Relationships and systems

1 07 2014




From Jewel  Renee Illustration;

From Jewel Renee Illustration;

From Alaska to Southern California, sea stars (or as I call them,  starfish.    But  scientists like to point out they’re not fish, ergo: “sea stars”) are dying by the millions.  Drew Harvell, a marine epidemiologist at Cornell University, calls it the largest documented marine epidemic in human history.   The disease deflates sea stars, causing them to become weak, lose limbs  and develop lesions that eat through their entire bodies – or simply disintegrate into bacterial goop within days.   

Two affected species – sunflower and ochre stars – are “keystone species” in their respective habitats. That is, they are species that have disproportionately large impacts on their ecosystems, and they fill a vital niche. The term was coined 45 years ago by zoology professor Robert Paine, of the University of Washington, specifically to describe the importance of the ochre star in the Pacific Northwest.  They are a top predator, eating mussels, barnacles and sea snails.

“This is the species that defined the term, which is a central concept in ecological theory,” explained Drew Harvell.   “We do expect the impact to be dramatic. And to take away not just one, but both of these keystone species in adjoining ecosystems? It’s going to have a big effect.”[1]

Nobody knows why the sea stars are dying.  Theories have run from waterborne pathogens or other disease agents, manmade chemicals, ocean acidification, wastewater discharge or warming oceans.  There is even a contingent that thinks the Fukushima nuclear meltdown is the cause.  The newest theory is that they’re being infected with a disease that can more easily grow in the Pacific Ocean thanks to warming waters, which provide a better place for the disease organisms to multiply.  According to the scientists, the warmer waters also compromises the immune systems of the sea stars, allowing them to be more susceptible to the disease.

I’m sure you know where I’m going with this:  like Colony Collapse Disorder (CCD) of honeybees, the sea star wasting syndrome is beyond the range of what we expect in a healthy ecosystem.  Most scientists have concurred that the CCD was caused by a variety of environmental stresses (malnutrition, pathogens, mites, pesticides, radiation from cell phones and other man made devices, as well as genetically modified crops with pest control characteristics) which increased stress and reduced the immune systems of the honeybees.

And though bees and sea stars are both rather small and seem insignificant, they are both essential components of our ecosystem.  Without bees, for example, there would be significantly less pollination, which would result in limited plant growth and lower food supplies. According to Dr. Albert Einstein, “If the bee disappears from the surface of the earth, man would have no more than four years to live. No more bees, no more pollination…no more men”.[2]    It’s a bit early to assess the impact of the loss of sea stars, but according to Carol Blanchette, a research biologist at University of California Santa Barbara,  “losing a predator like that is bound to have some pretty serious ecological consequences and we really don’t know exactly how the system is going to look but we’re quite certain that it’s going to have an impact.”[3]

I read a book many years ago about time travelers who went to the distant past.  One of them stepped on an insect.  When they returned to their own time, everything had changed.  Ecologists tell us that everything is connected to everything else – ecosystems are complex and interconnected.  “The system,” Barry Commoner writes, “is stabilized by its dynamic self-compensating properties; these same properties, if overstressed, can lead to a dramatic collapse.” Further, “the ecological system is an amplifier, so that a small perturbation in one place may have large, distant, long-delayed effects elsewhere.”[4]

So how does the textile industry figure into this equation?  Answer:  the textile industry pollutes our water.  In fact, some sources put it as the leading industrial polluter of water on the planet.  It takes about 505 gallons of water to produce one pair of Levi’s 501 jeans.[5]  Imagine how much water is used every day by textile mills worldwide.   The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

Maude Barlow, in her book, Blue Covenant [6] argues that water is not a commercial good but rather a human right and a public trust.   She shares these startling facts about water during her presentations:

  • Every 8 seconds a child dies from drinking dirty water.
  • 50% of the world’s hospital beds are occupied by people who have contracted waterborne diseases.
  • The World Health Organization says contaminated water is the cause of 80% of all sickness and disease worldwide.
  • 9 countries control 60% of the world’s available freshwater.[7]
  • In China, 80% of all major rivers are so polluted they don’t support aquatic life at all.

This year’s drought in the US pointed to a new water related issue, the generation of energy.  Power plants are completely dependent on water for cooling and make up about half the water usage in the US.  If water levels in the rivers that cool them drop too low, the power plant – already overworked from the heat – won’t be able to draw in enough water. In addition, if the cooling water discharged from a plant raises already-hot river temperatures above certain thresholds, environmental regulations require the plant to shut down.[8]

The textile mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water as a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

Please ask whether the fabric you buy has been produced in a mill which treats its wastewater.   The Global Organic Textile Standard (GOTS) assures consumers that the mill which produced the fabric has treated its wastewater, but so far it is the only third party certification with that requirement as a standard.  Oeko Tex 1000 has also included that in its requirements, however I have never seen an Oeko Tex 1000 certification – most fabrics are simply Oeko Tex certified.  Also look into the Greenpeace Detox challenge, which is working to “expose the direct links between global clothing brands, their suppliers, and toxic water pollution around the world.”  Click here for more information.


[1] Gashler, Krisy, “Sea star wasting devastates Pacific Coast species”, Cornell Chronicle, Feb 17, 2014



[4] Commoner, Barry; “The Closing Circle: Nature, Man and Technology”, Random House, October 1971

[5] Alter, Alexandra, “Yet Another Footprint to Worry About: Water”, The Wall Street Journal, February 17, 2009.

[6] Barlow, Maude; “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008.

[7] WBCSD, Facts and Trends: Water (version 2), 2009.

[8] Reardon, Sara, “Water shortages hit US power supply”, New Scientist, 20 August 2012.


Textile industry and water pollution – brought to you by some of your favorite retailers.

14 11 2012

In 2011 Greenpeace published two reports: one investigating the discharge of hazardous substances from textiles manufacturing in China linked to major clothing and sportswear companies (Dirty Laundry), and another detailing the presence of NPEs in clothing and footwear of 15 leading brands (Dirty Laundry 2: Hung Out to Dry). With the publication of these reports Greenpeace challenged global brands to eliminate all releases of hazardous chemicals from their supply chains and products by 2020.

The Detox Campaign, as it is now known,  is especially targeting Chinese manufacturers.  With nearly 50,000 textile factories, the “factory of the world” is in fact the first victim of textile water pollution, prompting even the government to face up to the problem. “China is moving toward legislation where each company is responsible for its wastewater,” said Ulrike Kallee. “Awareness is now very high.”

The man-made chemical by-products of the textile industry are shown to have long-term effects on the environment and potentially devastating impacts on human and animal life. Furthermore, when testing clothing from 15 corporate brands, Greenpeace found that the chemicals used in the textile production process continue to be released when contaminated clothing is purchased and washed by consumers across the world.  These tests demonstrate the truly global danger posed by these toxic chemicals as they are released into rivers and water sources from the point of production to the consumer.

I don’t know why there is not an outcry about the clothing which is continuing to contaminate washwater – doesn’t it occur to people that  clothing contains chemicals which are being absorbed by our skin and causing us harm?  For that matter, think about the fabrics we subject ourselves to intimately every day, like sheets and towels.  Where is the disconnect here?

Greenpeace’s Detox Campaign is helping create a greener economy by challenging major global brands to rid their textile production processes of hazardous chemicals. The Detox Campaign has already successfully demonstrated the power of grassroots activism and social media in pressuring corporations to clean up their production practices.  Only months into the Detox Campaign, major retailers H&M, Puma, Adidas and Nike committed to eliminating discharges of hazardous chemicals across their supply chains by 202; most recently Marks & Spencer joined the group. In addition to pressuring corporations to adopt greener production practices, Greenpeace is pursuing legislative changes within the textile industries in several Asian countries and the European Union in order to protect rivers and the communities and ecosystems they support.

Listmania: LBC Red List and others

19 06 2012

I love lists – you know, all those “best of” lists – movies, books, toxic chemicals.

Having a list makes it easy for us to tick off those bad chemicals that nobody wants to live with.  And in the building industry there have been a proliferation of lists which identify chemicals of concern:  the Perkins & Will Precautionary List, the LEED Pilot 11 and the Living Building Challenge Red List, among others.  And make no mistake, we think it’s critical that we begin to develop these lists, because we all need a baseline.   As long as we need to eat and breathe, toxics should be an important consideration.  We just have a problem with  how these lists are used.

So let me explain.

First, lists for the most part are developed on the basis of science that usually occurred five or 10 years ago, so they can  (though not always) be lagging indicators of safety to humans and the environment.  (But that’s a minor point, just wanted us to remember to maintain those lists.)

When using lists, it’s important to remember the concept of reactive chemistry:  many of the chemicals, though possibly deemed to be benign themselves, will react with other chemicals to create a third substance which is toxic.   This reaction can occur during the production of inputs, during the manufacture of the final product, or at the end of life (burning at the landfill, decomposing or biodegrading).   So isn’t it important to know the manufacturing supply chain and the composition of all the products – even those which do not contain any chemicals of concern on the list you’re using – to make sure there are no, say … dioxins created during the burning of the product at the landfill, for example?

It’s also important to remember that  chemicals are synergistic  – toxins can make each other more toxic.  A small dose of mercury that kills 1 in 100 rats and a dose of aluminum that will kill 1 in 100 rats, when combined, have a striking effect: all the rats die.  So if the product you’re evaluating is to be used in a way that introduces a chemical which might react with those in your product, shouldn’t that be taken into consideration?

So, O.K., the two problems above would be extremely difficult to define  – I mean, wouldn’t you need a degree in chemistry, not to mention the time and money, to determine if these could occur .  The average consumer wouldn’t have a clue.  Just wanted you to know that these problems do exist and contribute to our precautionary admonition regarding lists.

Each list has a slightly different interpretation – and lists different chemicals.  The Healthy Building Network published this Venn diagram of several of the most prevalent lists used in building materials:

The real reason we don’t like the way lists are used is that people see the list, are convinced by a manufacturer that their product doesn’t contain any of the chemicals listed, so without any further ado the product is used.

What does that mean in the textile industry, for example?

By attempting to address all product types, most lists do not mention many of the toxic chemicals which ARE used in textile processing. In the Living Building Challenge Red List, no mention is made of polyester, the most popular fiber for interiors, which itself is made from two toxic ingredients (ethylene glycol and terephthalic acid – both carcinogens, neither of which are on the list).  That means  a fabric made of polyester – even recycled polyester – that has been processed using some pretty nasty chemicals – could be specified.   Chemicals which are commonly used in textile processing  and which are NOT included on the Living Building Challenge Red List, for example,  but which have been found to be harmful , include:

Chlorine   (sodium hypochlorite NaOCL); registered in the Toxic Substances Control Act   as hypochlorous acid ; sodium chlorite
Sodium cyanide;   potassium cyanide
sodium sulfate   (Na2SO4)
Sodium sulfide
 APEOs ( Alkylphenolethoxylates)
Chromium III   and VI (hexavalent chromium)
pentachlorophenol   (PCP)
Dichloromethane   (DCM, methylene chloride)
Tetrachloroethylene   (also known as perchloroethylene, perc and PCE)
Methyl ethyl   ketone
Toluene:   toluene diisocyanate and other aromatic amines
Methanol (wood   alcohol)
Chloroform;   methyl chloroform
Phosphates   (concentrated phosphoric acid)
Dioxin –   by-product of chlorine bleaching; also formed during synthesis of certain   textile chemicals
Benzenes and   benzidines; nitrobenzene; C3 alkyl benzenes; C4 alkyl benzenes
Sulfuric Acid
Optical   brighteners: includes several hundred substances, including triazinyl   flavonates; distyrylbiphenyl sulfonate
ethylenediaminetetra   acetic acid [EDTA]
diethylenetriaminepenta   acetic acid [DTPA]
Perfluorooctane   sulfonates (PFOS)

In the case of arsenic (used in textile printing and in pesticides) and pentachlorophenol (used as a biocide in textile processing) – the Living Building Challenge Red List expressly forbids use in wood treatments only, so using it in a textile would qualify as O.K.

Perhaps we should manufacture with a “green list” in mind: substituting chemicals and materials that are inherently safer, ideally with a long history of use (so as to not introduce completely new hazards)?

But using any list of chemicals of concern ignores what we consider to be the most important aspect needing amelioration in textile processing – that of water treatment.  Because the chemicals used by the textile industry include many that are persistent and/or bioaccumulative which can interfere with hormone systems in people and animals and may be carcinogenic and reprotoxic, and because the industry often ignores water treatment even when it is required (chasing the lowest cost) the cost of dumping untreated effluent into our water is incalculable.

The textile industry uses a LOT of water – according to the World Bank, 20% of industrial freshwater pollution is from the textile industry; that’s another way of saying that it’s the #1 industrial polluter of water on the planet.  In India alone textile effluent averages around 425,000,000 gallons per day, largely untreated[1].   The chemically infused effluent – saturated with dyes, de-foamers, detergents, bleaches, optical brighteners, equalizers and many other chemicals –  is often released into the local river, where it enters the groundwater, drinking water, the habitat of flora and fauna, and our food chain.  The production of polychlorinated biphenyls (PCBs) were banned in USA more than 30 years ago (maybe that’s why they’re not listed on any of these lists?), but are still showing up in the environment as unintended byproducts of  the chlorination of wastes in sewage disposal plants that have a large input of biphenyls (used as a dye carrier) from textile effluent.[2]

Please click HERE to see the PDF by Greenpeace on their new campaign on textile effluent entitled  “Dirty Laundry”, which points the finger at compliant corporations which basically support what they call the “broken system”.  It asks corporations to become champions for a post toxic world, by putting in place policies to eliminate the use and release of all hazardous chemicals across a textile company’s entire supply chain based on a precautionary approach to chemicals management, to include the whole product lifecycle and releases from all pathways.

Another problem in the textile industry which is often overlooked is that of end of life disposal.  Textile waste in the UK, as reported by The Ecologist, has risen from 7% of all waste sent to landfills to 30% in 2010.[3]  The US EPA estimates that textile waste account for 5% of all landfill waste in the U.S.[4]  And that waste slowly seeps chemicals into our groundwater, producing environmental burdens for future generations.  Textile sludge is often composted, but if untreated,  that compost is toxic for plants.[5]

What about burning:    In the United States, over 40 million pounds of still bottom sludge from the production of ethylene glycol (one of the components of PET fibers) is generated each year. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[6]

These considerations are often neglected in looking at environmental pollution by textile mills[7] – but is never a consideration on a list of chemicals of concern.

So yes, let’s recognize that there are chemicals which need to be identified as being bad, but let’s also look at each product and make some kind of attempt to address any other areas of concern which the manufacture of that product might raise.  Using a list doesn’t get us off the hook.

[1] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment,New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur,South India”, Prakash Nelliyat, Madras School of Economics.  See also:

Jacks Gunnar et al (1995), “The Environmental Cost of T-Shirts”, Sharing Common Water Resources, First Policy Advisory Committee Meeting, SIDA, Madras Institute of Development Studies, Chennai.

Also:  CSE: Down to Earth Supplement on Water use inIndia, “To use or to misuse”;

[3] Ecologist, “’Primark effect’ sill clogging up UK landfills”, January 19, 2010,

[5] Scientia Agricola, vol. 62, no 3 May/June 2005

[6] Sustainable Textile Development at Victor,

[7] Assuming a beginning value of 375ppm of antimony in an undyed polyester fiber, as much as 175ppm of antimony can be leached from the fiber during the dyeing process. This seemingly insignificant amount translates into a burden on water treatment facilities and is still a hazardous waste when precipitated out during treatment. The U.S. EPA lists the allowable limit for antimony in drinking water to be 6 parts per billion (ppb). Countries that can afford technologies that precipitate the metals out of the water are left with a hazardous sludge that must then be disposed of in a properly managed landfill or incinerator operations. Countries who cannot, or who are unwilling to employ these end-of-pipe treatments, release antimony along with a host of other dangerous substances to open waters. Victor Defining Sustainability,

Synthetic fibers and our oceans

18 02 2012

First we heard about the world’s biggest garbage dump – made up of the detritus of our time: plastic bottles, plastic bags, DVD cases  – floating in our ocean. About 44 percent of all seabirds eat plastic, apparently by mistake, sometimes with fatal effects. And many marine species are affected by plastic garbage—animals are known to swallow plastic bags, which resemble jellyfish in mid-ocean, for example—according to a 2008 study in the journal Environmental Research by oceanographer and chemist Charles Moore, of the Algalita Marine Research Foundation.[1]

Just as soon as we’ve had time to digest this news, we discover that the more improbable impact to the oceans from plastic comes from microscopic particles of plastic:   In fact, the mass of plastic the size of Texas often said to exist in the North Pacific is a myth, according to filmmaker Craig Leeson, who is producing a documentary (backed by David Attenborough and the UK-based Plastic Oceans Foundation)  on the spread of plastics in our oceans.   Instead, particles of plastic lurk in our oceans invisibly, in seemingly clear water.

“If you trawl for it with these special nets that they’ve developed, you come back with this glutinous mass — it’s microplastics that are in the water along with the plankton,” he said. “The problem is that it’s being mistaken for food and being eaten by plankton eaters, who are then eaten by bigger fish, and so it goes on, and it ends up on our dinner tables.”[2]

Charles Moore  has found that in some areas, plastic outweighs zooplankton – the ocean’s food base.[3]

It’s not just in the water:  Dr. Mark Browne, University College Dublin, and several colleagues gathered sand samples from 18 beaches on six continents for analysis. It turns out that every beach tested contained microplastics  (particles about the size of a piece of long grain of rice or smaller).  Charles Moore carries a bag of sand from a beach in Hawaii which he had analyzed – and found that it was 90% plastic.

Studies show that this contamination is getting worse – and link it with health conditions in humans including cancer, diabetes and immune disruption.

So how does this tie into our blog topic of textile issues?

It turns out that 80% of the microplastic found in the samples which the scientists collected on the beaches was fibrous:  polyester, acrylic and polyamides (nylon) fibers.  And the scientists are pretty sure the fibers come from fabric.

According to Science:  “Not a single beach was free of the colorful synthetic lint. Each cup of sand contained at least two fibers and as many as 31. The most contaminated samples came from areas with the highest population density, suggesting cities were an important source of the lint.”[4]

In order to test their idea that sewer discharges were the source of these the plastic discharges, the team worked with a local authority in New South Wales, Australia, and found that their suspicions were correct.  Sewage treatment does not remove the fibers.  But where do the fibers enter the waste stream?

Dr Browne and his colleagueProfessor Richard Thompson from the University of Plymouth carried out a number of experiments to see what fibers were contained in the water discharge from washing machines.

According to a study published in September’s Environmental Science and Technology [5], nearly 2,000 polyester fibers can shake loose from a single piece of clothing in the wash.

“It may not sound like an awful lot, but if that is from a single item from a single wash, it shows how things can build up.” [6]

“It suggests to us that a large proportion of the fibres we were finding in the environment, in the strongest evidence yet, was derived from sewerage as a consequence from washing clothes.”

On Cyber Monday last year, outdoor retailer Patagonia took out a full-page ad in The New York Times asking readers to “buy less and to reflect before you spend a dime.” Beside a photo of their iconic R2® fleece jacket, the headline read: “Don’t Buy This Jacket.”

We fully support Patagonia’s message that we should all pause before consuming anything – our consumption patterns are, after all, what got us into this mess.  “But there might be another reason to take a pass on that jacket besides Patagonia’s confession that the process of creating the R2® Jacket leaves behind “two-thirds of its weight in waste” on its way to their Reno warehouse — it turns out that tossing the jacket in the washer causes it to leave behind something else entirely — thousands of tiny plastic threads.” [7]

Can it be an organic fabric if it uses synthetic dyestuffs?

3 11 2011

At the  International Federation of Organic Agriculture Movements (IFOAM ) Congress   in February, 2011, Ann Shankar from Biodye India, a company that produces natural dyes based on wild plants,  made a provocative suggestion –  that the term “organic textile” is not an accurate description of any textile where synthetic dyes and auxiliaries are used.  The Global Organic Textile Standard   allows the use of synthetic dyestuffs ( which are made from unsustainable sources and are not biodegradable).  She suggests that a separate category for such textiles be called “organic fibers with responsible synthetic dyes”.  According to Ann, even if it takes another couple of years for anyone to be able to claim a fully organic supply chain that would warrant the name ‘organic textile’ it should exist as a goal. Until then, natural dyes and auxiliaries (definitions by GOTS) should be given a separate standard such as ‘Organic fibers with natural dyes’ – a term separate but equal with the label for synthetic dyes.

She said that her company has recently overcome the technical difficulties often associated with using natural dyestuffs, especially at an industrial level.   Biodye is not the only company which produces dyestuffs from organic material which can be used for manufacturing; Rubia Natural Colors also has developed dyes in the red range from madder.

One of the major problems with synthetic dyestuffs is the pollution problems they present coupled with our “end of pipe” solutions.  Pointing out the impracticality of this end of pipe scenario, she points to two examples:

  1. The Central Pollution Control Board (CPCB) in India categorizes process waste sludge from synthetic dye production as hazardous, yet has no norms for proper disposal.  The result is that solid waste is stacked in any available space,  on riverbanks and roadsides, where it leaches back into the water or soil.

    National Geographic

  2. Water is a critical concern, since the dye process uses so much water.  In 2006, over 6.9 million acres of agricultural land in 68 villages in India was destroyed (meaning no crops could grow on the land)  by water from the Noyyal River, which had long been the recipient of untreated textile mill effluent.  The water pollution was so bad that the Madras High Court ordered the dyeing and bleaching facilities which used the river to pay fines to both the government as well as to local farmers, who had lost their livelihood.[1]  They also instituted  a “zero discharge” requirement for all dyeing units.  However, in January 2011, the Madras High Court again forced  the closure of all dyeing units in the area when it was found that pollution levels were above allowable limits.  Despite a grant from the government to build treatment facilities, the General Secretary of the Tirapur Dyes & Chemicals Association, said “At present we do not have any technology for zero discharge.”

The use of natural dyes means that there is no pollution to dispose of, and it also increases the green cover for plants and animals.   She uses as an example the differences between synthetic indigo and natural indigo:

Synthetic indigo:

  • Made from petrochemicals.
  • Impurities include toxic aniline and N-methylaniline residues.
  • Not biodegradable – incineration is the only recommended means of disposal.
  • Toxic to daphnids and algae.
  • Small creatures do not live around the rims of fermentation vats containing synthetic indigo, nor can a frog survive a dip in the vat.
  • Called “nature identical” by chemists.

Natural indigo:

  • Dye is made in the leaves of the plant Indigofera.
  • Impurities include plant polymers and soil particles
  • Biodegradable. If natural indigo ceases to be added to a natural fermentation vat, it loses its power to dye within 75 days. A sour vat will consume the indigo within 15 days.
  • Small insects and creepy crawlies live around the rims of natural fermentation vats containing natural indigo, and frogs can hop in and out without harm

Biodye uses no toxic mordants and treats its waste water so sludge is available as fertilizer and water can be used as irrigation.

Our oceans and your textile choices

23 02 2011

I just don’t know what it takes to change people’s habits.  We need a huge wake up call about the disastrous state of our oceans!  Our oceans are our life support system.  And they’re in trouble.

Because this is a blog about textile issues, I wanted to remind you that  the textile industry is the world’s #1 industrial polluter of fresh water.    So remember that  each time you choose a fabric that has been processed conventionally, in a mill which does not treat its wastewater, you’re  adding to the problem.  We’re all downstream.  And please also remember that a fabric marked “organic cotton” – though decidedly better than conventional cotton – is still a fabric which is 27% synthetic chemicals by weight,  processed at a mill which returned the untreated, chemically infused effluent to our oceans.


People once assumed that the ocean was so large that all pollutants would be diluted and dispersed to safe levels. But in reality, they have not disappeared – and some toxic man-made chemicals have even become more concentrated as they have entered the food chain.

Tiny animals at the bottom of the food chain, such as plankton in the oceans, absorb the chemicals as they feed. Because they do not break down easily, the chemicals accumulate in these organisms, becoming much more concentrated in their bodies than in the surrounding water or soil. These organisms are eaten by small animals, and the concentration rises again. These animals are in turn eaten by larger animals, which can travel large distances with their even further increased chemical load.

Animals higher up the food chain, such as seals, can have contamination levels millions of times higher than the water in which they live. And polar bears, which feed on seals, can have contamination levels up to 3 billion times higher than their environment.

Some scientists describe the chemical change in the ocean as throwing evolution into reverse: the chemical composition is going back toward the “primordial soup,” favoring the simplest organisms – indeed, algae, bacteria and jellyfish are growing unchecked –  and threatening or eliminating the more complex.  There are so many jellyfish in the ocean that many fisheries have given up their normal catch and are just harvesting jellyfish.[1] Clickhere to view Jellyfish Gone Wild by the National Science Foundation.  In fact, according to a report published in the Los Angeles Times, these most primitive organisms are exploding:  it’s a ‘rise of slime’ as one scientist calls it.   It’s killing larger species and sickening people.

Los Angeles Times report  in 2006 (click here to read the entire article)  sounds like something from a horror movie:  A spongy weed, reported to grow at 100 square meters per minute – literally fast enough to cover a football field sized area in an hour – has been plaguing fishermen in Australia.  The culprit, it was found, is a strain of cyanobacteria known as Lyngbya majuscula, an ancestor of modern-day bacteria and algae that flourished 2.7 billion years ago.  It has since shown up in at least a dozen places around the globe. It thrives in oxygen depleted water.   Once established, Lyngbya creates its own nitrogen fertilizer from decaying parts of the plant.

Many fishermen in Moreton Bay avoid working in the four months every year that Lyngbya clogs their waters because it is highly toxic to them.  When fishermen touch it, their skin breaks out in searing welts.  Their lips blister and peel.   As the weed blanketed miles of Moreton Bay over the last decade, it stained fishing nets a dark purple and left them coated with a powdery residue. When fishermen tried to shake it off the webbing, their throats constricted and they gasped for air.

After one man bit a fishing line in two, his mouth and tongue swelled so badly that he couldn’t eat solid food for a week.

Scientists in labs studying the bacteria couldn’t even be in the same room with it, the smell was so pungent.  It’s like “The Blob” come to life.

Scientist Jeremy Jackson says that we have forgotten the basic rule of thumb:  “Be careful what you dump in the swimming pool, and make sure the filter is working.”

And to add insult to  our ocean’s injury, the number of dead zones – where there is so little oxygen only microbes can survive – has doubled every 10 years since the 1960s [2].  In 2008, there were 400 dead zones [3].   So does that make you worry?  It should.   This is an example of what mathematicians call “exponential growth”, and it’s the kind of thing that doesn’t really impact us until we’re about to be kicked in the teeth.

To demonstrate the concept, there is an old story about a king who was presented with a gorgeous handmade chessboard by one of his subjects.  The king was delighted, and asked what the man wanted in return.  The courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third etc. The king readily agreed and asked for the rice to be brought.   But there was not enough rice in the world to fill the courtier’s request (see note below) – the total amount of rice required would be 18,446,744,073,709,551,615 grains of rice.   This is about  460 billion tons, or 6 times the entire weight of the Earth’s biomass.

Source: Wikimedia Commons

And to see how the problem can become critical overnight (because according to the laws of exponential growth, the larger the quantity becomes, the faster it grows):  Imagine having a pond with water lily leaves floating on the surface. The lily population doubles in size every day and if left unchecked will smother the pond in 30 days, killing all the other living things in the water. We want to save the pond, so we check the lilies every day.   Yet day after day the plant seems small and so it is decided to leave it to grow until it half-covers the pond, before cutting it back. But the pond doesn’t becomes half covered until day 29 – leaving just one day to save the pond.  (4)

This concept has even led to the phrase “second half of the chessboard”, which refers to a point where an exponentially growing factor begins to have a significant impact.

So this news about the ocean dead zones – you might think that a dead zone the size of the state of Oregon is no big deal, but the area is growing exponentially.  How many years do we have until we reach the second half of the chessboard?

We must stop messing up our oceans.   If not for yourself, do it for your children. “You wouldn’t let a child open up a cabinet under the sink and start tasting the chemicals down there,” Fabien Cousteau says. “So why would you dump those chemicals down the drain and have them end up on your plate, which you then feed to your child?” (5)

NOTE regarding rice on the chessboard:

The total number of grains of rice on the first half of the chessboard is 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 … + 2,147,483,648, for a total of exactly 232 − 1 = 4,294,967,295 grains of rice, or about 100,000 kg of rice, with the mass of one grain of rice being roughly 25 mg.

The total number of grains of rice on the second half of the chessboard is 232 + 233 + 234 … + 263, for a total of 264 − 232 grains of rice. This is about 460 billion tonnes, or 6 times the entire weight of the Earth biomass.

On the 64th square of the chessboard there would be exactly 263 = 9,223,372,036,854,775,808 grains of rice. In total, on the entire chessboard there would be exactly 264 − 1 = 18,446,744,073,709,551,615 grains of rice.

[2] Diaz, Robert J., and Rosenberg, Rutger, “Spreading Dead Zones and Consequences for Marine Ecosystems”, Science, August 2008.


(4)  Meadows, Donella H., Dennis L. Meadows, Jørgen Randers, and William W. Behrens III. (1972) The Limits to Growth. New York: University Books. ISBN 0-87663-165-0


What to do about salt?

16 02 2011

Last week we talked about the use of salt in textile dyeing.  We always say the textile industry uses a LOT of three resources: water, chemicals and energy.  The use of salt (a chemical – benign, essential for life, but a chemical nevertheless) bumps up the other two considerably.   And though the salt itself is not expensive, using less salt delivers substantial benefits to the mill because the fabric requires less rinsing in hot water (and hence reductions in energy and water) as well as cost savings of up to 10% of the total process costs.[1] So we promised to look at options available to avoid salt.

To recap:

When fabrics made of cotton, linen, hemp or viscose are dyed,  they’re immersed in water which contains dyes which have been dissolved in the water.   These dye chemicals are usually reactive dyes which require  the addition of salt  to “push” the dyes out of solution and into the cloth.  The salt acts like a glue to hold the dye molecules in place.  But the percentage of dye that moves from the dye bath into the fiber, and permanently bonds with the fiber (called the fixation rate) is very low.  For conventional reactive dyes, the fixation rate is often less than 80%, resulting in waste of dyestuff, and also the need to remove that 20% from the fabric.[2] But this is incredibly difficult when the “unreacted” dyes are still “glued” onto the fabric by salt.  So vast amounts of water are required  to simply dilute the salt concentrations to a point where it no longer acts as glue.

There are a few things that mill owners can do:  simple process optimization can easily reduce salt concentrations in dyebaths by 10 to 15%.  Another simple method is to reduce liquor ratios (which is simply the ratio of water to fabric in a dyeing process).  It’s easy to see that using 10 gallons of 100 oz/gal of salt uses less salt than using 5 gallons of 100 oz/gal of salt.

There are also some “low salt” dyes that have appeared on the market.  These dyestuffs  require less “glue” to fix to the fibers.  Ciba Specialty Chemicals, a Swiss manufacturer of textile dyes (now part of BASF) produces a dyestuff which requires less salt.  As the company brochure puts it:  “ Textile companies using the new dyes are able toreduce their costs for salt by up to 2 percent of revenues, a significant drop in an industry withrazor-thin profit margins.”  However,  we’re told they’re not used because of uncompetetitive pricing.  (Remember, it’s all about the cost!).

Another alternative is to recycle the salt.  The effluent can be cleaned and the salt recovered through an energy intensive process to evaporate the water.  But the carbon footprint takes a beating.

We’re back to square one: to use less salt.

And that usually means we have to look to the dyeing machines.  There are low-liquor-ratio (LLR) jet dyeing mcahines that are based on the principle of accelerating water through a nozzle to transport fabrics through the machine.  They are designed to operate efficiently and at high quality with a very low ratio of water to material.  Although these types of machines have been used for over 40 years, recent technological advances have reduced water requirements so that liquor ratios of 8:1 and even 4:1 are possible, with average water consumption of less than 50 liters per kilogram of knit fabric.  Yet there is still salt infused effluent which must be treated.  And these new ultra low liquor ratio machines are very expensive.

What about using no salt at all?

There are two ways to dye fabrics without salt:  “continuous dyeing” and “cold pad batch dyeing”.  Continuous dyeing means that the dye is applied with alkali to activate the dye fixation; the fabric is then steamed for a few minutes to completely fix the dyestuff.  Cold pad batch dyeing applies the dyestuff with alkali and the fabric is simply left at room temperature for 24 hours to fix the dye.

Both of these methods don’t use salt, so the unfixed dye chemicals are easier to remove because there is no salt acting as the “glue” – and therefore less water is used.  And an additional benefit is having a lower salt content in the effluent.

So why don’t companies use this method?  Continuous dyeing requires investment in big, expensive machines that only make environmental sense if they can be filled with large orders – because they use lots of energy even during downtime.

Cold pad batch machines are relatively inexpensive to buy and run, they are highly productive and can be used for a wide range of fabrics.  Yet only 3% of knitted cotton fabric is dyed in Asia using cold pad batch machines.

Why on earth don’t these mills use cold pad batch dyeing?  I would love to hear from any mill owners who might let us know more about the economics of dyeing operations.

[1] “A Practical Guide For Responsible Sourcing”, The National Resources Defense Council (NRDC), February 2010.