivalent to the pollution produced by 30,000 people.[1]
  • energy: to power the scouring line.

wool scour diagram

What about the chemicals used?

Detergents used in wool scouring include alkylphenol ethoxylates (APEOs) or fatty alcohol ethoxylates (more benign); sodium carbonate (soda ash), sodium chloride and sodium sulphate.  APEOs are among those chemicals known as endocrine disruptors – they interfere with the body’s endocrine system   They’re known to be very toxic for aquatic life – they cause feminization of male fish, for example.  (Click here to see what happened to alligators in Florida’s Lake Apopka as a result of endocrine disruptors traced to effluents from a textile mill. )  More importantly they break down in the environment into other substances which are much more potent than the parent compound.  They’re banned in Europe.

The surface of wool fibers are covered by small barbed scales. These are the reason that untreated wool itches when worn next to skin.  So the next step is to remove the scales, which also shrinkproofs the wool.  Shrinking/descaling is done using a chlorine pretreatment sometimes combined with  a thin polymer coating.  (Fleece is soaked in tertiary amyl or butyl hypochlorite in solution and heated to 104° for one hour.   The wool absorbs 1.5% of the chlorine. [2] )   These treatments make wool fibers smooth and allow them to slide against each other without interlocking. This also makes the wool feel comfortable and not itchy.

Unfortunately, this process results in wastewater with unacceptably high levels of adsorbable organohalogens (AOX) – toxins created when chlorine reacts with available carbon-based compounds. Dioxins, a group of AOX, are one of the most toxic known substances. They can be deadly to humans at levels below 1 part per trillion. Because the wastewater from the wool chlorination process contains chemicals of environmental concern, it is not accepted by water treatment facilities in the United States. Therefore all chlorinated wool is processed in other countries, then imported.[3] (For more about chlorine, go to the nonprofit research group Environmental Working Groups report about chlorine, http://www.ewg.org/reports/considerthesource.)  There are new chlorine free shrink/descaling processes coming on the market, but they’re still rare.

Finally, there is the weaving of the yarn into fabric – and all the environmental problems associated with conventional weaving and finishing.  In addition to the environmental concerns associated with conventional weaving, dyeing, and finishing (see some of our earlier blog posts), wool is often treated for moth and beetle protection, using pyrethroids, chlorinated sulphonamide derivatives, biphenyl ether or urea derivatives, which cause neutrotoxic effects in humans.

In the last 10 years, the textile industry,  along with animal ethics groups like People for the Ethical Treatment of Animals,  have lobbied against the wool industry, taking a stand against unethical treatment of sheep. In 2004, U.S. retailer Abercrombie and Fitch became the first to sign on to an animal rights campaign boycott of Australian wool that stood firmly against the typical practices of mulesing (where folds of skin around the sheep’s anus are cut off with shears during the wool shearing) and live export of sheep to halal butchers when their wool production becomes minimal.  Other companies such as H&M,  Marks & Spencer,  Nike, Gap,  Timberland, and Adidas (among others) have since joined, sourcing wool from South Africa or South America (where mulesing is not done).  The result of this outcry has led to the increased production of both organic and ethical wool, though it is still relatively minor when compared to the overall global wool production.

To complicate things a bit more, each country maintains their own standards for “organic wool” – Australia, for instance, has no equivalence or agreement with US organic standards.  The International Wool Textile Organization (IWTO) has adopted a new organic wool standard (closely aligned with GOTS) which they hope will be accepted by its members.  In addition, many companies use the term “eco wool”, which means the wool is sheared from free range roaming sheep that have not been subjected to toxic flea dipping, and the fleece was not treated with chemicals, dyes or bleaches – but this is wide open to interpretation and exploitation.  According to the IWTO, “Eco wool” must meet the standards set by the EU Eco-label.

Wool is a fabulous fiber – in addition to its many other attributes, it smolders rather than burns, and tends to be self-extinguishing.  (Read what The Commonwealth Scientific and Industrial Research Organisation (CISRO), Australia’s national science agency,  has to say about the flame resistance of wool by clicking here:   http://www.csiro.au/files/files/p9z9.pdf )  So if you can find organic wool  – making sure, of course, that the term “organic” covers:

  • management of the livestock according to organic or holistic management principles
  • processing of the raw wool,  using newer, more benign processes rather than harmful scouring and descaling chemicals; and wastewater  treatment from scouring and processing
  • weaving according to Global Organic Textile Standards (GOTS).  Read more about GOTS here.

…then go for it!  Nothing is quite like it in terms of comfort, resilience, versatility and durability.

But first you have to find it.  And that means you’ll have to ask lots of questions because there are lots of certifications to hide behind.


[1]The Cleanier Production Case Studies Directory EnviroNET Australia, Environment Protection Group, November 1998

[2] “Textiles: Shrink-proof wool”, Time, October 17, 1938

[3] “Fabric: Chlorine Free Wool”,  Patagonia website, http://www.patagonia.com/web/us/patagonia.go?slc=en_US&sct=US&assetid=8516





What about using organic fabrics in the carbon footprint calculation?

9 06 2009

I’m so glad you asked!

From the previous post I hope I made it clear that natural fibers (whether organic or conventionally produced) have a lighter footprint than do synthetics – both in terms of emissions of greenhouse gasses and in terms of energy needed to manufacture the fibers.  And natural fibers have the added benefits of being able to be degraded by microorganisims and composted,  and  also of sequestering carbon.  According to the United Nations, they’re also a responsible choice, because by buying natural fibers you’re supporting the economies of many developing countries and supporting the livelihoods of many low-wage and subsistence workers.  The United Nations has declared 2009 the Year of Natural Fibers and they have a great website if you’re looking for more information:  http://www.naturalfibres2009.org/en/index.html

Substituting ORGANIC fibers for conventionally grown natural fibers is not just a little better but lots better in all respects:  uses less energy for production, emits fewer greenhouse gases, and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques  (http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009) found that fully 43% less greenhouse gasses are emitted per unit under organic agriculture than under conventional agriculture.  A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.  Further, it was found in controlled long term trials that organic farming adds between 100-400KG of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint calculation, it reduces total greenhouse gasses even further. The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Slide1

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is not only an improvement in human health and agrobiodiversity but also for the associated off farm biotic communities
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. (http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

So just how much CO2 can organic farming take out of the air each year?  According to data from the Rodale Institute Farming Systems Trial (FST) :

  • If only 10,000 medium sized farms in the US converted to organic production, they would store so much carbon in the soil it would be equivalent to taking 1,174,400 cars off the road.
  • If we converted the U.S.’s 160 million acres of corn and soybeans to organic, we could sequester enough carbon to satisfy 73% of the Koyoto targets for CO2 reduction in the U.S.
  • Converting U.S. agriculture to organic would actually  wipe out the 1.5 trillion pounds of CO2 emitted annually and give us a net increase in soil carbon of 734 billion pounds.

carbon sequestratioon image 1

Paul Hepperly says that organic farming is a no brainer:  “Organic farming is not a technological fix, not an untried experiment that could have its own unforeseen consequences.” Instead, it may well be one of the most powerful tools we have in our fight against global warming that brings with it a wealth of other environmental benefits.





Why should I choose an organic fabric when I have to put an FR treatment on it anyway?

9 05 2009

The questions is whether it’s a better choice to use inherently flame retardant fabrics such as AvoraFR rather than a natural fiber (like cotton) which has been doused with toxic FR chemicals.  The answer is complicated and like most in this emerging green area, there may be no “best” answer.  We think the answers may lie in the tradeoffs we have to make.  But we’ve got an opinion, and it’s based on the following reasoning:

Fabrics which are inherently flame retardant are synthetics which have been changed at the molecular level to make the fabrics thermally stable and able to pass commercial flame tests.   Some petroleum-based synthetic fibers, such as Avora FR, Trevira CS and Lenzing FR viscose – add a flame retardant to the chemical treatment before polymer extrusion rather than change the molecular structure of the polymer.  This process builds the chemical treatment into the backbone of the polyester rather than adding it later to the finished product.  It is presumed to be less likely to expose the occupants to chemicals.

So how do you compare the two?

When comparing the synthetic with a natural fiber, we think it’s important to look at the carbon footprint of the fibers.  A synthetic like polyester requires much more energy to produce a ton of fiber than does conventional cotton – in megajoules (MJ) of energy the difference is about four times: 126,000 MJ polyester vs. 33,000 MJ for conventional cotton.  Organic cotton is even less:  only 16,000MJ.

It’s important to look at how these fibers are woven into fabric.  (And that’s a different set of carbon calculations).  If the polyester or the cotton is produced conventionally, the finished fabric has residuals of many chemicals which have been proven to harm human health.  The majority of Americans mistakenly believes that the government tests chemicals used in consumer products to ensure safety, accoring to an opinion poll released by the Washington Toxics Coalition.  However, under the Toxic Substances Control Act (TSCA), there is no legal requirements to test most chemicals for health effects, including impacts on neurological development, at any stage of production, marketing and use.  An organic fabric is one which has not used any of the many chemicals used in textile production which are known to be toxic.

So looking at two fabrics (even if one polyester fabric is produced using optimized production methods – i.e., avoiding the toxic chemicals) the organic cotton (or better yet, hemp or linen) fabric is one I’d rather live with.  But fire kills many people every year and we have reason to keep fire codes in place in public spaces.  So the issue focuses on the chemistry used to fire retard the fabrics.

Natural fibers must have a topical FR treatment applied after manufacture.  In the past, these treatments were based on halogenated chemistry, like PBDEs.  The industry is moving away from these chemicals and most have been banned, but decaBDE is still allowed in the US.  With careful attention and questioning of your supplier, you can have a natural fiber fabric that has an FR treatment which meets all codes – and which is not persisten, bioaccumulative and compromises your health.

So now the question becomes how dothe two fibers react in actual fires?

An important thing to remember about synthetics is that they do not burn, they melt.  That’s why protective clothing (firemen, police, rescue) is not made of synthetics – even inherently fire retardant synthetics – because the melting fabric would cause severe burns.

Another issue (and one we think is most important) is that the smoke created by burning or melting fabrics.   Conventionally produced fabrics (natural fiber or synthetic) release chemicals which add an extra dimension to the already toxic smoke.

https://i2.wp.com/noburn.com/images/picture3.jpg

So where do we stand?

  • With a carbon footprint of 16,000 MJ vs 126,000 MJ (organic cotton vs. polyester) to make the fiber and
  • with organic fabrics having little or none of the chemicals which have been proven to harm human health and
  • because of the ability to use a nonhalogenated FR treatment on an organic fabric and
  • in the case of a fire, not having to breathe toxic fumes from melting synthetics or conventionally produced fabrics

is there really a choice?