Eucalyptus fiber by any other name

2 03 2012

Fibers are divided into three main categories:

  • Natural – like flax, wool, silk and cotton
  • Manufactured – made from cellulose or protein
  • Synthetic – made from synthetic chemicals

The difference between “manufactured” and “synthetic” fibers is that the manufactured fibers are derived from naturally-occurring cellulose or protein, while synthetic fibers are not.  And  manufactured fibers are unlike  natural fibers because they require extensive processing (or at least more than is required by natural fibers) to become the finished product.  The category of “manufactured” fibers is often called “regenerated cellulose” fibers.  Cellulose is a carbohydrate and the chief component in the walls of plants.

Rayon is the oldest manufactured fiber, having been in production since the 1880s in France, where it was originally developed as a cheap alternative to silk.   Most rayon production begins with wood pulp, though any plant material with long molecular chains is suitable.

There are several chemical and manufacturing techniques to make rayon, but the most common method is known as the viscose process. In the viscose process, cellulose is treated with caustic soda (aka: sodium hydroxide) and carbon disulfide, converting it into a gold, highly viscous  liquid about the color and consistency of honey.  This substance gives its name to the manufacturing process, called the viscose process.

The viscous fluid is allowed to age, breaking down the cellulose structures further to produce an even slurry, and is then filtered to remove impurities.  Then the mixture is forced through fine holes, called a spinerette, directly into a chemical bath where it hardens into fine strands. When washed and bleached these strands become rayon yarn.

Although the viscose process of making rayon from wood or cotton has been around for a long time, it wasn’t until 2003 that a method was devised for using bamboo for this process.(3)  Suddenly, bamboo was the darling of marketers, and the FTC had to step in to remind manufacturers to label their products as “bamboo viscose” rather than simply bamboo.

Now we hear about fabrics made from  eucalyptus, or soy.  But it’s the same story – the fibers are created using the viscose process.  Because the FTC did not specifically name these two substances in their proclamation regarding bamboo,   marketers can claim fabrics are  “made from eucalyptus”.    The reality is that the viscose process can produce fibers from any cellulose or protein source – chicken feathers, milk and even bacteria have been used (rayon comes specifically from wood or cotton).  But those inputs are not nearly as exciting to the marketers as eucalyptus or soy, so nobody has been advertising fibers made from bacteria.

After the brouhaha about bamboo viscose hit the press, many people did a quick scan of viscose and declared it “unsafe” for the environment.  The reason the viscose process is thought to be detrimental to the environment is based on the process chemicals used. Though sodium hydroxide is routinely used in the processing of organic cotton, and is approved by the Global Organic Textile Standard (GOTS), carbon disulfide can cause nervous system damage with chronic exposure.  And that “chemical bath” to harden the threads?  Sulfuric acid.  But these chemicals do not remain as a residue on the fibers – the proof of this is that almost all of the viscose produced can be (and often is) Oeko Tex certified (which certifies that the finished fiber has been tested for any chemicals which may be harmful to a person’s health and contains no trace of these chemicals.)

The environmental burden comes in disposing of these process chemicals: the sodium hydroxide (though not harmful to humans) is nevertheless harmful to the environment if dumped into our rivers as untreated effluent. Same with carbon disulfide  and, certainly, sulfuric acid.  And there are emissions of these chemicals as well, which contribute to greenhouse gasses.  And the reason that these fibers can be Oeko Tex certified:  Oeko Tex certifies only the final product, i.e.,the fibers or the fabric.  They do not look at the production process, which is where the majority of the environmental burden is found.  And then of course there is the weaving of these viscose fibers into fabric – if done conventionally, the environmental burden is devastating (in terms of chemical and water use) and the fabric itself probably contains many chemicals known to be harmful to our health.

Certainly the standard viscose production process is definitely NOT environmentally friendly, but then there is Tencel ® and Modal ®.   These fibers are manufactured by the Austrian company Lenzing, which  advertises its environmentally friendly production processes, based on closed loop systems.  Lyocell is the generic name for the fibers produced by Lenzing, which are not produced by the traditional viscose process but rather by solvent spinning.

According to Lenzing:

  • There is an almost complete recovery of the solvent, which both minimizes emissions and conserves resources.  Lenzing uses  a new non-toxic solvent (amine oxide) and the cellulose is dissolved in N-Methylmorpholine N-oxide rather than sulfuric acid. Water is also evaporated, and the resulting solution filtered and extruded as filaments through spinnerets into an aqueous bath. Over 99% of the solvent can washed from the fiber and purified for re-use. The water is also recycled.
  •  The by products of production, such as acetic acid, xylose and sodium sulphate are key ingredients in the food and glass industry. Remaining materials are used as energy for the Lenzing process.
  • Tencel ® is made from eucalyptus, which is grown on marginal land unsuitable for food crops; these trees are grown with a minimum of water and are grown using sustainable forestry initiatives.
  • The final fibers are biodegradable and can decompose in soil burial or in waste water treatment plants.

So Lenzing fibers can be considered a good choice if you’re looking for a sustainable fiber – in fact there is a movement to have Lenzing Tencel® eligible for GOTS certification, which we support, because the production of these fibers conforms with the spirit of GOTS.  They already have the EU Flower certification.

But Lenzing does not make fabrics – it sells yarns to mills and others which use the yarns to make fabric and other goods.

So  we’re back to the beginning again, because people totally forget about the environmental impact in the weaving of fibers into fabric, where the water and chemical use is very high –  if done conventionally, the environmental burden is devastating  and the finished fabric itself probably contains many chemicals which are outlawed in other products.

It’s critically important to look at both the fiber as well as the weaving in order to make a good choice.

Advertisements




Digital Printing

3 02 2012

The idea of digital  printing on textiles has been around for some time.  Carpet inkjet printing machines have beenused since the early 1970s.  Digital ink jet printing of continuous rolls of textile fabrics was shown at ITMA in 1995.   Again at ITMA in  2003, several industrial inkjet printers were introduced to the marketplace which made digital printing on textiles the new industry standard.  These new generation machines had much higher outputs, higher resolution printing heads, and more sophisticated textile material handling systems allowing a wide varieof fabrics to be printed.

One reason for the comparatively slow growth of digital printing on textiles may be related to the  extreme demands of the textile applications.  Although ink-jet printing onto fabric works in fundamentally the same way as any office type ink-jet prints onto paper, fabric has always been inherently more difficult to print due to its flexible nature.  The level of flexibility varies from warp to weft and with each degree around the bias, so guiding the fabric under digital printer heads has proven to be very challenging.  Other challenges:

  • There are many  types of synthetic and natural fibers,   each with its own ink compatibility characteristics;
  • in addition to dealing with a fabric that is stretchable and flexible, it is often a highly porous and textured surface;
  • use requirements  include light fastness, water fastness (sweat, too) through finishing operations and often outdoor use, heavy wear, abrasion, and cleaning;
  • the fabric not only has to look good but to feel good too;
  • fabric has much greater absorbency, requiring many times the ink volume compared with  printing on papers.

Before any printing is carried out, the designs need to be developed in a digital format that can be read by the printers. Thus, all development has to be based on co-operation between the design software companies, the ink manufacturers and the printing machine developers.

In the face of such odds, digital textile printing is happening.  And how!  Digital inkjet printing has become one of the most important textile production printing technologies and is, in fact, transforming the industry. It has been influencing new workflows, business plans and creative processes. The opportunities for high-value digital printer applications are so large that many hardware and chemistry vendors are investing heavily in textile and textile-related products and systems. Between 2000 and 2005 digitally printed textile output rose by 300% to 70m square metres.[1]  This is still less than 1% of the global market for printed textiles, but  Gherzi Research, in a 2008 report, suggests the growth of digital printing on fabrics to be more than 20% per year.  This growth is largely driven by the display/signage sector of the market;[2] it is only recently that interior designers, seeking unique solutions for their clients, have been turning to digital printing.

Digital processes have become so advanced that it is becoming very hard to tell digitally printed fabric apart from fabric printed the traditional way – although for my money, they’ll never replicate the artisanal hand crafted quality of hand screened or hand blocked prints, where the human touch is so delightfully evident.  The lower energy, water and materials consumption means that more printers are switching to digital as it becomes competitive for shorter runs.   Although there are many advantages already to digital printing, the few downsides, such as lower production speeds compared to rotary screen printing and high ink costs are both changing rapidly.

As with traditional screen printing technologies, the variables in digital technologies are as varied as in screen printing,  with additional complexity of computer aided technologies requiring changes from the design stage onward.   Digital textile printing output is a reflection of the design and color management software (such as Raster Image Processing or  RIP) that provides the interface between the design software and the printer, the printer itself, the printing environment, the ink, the fabric, the pre-treatment, the post-treatment and last, but not least, the operator.

This print method is being heavily touted as the “greenest” option.  Let’s find out why they make these claims.

In theory, inkjet technology is simple – a printhead ejects a pattern of tiny drops of ink onto a substrate without actually touching it. Dots using different colored inks are combined together to create photo-quality images.  There are no screens, no cleanup of print paste, little or no wastage.

In practice, however, it’s a different story.  Successful implementation of the technology is very complex. The dots that are ejected are typically sub-micron size, which is much smaller than the diameter of a human hair (70 microns);  one square meter of print contains over 20 billion droplets! [3] They need to be positioned very precisely to achieve resolutions as fine as 1440 x 1440 dots per inch (dpi).  Since the inks used must be very fluid so as to not clog the printheads, nanotechnology is a huge part of the ink development.  In fact, according to Xennia, a world leader in digital printing inks, “microfluidic deposition systems are a key enabler for nanotechnology”.  This precision requires multi-disciplinary skills –  a combination of careful design, implementation and operation across physics, fluid mechanics, chemistry and engineering.

There are two general designs of ink jet printers:  continuous inkjet (CIJ)  and drop-on-demand (DOD). As the names imply, these designs differ in the frequency of generation of droplets.

In continuous ink jet printers, droplets are generated continually with an electric charge imparted to them. As shown schematically in Figure 1, the charged droplets are ejected from a nozzle. Depending upon the nature of the imposed electric field, the charged droplets are either directed to the media for printing, or they are diverted to a recirculation system. Thus, while the droplets are generated continuously, they are directed to the media only when/where a dot is desired. Historically, continuous ink jet printing has enjoyed an advantage over other inkjet technologies in its ability to use inks based on volatile solvents, allowing for rapid drying and aiding adhesion on many substrates. The disadvantages of the technology include relatively low print resolution, very high maintenance requirements and a perception that CIJ is a dirty and environmentally unfriendly technology due to the use of large volumes of volatile solvent-based fluids. Additionally, the requirement that the printed fluid be electrically chargeable limits the applicability of the technique.

FIGURE 1.Continuous ink jet (schematic). Charged droplets leaving the nozzle are directed either toward a substrate or toward an ink recirculation system, depending upon the imposed electric field.

In DOD ink jet printers, droplets are generated only when they are needed. There are two subcategories in DOD jet printers:

  • The droplets can be generated by heating the ink to boil off a droplet,  called thermal ink jet.  Thermal inkjet technology (TIJ) is most used in consumer desktop printers but is also making some inroads into industrial inkjet applications. In this technology, drops are formed by rapidly heating a resistive element in a small chamber containing the ink. The temperature of the resistive element rises to 350-400ºC, causing a thin film of ink above the heater to vaporise into a rapidly expanding bubble, causing a pressure pulse that forces a drop of ink through the nozzle. Ejection of the drop leaves a void in the chamber, which is then filled by replacement fluid in preparation for creation of the next drop.  The advantages of thermal inkjet technology include the potential for very small drop sizes and high nozzle density. High nozzle density leads to compact devices, lower printhead costs and the potential for high native print resolution. The disadvantages of the technology are primarily related to limitations of the fluids which can be used. Not only does the fluid have to contain a material that can be vaporised (usually meaning an aqueous or part-aqueous solution) but must withstand the effects of ultra high temperatures. With a poorly designed fluid, these high temperatures can cause a hard coating to form on the resistive element (kogation) which then reduces its efficiency and ultimately the life of the printhead. Also, the high temperature can damage the functionality of the fluid due to the high temperatures reached (as is the case with certain biological fluids and polymers).
    • Alternatively, the droplets can be ejected mechanically through the application of an  electric stimulation of a piezoelectric crystal (usually lead zirconium titanate)  to elicit a deformation.  This distortion is used to create a pressure pulse in the ink chamber, which causes a drop to be ejected from the nozzle.   This method is shown in Figure 2. Piezo  drop-on-demand inkjet technology is currently used for most existing and emerging industrial inkjet applications. In this technology, a piezoelectric crystal (usually lead zirconium titanate) undergoes distortion when an electric field is applied. This distortion is used to create a pressure pulse in the ink chamber, which causes a drop to be ejected from the nozzle. There are many variations of piezo inkjet architectures including tube, edge, face, moving wall and piston, which use different configurations of the piezo crystal and the nozzle. The advantages of piezo inkjet technology include the ability to jet a very wide variety of fluids in a highly controllable manner and the good reliability and long life of the printheads. The main disadvantage is the relatively high cost for the printheads, which limits the applicability of this technology in low cost applications.
    • FIGURE 2.Piezoelectric drop on demand ink jet (schematic). In a DOD ink jet printer, upon application of a mechanical pulse, the ink chamber is deformed. This results in the ejection of a droplet toward the substrate.

As with screen printing, there are steps other than printing which are often overlooked:   the first step in digital printing is the pretreatment of the fabric.  Because many chemicals and/or auxiliaries cannot be incorporated into the printing ink, they must be applied to the fabric during the pretreatment. The entire process has to be designed to control bleeding, but also to achieve the hand, color, and fastness required in  the finished textile. For basic fabric pretreatment, the elements of this solution can include:

  • Antimigrants – To prevent migration of ink and prevent “bleeding.”
  • Acids/Alkalis – To support reactions of acid and reactive inks, respectively.
  • Urea/Glycols – To increase moisture content of the fabric, giving high, even fixation of the inks.
  • “Effects” Chemicals – Vary widely in purpose. Although there are too many effects to mention here, they can include chemicals to improve the brightness of the prints, water and stain repellants, UV absorbers to improve the fabric’s resistance to sunlight, fabric softeners/stiffeners, even antimicrobials to provide resistance to mildew and germs.

Many patented and proprietary formulations for pre treatment exist, ranging from simple formulations of soda ash, alginate and urea to more sophisticated combinations of cationic agents, softeners, polymers and inorganic particulates such as fumed silica. Many of these have been aimed at fashion fabrics such as cotton, silk, nylon and wool. The processing of the fabric during pretreatment is also an important factor in producing a superior finished printed fabric. Fabrics must be crease-free and even in width. Some producers provide fabrics that are backed with removable paper to allow companies with graphic printers that have been retrofitted with textile inks to print fabrics. This paper, and the adhesive that holds it to the fabric, must be properly applied so that the paper can be removed easily from the fabric.

Inks used in digital printing are thinner than those used for traditional printing, so the fabric also needs to be prepared by soaking it in a thickening agent.  This agent reacts to moisture by swelling.  As soon as a drop of dye touches the pre treated fabric, the thickener will swell up, keeping the dye in its place.  Without this agent, the dye would run and bleed on the fabric.

Inkjet inks must be formulated with precise viscosities, consistent surface tension, specific electrical conductivity and temperature response characteristics, and long shelf life without settling or mould-growth. The inks, made up  of pigments or dyestuffs of high purity,  must be milled to very fine particle size and distributed evenly in solution.  In addition, further properties such as adequate wash-, light- and rub-fastness are necessary.

Inkjet inks contain dyes or pigments but like screen printing inks they contain other things too:

  • Surfactants
  • Liquid carriers (water or other solvents)
  • Binders
  • Rheology modifiers
  • Functional materials
  • Adhesion promoters
  • Other additives
  • Colorants (dyes or pigments)[4]

The inks used in digital printing today have comparable color performance and fastness as compared to traditional screen printing inks.  They fall into four general categories:

  1. Water based – can contain glycol plus pigments or dyes.  These inks are designed to run specifically in printers with thermal and piezo-electric print-heads.  Dyes used include:

                  Reactive dyes, particularly suited to cotton, viscose and other cellulosic materia

                 Acid dyes, used for wool, silk and nylon.

                 Disperse dyes are used for synthetics like polyester and nylon.

  1.   Pigments (as well as disperse dyes)  present a more difficult set of problems for ink makers. Both exist in    water as a dispersion of small particles. These inks must be prepared with a high degree of expertise so that the particles will not settle or agglomerate (flocculate) and clog the printheads. The particle size must have an average of 0.5 micrometer and the particle size distribution must be very narrow with more than 99% of the particles smaller than 1 micrometer in order to avoid clogging of the nozzles. The major outstanding problem with the use of pigments in inkjet systems is how best to formulate and apply the resins which are required to bond the pigment particles to the fabric surface. Several different approaches, from coating pigment particles with advanced surfactants, to spraying resin through a separate jet head to screen printing binder over an inkjet  printed color have been suggested.
  2. Solvent based – Solvent-based inks are relatively inexpensive and have the advantage of being able to produce good vivid colors. However, their main ingredients are volatile organic compounds (VOCs) which produce harmful emissions. These inks need to be employed in machines which have ducting to extract the solvents to atmosphere. It is possible to remove the VOC’s using activated carbon filters without ducting to outside the building however you still have to dispose of the solvent laden graphite. Fabrics produced using solvent-based inks have a strong odor. The higher the level of the solvent, the greater the keying, or bonding, with the material’s surface to give a durable finish. Types of solvent range from eco-solvent, low and mild solvent through to hard or full solvent. The term eco-solvent does not necessarily mean less environmentally damaging than conventional solvent, as discussed in the post entitled “Textile Printing and the Environment”.
  3. Oil based – requires the use of a printer which is compatible; otherwise similar to water and solvent based inks.  Oil-based inks are less commonly used, but offer very reliable jetting since the ink does not evaporate.
  4. UV curable – generally made of synthetic resins which have colored pigments mixed in.  Curing is a chemical reaction that includes polymerization and absorption by the fabric. UV inks consist of oligomers, pigments, various additives and photoinitiators (which transfer the liquid oligomers and monomers into solid polymers).
  5. Phase change –  ink begins as a solid and is heated to convert it to a liquid state. While it is in a liquid state, the ink drops are propelled onto the substrate from the impulses of a piezoelectric crystal. Once the ink droplets reach the substrate, another phase change occurs as the ink is cooled and returns to a solid form instantly.

Once you have digitally printed the fabric, you must perform some process to fix the ink. What process this is depends on the type of ink you used.  Each dye type needs a specific finishing agent.

Finally, the fabric needs to be washed to remove the excess dye and thickening agents.  Fabrics are washed in a number of wash cycles at different temperatures to make the print washfast.

So at the end of this process, you can see that there is no real difference in the amount – or kinds –  of chemicals used, except perhaps those lost through wastage.  So what exactly are the green claims based on?

The traditional printing industry produces large amounts of waste – both dyes/pastes and water, and it has high energy useage.  There are also large space reqirements to operate presses, which produce a lot of noise.  In a project sponsored by the European Union’s LIFE Program, an Italian printing company,  Stamperia di Lipomo, transferred from conventional printing to digital.[5]  They found that these new digital presses lowered water, energy and materials consumption significantly.  The following reductions were achieved:

  • Production space required by 60%
  • Noise by 60%
  • Thermal energy usage by 80%
  • Wastewater by 60%
  • Electricity consumption by 30%
  • By-production of waste dyes = eliminated entirely

Digital printing has other advantages, which include:

  • Minimal set up costs – short runs and samples are economical – so traditional mill minimums can be avoided.  Costs per print are the same for 1 or 1000000.
  • There is no down time for set up – the printer is always printing – so there is also increased productivity.
  • Faster turnaround time – and very fast design changes.  Turnaround time for samples can be reduced from 6 to 8 weeks to a few days.
  • Print on demand, dramatically reducing time to market.
  • Just-in-time customization or personalization
  • Theoretically no limit on number of colors.
  • Decreases industrial waste and print loss.

The disadvantages most often cited, that of high cost of inks and shorter printing speeds, are quickly being overcome by the manufacturers.

One concern I have is that of the use of nanotechnology, which seems to be an inextricable part of the equation.  Already nanotechnology is enabling manufacturers to offer functional finishes in post processing, such as stain and water repellants, fire retardants, and UV blocking .  It is also being used in smart clothing:  To harness the energy of the sun, flexible thin film modules are sewn onto clothes. However, since they show clearly when sewn,  digital textile printing makes these modules inconspicuous.[6]

The traditional industry still looks at digital textile printing parameters from the context of what it “can’t do,” compared to conventional printing (much of which is already history).  For a much smaller group of designers, textile artists, fine artists, costumers, wide-format printers and the like, this technology is much more about what it “can do” to provide to provide products and services the market has never before seen. For these people, textile printing offers parameters not available with conventional printing:  unlimited repeat size, tonal graphics, engineered designs that cross several seam lines, quicker samples, customization and short-run production.  And the use of the technology is beginning to catch the imagination of more and more textile designers, as they realize that their old reaction to computer generated graphics (dismissive to say the least)  is truly outdated.  Claire Lui, Print magazine associate editor, points out that in  ultra-custom milieus, design and printing become more like art than common manufacturing.

The traditional textile industry needs to understand that, in the same way the Internet is not going to replace the television as a form of entertainment or information, this new digital technology isn’t about replacing existing processes , but rather about leveraging the expanded parameters to offer new niche products and services.  And we must remember too that digital printing is not the panacea it’s touted to be for the environment, though it seems to have less of a pollution footprint than traditional screen or rotary printing.


[3] Xennia

[4] Yeong, Kay, “Inkjet Printing: Microfluidics for the Nanoscale”; http://www.xennia.com/Xennia/uploads/ppp-InkjetPrintingMicrofluidicsfortheNanoscale-Jun2010.pdf





Bisphenol A in textile processing?

16 12 2011

If you’ve bought baby bottles or water bottles recently, I’m sure you’ve seen a prominent “BPA Free” sign on the container.

BPA stands for Bisphenol A, a chemical often used to make clear, polycarbonate plastics (like water and baby bottles and also eyeglass lenses, medical devices, CDs and DVDs, cell phones and computers).  And though it has been formally declared a hazard to human health in Canada and banned in baby bottles in both Canada as well as the EU,  U.S. watchdog agencies have wildly differing views of BPA:  The National Toxicology Program (NTP) reported “some concern” that BPA harms the brain and reproductive system, especially in babies and fetuses.  The Food and Drug Administration declared that “at current levels of exposure” BPA is safe.

But consider this:  Of  the more than 100 independently funded experiments on BPA, about 90% have found evidence of adverse health effects at levels similar to human exposure. On the other hand, every single industry-funded study ever conducted — 14 in all — has found no such effects.  David Case made the argument in the February 1, 2009 issue of Fast Company that this is a story about protecting a multibillion-dollar market from deregulation.  But that’s beside the point  which is:    nobody disputes the fact that people are constantly exposed to BPAs and babies are most at risk.  It’s also undisputed that BPA mimics the female sex hormone estrogen, and that some synthetic estrogens can cause infertility and cancer.  If you’d like to read more about this click here.

Bisphenol A is now deeply imbedded in the products of modern consumer society.  This is important because it’s used in so many modern products (making it pretty much ubiquitous), and because it is extremely potent in disrupting fetal development. BPA contamination is also widespread in the environment. For example, BPA can be measured in rivers and estuaries at concentrations that range from under 5 to over 1900 nanograms/liter.(1)

What this all means is that most of  us live our lives in close proximity to bisphenol A.

Because it’s used to make plastic hard, I never thought it would have a place in the textile industry.  So it was with some concern that I came across articles which explain the use of bisphenol A in the manufacturing of synthetic fibers.

Producing synthetic fibers and yarns is almost impossible without applying a processing aid to the fibers during the extrusion and spinning processes.   The fibers and yarns are frequently in contact with hot surfaces, or they pass through hot ovens.  In order to withstand these extreme conditions, the yarns and fibers have processing aids or finishes applied.    This applied processing aid or ‘finish’, in addition to helping the yarns withstand extreme temperatures, also  reduces static electricity, fiber-fiber and metal-fiber friction, provides integrity to the filaments,  and altogether eases the manufacturing processes.

But because modern manufacturing equipment runs at higher speeds and subsequently at higher temperatures, the finish degrades in the high temperatures – yielding lower quality fibers –  and generates unwanted decomposition products.  These byproducts can be in the form of:

  1. Toxic and nontoxic gases which have environmental and safety issues;
  2. Liquids, which leave a sticky residue on the yarns,
  3. Or they may form a solid varnish on hot surfaces that is very difficult to remove; the presence of the varnish interferes with continuous, efficient production leading to economic losses due to equipment shutdown and product failure.

To overcome the problems caused by the degradation of finishes, several additives are introduced to prevent or delay the reactions of oxidation and degradation.  Several classes of antioxidants are typically used as these additives in these finishes.

In a study sponsored by the National Textile Center, a research consortium of eight universities, three North Carolina State University professors investigated the thermal stability of textiles, specifically with respect to the antioxidants used in the finishes.  They investigated four different antioxidants – one of which is based on Bisphenol A. (2)

So I got interested, and began a bit of poking around for other mentions of Bisphenol A in the textile industry. I found two scientific references to use of bisphenol A in the production of  polyester fabrics.  Both reported similar use of Bisphenol A as this quote,  which states:  “ a woven polyester fabric was … finished with an aqueous compound  containing 5% polyethylene glycol bisphenol A ether diacrylate for 30 min at 60° to give a hygroscopic, antistatic fabric with good washfastness.” (3)

I found that Bisphenol A is used  in the production of flame retardants, and as an intermediate in the manufacture of polymers, fungicides, antioxidants (mentioned above), and dyes.   Because it is often used as an intermediate it’s hard to pin down, and manufacturers keep their ingredients trade secrets so we often will not know – unless somebody funds a study which is published.

I have not seen any studies which report finding Bisphenol A in a finished fabric, so this may be a tempest in a teacup.  But isn’t it worth noting that this chemical, which has been found in the blood of 95% of all Americans, and which some say may be the “new lead”, can exist in products in which we previously never would have thought to look?

(1)  http://www.ourstolenfuture.org/newscience/oncompounds/bisphenola/bpauses.htm

(2) Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”,  www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf

(3)  http://www.lookchem.com/cas-644/64401-02-1.html?countryid=0





Enzymes and GOTS

9 12 2011

Last week we reviewed the ways enzymes are helping to give textile processes a lighter footprint while at the same time producing better finished goods – at a lower cost.  Seems to be a win/win situation, until you begin to unpeel the onion:

It begins with the production of the enzyme:  Enzymes have always been obtained from three primary sources, i.e., animal tissue, plants or microbes.  By starting with the primary source and “feeding” it properly (known as fermentation), we ended up with our target product – like beer, for example.

But these naturally occurring enzymes are often not readily available in sufficient quantities for  industrial use. The production of enzymes – including microorganisms used to produce enzymes –  is a pursuit central to the modern biotechnology industry.  Until recently, the availability of enzymes  have been limited to the quantities that could be produced in the host organism in which they were naturally derived.

Today, the starting point is a vial of a selected strain of microorganisms – microbial hosts which have been selectively bred by industry. They will be nurtured and fed until they multiply many thousand times.  Once fermentation is complete, the microorganisms are destroyed, the desired enzymes are recovered from the fermentation broth and sold as a standardized product.

Modern biotechnology has improved enzyme production and enzyme quality in several ways:

1)     Increased efficiency of enzyme production resulting in higheryields;

2)     Increased enzyme purity through reduction or elimination of side activities;

3)     Enhancing the function of specific enzyme proteins, e.g., by increasing the temperature range over which an enzyme is active.

The results, as we discussed last week,  are better products, produced more efficiently, often at lower cost and with less environmental impact.

It wasn’t until genetic engineering came about that these biological methods became economically viable. Targeted genetic manipulation has not only enhanced the productivity of these methods, it also has resulted in the production of substances that were previously impossible. To date, up to 60% of all technical enzymes are produced with genetically modified organisms (GMO) – and this number is sure to increase given that GMO-based enzyme production requires 40-50% less energy and raw materials than traditional enzyme production.[1]  And therein lies the rub.

Cheese, eggs and milk, for example, may not be genetically modified themselves but may contain ingredients and additives that were produced from genetically modified microorganisms.

Take cheese for example: Traditionally, this enzyme preparation, sometimes known as rennin, was extracted from calf stomachs. The active ingredient is chymosin, an enzyme produced in the stomach of suckling calves needed for breaking down cow’s milk.

It is now possible to produce chymosin in genetically modified fungi. These modified microorganisms contain the gene derived from the stomach of calves that is responsible for producing chymosin. When grown in a bioreactor, they release chymosin into the culture medium. Afterwards, the enzyme is extracted and purified yielding a product that is 80 to 90 percent pure. Natural rennin contains only 4 to 8 percent active enzyme.[2]

Even the nutritive medium used to grow bacteria and fungi is often made from GMOs.

Again, what are the arguments against GMO?

Briefly, because I want to get to how this pertains to the textile industry, here are the most common concerns :

1)     What happens when these GMOs interact with other organisms?  Already there is concern that GMO crops resistant to weed killers will themselves become uncontrolled weeds in other fields – the GMO plant may cross pollinate with a related species that is a weed which then becomes resistant to weed killers.  This is already happening according to many published reports.  And it can happen in really subtle ways:

  1. Since 1986, Novo Nordisk, one of the world’s largest producers of industrial enzymes,  has processed the residuals of fermentation processes generated by GMOs into “biomass” or “sludge” called NovoGro. The sludge is dehydrated and freely distributed among farmers. NovoGro is virtually the company’s only possibility to dispose of its massive enzyme production waste. In 1996, 2.2 million cubic meters of NovoGro were produced. Daily about 150 truckloads of NovoGro are spread over 70 hectares of land in Denmark .  Total costs are about US$ 13 million per year, all carried by Novo Nordisk. A Danish farmers’ organization protested against the distribution of NovoGro because it suspected pollution by GMOs. There are concerns that risks associated with the use of GMO products is not worth the benefits as long as the environmental impacts are not monitored by third parties.[3]

2)     The argument rages about the human health risks of genetically engineered foods – specifically with regard to the rise in food allergies. The British Medical Association (BMA)  in a study done in 2003, concluded that the risks to human health associated with GMO foods is negligible, while calling for further research and surveillance.[4]

3)     Ethical concern of the “slippery slope”: because it appears to provide costless benefits, so companies and governments may rush into production one or more products of the new technologies that will turn out to be harmful, either to the environment or to humans directly.

The manufacturers and scientists tell us that there are no traces of these GMO microorganisms in the final product, and no microbial DNA is detectable.

Additives (such as enzymes) that are produced with the help of genetically modified microorganisms do not require labeling because GMOs are not directly associated with the final product.  In the textile industry, they are known as auxiliaries or processing aids.

In textiles, the Global Organic Textile Standard (GOTS) has stated that the use of genetically modified organisms – including their enzymes – is incompatible with the production of textiles labelled as ‘organic’ or ‘made with organic’ under GOTS.  According to the GOTS website:  “While the IWG Technical Committee acknowledges that there are applications including, and based on GM technologies, that result in a reduction of energy and water use and replace chemicals compared to some conventional textile processes this is only one side of the coin.”  They go on to say that it is important to give consumers a choice to actively decide for themselves if they want to purchase a textile product made without using any GMO derived inputs.

As a company which is trying to do the right thing, I don’t know where I stand on this issue.    What do you think?





Enzymes in textile processing

2 12 2011

Humankind has used enzymes for thousands of years to carry out important chemical reactions for making products such as cheese, beer, and wine. Bread and yogurt also owe their flavor and texture to a range of enzyme producing organisms that were domesticated many years ago.

In the textile industry, one of the first areas which enzyme research opened up was the field of desizing of textiles.  A size is a substance that coats and strengthens the fibers to prevent damage during the weaving process. Size is usually applied to the warp yarn, since this is particularly prone to mechanical strain during weaving.   The size must be removed before a fabric can be bleached and dyed, since it affects the uniformity of wet processing. Previously, in order to remove the size, textiles were treated with acid, alkali or oxidising agents, or soaked in water for several days so that naturally occurring microorganisms could break down the starch. However, both of these methods were difficult to control and sometimes damaged or discoloured the material. But by using enzymes, which are specific for starch, the size can be removed without damaging the fibers.

Enzymes used in textile processing - photo from Novozymes

It represented great progress, therefore, when crude enzyme extracts in the form of malt extract, or later, in the form of pancreas extract, were first used to carry out desizing.  Bacterial amylase derived from Bacillus subtilis  was used for desizing  as early as 1917. Amylase is a hydrolytic enzyme which catalyses the breakdown of dietary starch to short chain sugars, dextrose  and maltose.

Enzymes have been used increasingly in the textile industry since the late 1980s. Many of the enzymes developed in the last 20 years are able to replace chemicals used by mills. The first major breakthrough was when enzymes were introduced for stonewashing jeans in 1987 – because more than one billion pairs of denim jeans require some sort of pre-wash treatment every year. Within a few years, the majority of denim finishing laundries had switched from pumice stones to enzymes.

Today, enzymes are used to  treat and modify fibers, particularly during textile processing and in caring for textiles afterwards.  They are used to enhance the preparation of cotton for weaving, reduce impurities, minimize “pulls” in fabric, or as pre-treatment before dying to reduce rinsing time and improve color quality.  New processing applications have been developed for:

  • Scouring (the process of removing natural waxes, pectins, fats and other impurities from the surface of fibers), which gives a fabric a high and even wet ability so that it can be bleached and dyed successfully. Today, highly alkaline chemicals (such as caustic soda) are used for scouring. These chemicals not only remove the non-cellulosic impurities from the cotton, but also attack the cellulose leading to heavy strength loss and weight loss in the fabric. Furthermore, using these hazardous chemicals result in high COD (chemical oxygen demand) and BOD (biological oxygen demand)  in the waste water. Recently a new enzymatic scouring process known as ‘Bio-Scouring’ is being used in textile wet-processing with which all non-cellulosic components from native cotton are completely or partially removed. After this Bio-Scouring process, the cotton has an intact cellulose structure, with lower weight loss and strength loss. The fabric gives better wetting and penetration properties, making the subsequent bleach process easy and  giving much better dye uptake.
    • One of the newest products, PrimaGreen® EcoScour from Genencor, offers sustainability advantages for eco-scouring in cotton pretreatment, including 30 percent water savings and 60 percent energy savings compared to standard processing. In addition, the mild processing conditions result in improved fabric quality and enhanced color brightness after dyeing.
  • Bleaching – When bleaching cotton, a lot of chemicals, energy and water are part of the process. The company Huntsman has developed a wetter/stabilizer that maximizes the wetting and detergency of the bleaching process and a one-bath caustic neutralizer and peroxide remover in order to shorten the bleaching cycle, reduce energy and water required and deliver more consistent bleaching results. They have developed surfactants that are environmentally friendly (in that they do not contain Alkylphenol ethoxylates), and the system is both Oeko-Tex and GOTS approved.  After fabric or yarn bleaching, residues of hydrogen peroxide are left in the bath, and need to be completely removed prior to the dyeingprocess, using a step called bleach cleanup.  The traditional method is to neutralize the bleach with a reducing agent, but the dose has to be controlled precisely. Incomplete peroxide removal results in poor dyeing with distinct change of color shade and intensity, as well as patchy, inconsistent dye distribution. Enzymes used for bleach clean-up ensure that residual hydrogen peroxide from the bleaching process is removed efficiently – a small dose of catalase breaks hydrogen peroxide into water and oxygen.  This results in cleaner waste water and reduced water consumption.
    • In 2010, a life-cycle assessment was completed comparing PrimaGreen enzymatic bleaching to conventional textile bleaching methods. According to this LCA, if the enzymatic system were to see wide scale global adoption, the potential savings in freshwater consumption could be up to 10 trillion liters of water annually, and greenhouse gas reductions could range from 10-30 million metric tons. (1)
  • Biofinishing or biopolishing (removing fiber fuzz and pills from fabric surface) –  enzymatic biofinishing yields a cleaner surface, softer handfeel, reduces pilling and increases luster;
  • Denim finishing – In the traditional stonewashing process, the blue denim was faded by the abrasive action of pumice stones on the garment surface. Nowadays, denim finishers are using a special cellulase.  Cellulase works by loosening the indigo dye on the denim in a process known as ‘Bio-Stonewashing’. A small dose of enzyme can replace several kilograms of pumice stones. The use of less pumice stones results in less damage to garment, machine and less pumice dust in the laundry environment; in addition, it’s possible to fade denim without risk of damaging the garment.
  • European scientists have just announced a new and environmentally friendly way to produce textile dyes using enzymes from fungi. (2)

Because of the properties of enzymes, they make the textile manufacturing process much more  environmentally benign. (3)   Generally, they:

  1. operate under milder conditions (temperature and pH) than conventional process chemicals – this results in lower energy costs ( up to 120 kg CO2 savings per ton of textile produced) (4) ;
  2. save water – reduction of water usage up to 19,000 liters per ton of textiles bleached;
  3. are an alternative for toxic chemicals, making wastewater easier and cheaper to treat.
  4.  are easy to control;  do not attack the fiber structure with resulting loss of weight, resulting in better quality of material;
  5. better and more uniform affinity for dyes;
  6. contribute to safer working conditions through elimination of chemical treatments during production processes;
  7. are fully biodegradable.

So why is there a ruckus about enzymes being used in textile processing by GOTS and other organic certifying agencies?

(1)   http://primagreen.genencor.com/sustainability/lca_results/

(2)   http://www.just-style.com/news/eco-friendly-textile-dyes-use-enzymes-from-fungi_id112195.aspx

(3)   http://www.textiletodaybd.com/index.php?pid=magazine&id=52

(4)  http://www.europabio.org/sites/default/files/pages/lutz-walter-benefits-from-white-biotechnology-applications-in-the-european-textile-and-clothing-industry.pdf





White biotechnology and enzymes

18 11 2011

For tens of thousands of years, humans relied on nature to provide them with everything they needed to make their lives more comfortable -cotton and wool for clothes, wood for furniture, clay and ceramic for storage containers, even plants for medicines. But this all changed during the first half of the twentieth century, when organic chemistry developed methods to create many of these products from oil.  Oil-derived synthetic polymers, colored with artificial dyes, soon replaced their precursors from the natural world.

But today, with growing concerns about the dependence on imported oil and the awareness that the world’s oil supplies are not limitless, coupled with stricter environmental regulations,  chemical and biotechnology industries are exploring nature’s richness in search of methods to replace petroleum-based synthetics.  As with other forms of biotechnology, industrial biotech involves engineering biological molecules and microbes with desirable new properties. What is different is how they are then used: to replace chemical processes with biological ones. Whether this is to produce chemicals for other processes or to create products such as biopolymers with new properties, there is a  huge effort to harness biology to accomplish what previously needed big, dirty chemical factories, but in cleaner and greener ways.

The public has for a long time perceived biotechnology to mean dangerous meddling with the genes in food and fiber crops.  But biotechnology is about much more than transgenic crops – it also uses microbes to make pharmaceuticals, for example.  Industrial biotechnology is known as “white” biotechnology, as distinct from “red” biotechnology, which is devoted to medical and pharmaceutical purposes, and “green” biotechnology, or the application of biotechnology in agriculture.

From: EuropaBio

Today, the application of biotechnology to industrial processes holds many promises for sustainable development.  One of the first goals on white biotechnology’s agenda has been the production of biodegradable plastics, and in textiles,  DuPont has invested much in the production of textile fibers from corn sugar (Sorona ®) while Cargill Dow has introduced NatureWorks ™, a polymer made from lactic acid which is used in textiles under the brand name Ingeo ®.  And these new processes have resulted in considerable environmental benefits:  In the case of Sorona ®, for example,  DuPont was able to replace the toxic elements of ethylene glycol and carbon monoxide in typical PET fibers with benign corn sugars.

But there are challenges pertaining to these new bioplastics, and the evidence that they’re actually better for the planet is hotly debated.  As Jim Thomas argues in the New Internationalist online magazine:

Strictly speaking a bioplastic is a polymer that has been produced from a plant instead of from petroleum. That is neither a new breakthrough nor a guarantee of ecological soundness. The earliest plastics such as celluloid were made from tree cellulose before petroleum proved itself a cheaper source. Today, with oil prices skyrocketing, it’s cheaper feedstock –  not green principles –  that is driving chemical companies back to bio-based plastics. Bioplastics may bring in the greenbacks for investors but are they actually green for the planet? The evidence is not convincing. For a start bioplastics may or may not be degradable or biodegradable – two terms that mean very different things. Many bio-based plastics – like DuPont’s Sorona – make no claims to break down in the environment. So much for disposal. But replacing fossil fuels with plants has to be a good idea, right? This is the premise on which the green claims of bioplastics mostly rest. Unfortunately, as advocates of biofuels have learned, switching from oil to biomass as the feedstock of our industrial economy carries its own set of problems. Like hunger.

There is nothing sustainable or organic about most industrial agriculture feedstocks. At present genetically modified corn grown using pesticides is probably the leading source of starch for bioplastics.  The link between genetic contamination and bioplastics is strong.

As concerns mount, the Sustainable Biomaterials Collaborative (SBC) – a network of 16 civil society groups and ethical businesses – is working to define a truly sustainable bioplastic. One of its founders, Tom Lent, explains that the SBC started because ‘the promise of bioplastics was not being realized’.

But biotechnology is not just about bioplastics – it’s actually mostly, these days,  about enzymes.  Biotechnology can provide an unlimited and pure source of enzymes as an alternative to the harsh chemicals traditionally used in industry for accelerating chemical reactions. Enzymes are found in naturally occurring microorganisms, such as bacteria, fungi, and yeast, all of which may or may not be genetically modified.  (We’ll come back to this important point later.)

But what are enzymes?

Enzymes are large protein molecules that  act as  catalysts – substances that start or accelerate chemical reactions without themselves being affected —  and help complex reactions occur everywhere in life.  By their mere presence, and without being consumed in the process, enzymes can speed up chemical processes – reactions occur about a million times faster than they would in the absence of an enzyme. In principle, these reactions could go on forever, but in practice most enzymes have a limited life.   There are many factors that can regulate enzyme activity, including temperature, activators, pH levels, and inhibitors.

Enzymes play a diversified role in many aspects of everyday life including aiding in digestion and the production of food as well as in industrial applications. Enzymes are nature’s catalysts. Humankind has used them for thousands of years to carry out important chemical reactions for making products such as cheese, beer, and wine. Bread and yogurt also owe their flavor and texture to a range of enzyme producing organisms that were domesticated many years ago.

Enzymes are categorized according to the compounds they act upon. Some of the most common include:

  •  proteases which break down proteins,
  •  cellulases which break down cellulose,
  •  lipases which split fats (lipids) into glycerol and fatty acids, and
  •  amylases which break down starch into simple sugars.  Human saliva, for example, contains amylase, an enzyme that helps break down starchy foods into sugars.

In textile treatment, the first enzyme applications, as early as 1857, was the use of barley for removal of starchy size from woven fabrics. The first microbial amylases were used in the 1950s for the same desizing process, which today is routinely used by the industry.

Enzymes are now widely used to prepare the fabrics that your clothing, furniture and other household items are made of.  Increasing demands to reduce pollution caused by the textile industry has fueled biotechnological advances that have replaced harsh chemicals with enzymes in many textile manufacturing processes.  The use of enzymes not only make the process less toxic (by substituting enzymatic treatments for harmful chemical treatments) and eco-friendly, they reduce costs associated with the production process, and consumption of natural resources (water, electricity, fuels), while also improving the quality of the final textile product.

But how do they work?

Rader’s Chem4Kids.com website  has a great explanation, which I’ve quoted below:

Think of enzymes as similar to keys which can open locks.  Just as when you need a key that is just the right shape to fit in a particular lock, enzymes complete very specific jobs and do nothing else.  

From: Chem4Kids

 They are very specific locks and the compounds they work with are the special keys. In the same way there are door keys, car keys, and bike-lock keys, there are enzymes for neural cells, intestinal cells, and your saliva.

Here’s the deal: there are four steps in the process of an enzyme working. 

  1.  An enzyme and a substrate are in the same area. The substrate is the biological molecule that the enzyme will attack. 
  2.  The enzyme grabs onto the substrate with a special area called the active site.  The active site is a specially shaped area of the enzyme that fits around the substrate. The active site is the keyhole of the lock. 
  3. A process called catalysis happens. Catalysis is when the substrate is changed. It could be broken down or combined with another molecule to make something new. 
  4.  Then the enzyme lets go.  When the enzyme lets go, it returns to normal, ready to do another reaction. But the substrate is no longer the same – the substrate is now called the product.

Next, well take a look at how enzymes are helping to make the textile industry’s environmental footprint a bit more benign.





How to buy a sofa: part 4: so which fabric will it be?

16 09 2011

So for the past two weeks we’ve discussed the differences between synthetic and natural fibers.  But there’s more to consider than just the fiber content of the fabric you buy.  There is the question of whether a natural fiber is organically grown, and what kind of processing is used to create the fabric.

First, by substituting organic fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits.  Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers) [1] , which helps to mitigate climate change, but it also:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health  and agrobiodiversity;
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • ensures sustained biodiversity;
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not  vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles.  As such it can be seen as more than a set of agricultural practices, but also as a tool for social change.[2]  For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But if you start with organic natural fibers (a great choice!)  but process those fibers conventionally, then you end up with a fabric that is far from safe.  Think about making applesauce:  if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stablizers and who knows what else – do you end up with organic applesauce?  The US Department of Agriculture would not let you sell that mixture as organic applesauce, but there is no protection for consumers when buying fabric.  And the same issues apply, because over 2000 chemicals are used routinely in textile processing.(4)  Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates,  benzenes and others).   In fact, one yard of fabric made with organic cotton fiber  is about 25% by weight synthetic chemicals – many of which are proven toxic to humans. (5)

I know you’re saying that you don’t eat those fabrics, so what’s the danger?  Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body).  Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in.  Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern?  Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry.  Greenpeace also did a study on specific items manufactured by Disney, but I would guess the results pertain all across the spectrum:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis,  for example, and linked to many of the chemicals used in textile processing) are reaching epidemic rates,  and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t (6);
  • We know formaldehyde is bad for us, but in fabric?  A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[7]  Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.(9)
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.(10)

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides. (11)
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys.   They are ubiquitous –  and are also found  in most  textile inks.[12]  So parents careful not to bring toxic toys into their homes for  can be  nevertheless  unknowingly putting their kids to sleep on cute printed sheets full of phthalates.

Though some argue that we’re less prepared because we’re confronting fewer natural pathogens, it’s also true that we’re  encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum.  And our children are the pawns in this great experiment.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis?   Some argue that we’re less prepared because we’re confronting fewer natural pathogens.  All plausible.   But if you think they are the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the maximum  has replaced bacteria and viruses as the major cause of human illness.  We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized –  certainly not the darling of venture capatalists who look for the next big thing.  So not many research dollars are going into new ways of producing fabrics.    Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible:   in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge (13).

 


[1] Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2]  Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf  Also see:  Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

(4)  See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

(5) Lacasse and Baumann, Textile Chemicals:  Environmental Data and Facts, Springer, New York, 2004, page 609

(6) Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

(7) Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

(8) Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817  SEE ALSO:  http://www.breastcancer.org/risk/new_research/20100401b.jsp  AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

(9) Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

(10)  http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp

(11) http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

(12)  “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week,  September 22, 2008  SEE ALSO:  Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

(13) Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.