Why our children are at risk

18 11 2013

We hear about deaths from cancer – and how the rates are going down  (1). And that’s fabulous – but the sad fact is that the incidence of cancer seems to be going up (2).   The reason is complicated – we’re getting older, true –  but we’re also getting better at fighting it:

Cancer Research UK

Cancer Research UK

The number of new cancer cases have increased 0.6% every year since 1975 – overall, that’s an increase of 21% in the past 36 years (3) . What I find particularly disturbing is the rise in the reported incidence of cancer among young children and adolescents, especially brain cancer, testicular cancer, and acute lymphocytic leukemia. Sadly, after injuries and violence, cancer is the leading cause of death in our children (4).

National Academy of Sciences

National Academy of Sciences

At the risk of showing my bias, in case there are those among you who didn’t already know, I think part of the problem is because our environment contains many chemicals that are known to cause these cancers. But I’m not alone: the New York Times, in a recent editorial, urged the reform of the current law which purports to protect Americans from these chemicals (5), and the 2011 report of the President’s Cancer Panel has said that the “true burden of environmentally induced cancers has been grossly underestimated.” (6)

Besides cosmetics, shampoos, detergents and building products, fabric processing uses a wide variety of synthetic chemicals, many of which remain in the fabrics. A short list of the many chemicals used in textile processing – many of which remain in the fabrics we live with – includes the following chemicals, which are all linked to cancer:

• Formaldehyde is known to cause cancer (and asthma), yet rates of formaldehyde in indoor air have grown from 14 ppb in 1980 to 200 ppb in 2010 – and these rates are increasing.
• Higher rates of chemicals called Polychlorinated Biphenyls, or PCBs, used in the production of plastics – and therefore all synthetic fabrics – also are linked with higher rates of leukemia.
• Benzene, used in the production of nylon and other synthetics, in textile dyestuffs and in the pigment printing process – is linked to leukemia, breast cancer, lymphatic and hematopoietic cancers.
• Chromium Hexavalent compounds, used in leather tanning, and the manufacture of dyes and pigments, are linked to lung, nasal and nasopharyngeal cancers.
• Bisphenol A, used in the production of polyester and other synthetic fibers and as an intermediate in the production of dyestuffs, is an endocrine disruptor linked to breast and prostate cancer.

Children are at greater risk because they are exposed at a higher rate than adults, their behaviors exacerbate exposure and they have increased susceptibility to the chemicals:

Pound for pound, children breathe twice as much air as an adult, drink two and a half times as much water, and eat three to four times more. Also – the typical newborn weighs 1/20th that of an adult male, but the infant’s surface area is just 1/8th as great. This means that the infant’s total skin area is 2.5 times more per unit of body weight than an adult (7).
Their breathing rates, at rest, are higher than those of adults, and greater levels of physical activity can increase their breathing rates even further. Their play is often at ground level, while adults breathe four to six feet above the floor. So children have greater inhalation and dermal exposure to chemicals present on floors, carpets, grass or dirt, where heavier chemicals such as lead and particulates settle.

Children put everything into their mouths when exploring their environment. This increases their ingestion of substances in soil, household dust, floors and carpets, as well as the objects themselves.

Some children will gleefully jump into a lake – even before they could swim! This lack of fear as they grow can further increase their exposure to environmental hazards.

Childhood is characterized by rapid physical and mental growth. Accordingly, certain organs may not be fully developed and may be more vulnerable to injury. Children absorb, metabolize, and excrete compounds differently than adults.
• In some instances, children may be more susceptible than adults due to their increased rates of absorption or decreased rates of elimination of foreign compounds. In other cases, the opposite may be true. Children will absorb about 50 percent of lead ingested, whereas adults will absorb only about 10 to 15 percent(8). Kidneys are the principal pathway for elimination of most chemicals from the body. At birth an infant’s kidney’s filtration rate is a fraction of adult values; by age one the rate is at adult levels. (9)
• Longer lifetimes: many diseases initiated by chemical hazards take decades to develop, so early exposure to toxicants may be more likely to lead to disease than the same exposures experienced later in life.

The fetus is particularly sensitive to environmental toxicants (10). Chemicals can affect the children born to women exposed during pregnancy, while the women remain unaffected. For example, the children of women from Michigan who ate two to three meals of fish contaminated with PCBs per month for six years before pregnancy had lower birth weights, memory deficits at seven months and four years of age, and cognitive deficits persisted at eleven years of age (11). In Iraq, children born to women who during pregnancy inadvertently ate seed grain treated with mercury to prevent fungus had severe developmental and mental deficits  (12).

(1) Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: A Cancer Journal for Clinicians 2009;59(4):225–249.
(2) Data from cancer tracking suggest that childhood cancer is increasing, although the data is not consistent from year to year; the National Cancer Institute reported that for infants less than one year old, the rate of cancer rose by 36% from 1976-84, but some say that these increases are due to improved detection rather than representing true increases in cancer.
(3) Center for Children’s Health and the Environment, Mt. Sinai School of Medicine (http://www.pbs.org/odyssey/odyssey/toxics_brain_cancer.pdf)
(4) Ibid.
(5) http://www.nytimes.com/2013/04/19/opinion/a-toothless-law-on-toxic-chemicals.html?emc=eta1&_r=0
(6) http://www.environmentalhealthnews.org/ehs/news/presidents-cancer-panel/
(7) Our Children at Risk, The Natural Resrouces Defense Council, http://www.nrdc.org/health/kids/ocar/chap2.asp
(8) Royce, S. and H. Needleman, Case Studies in Environmental Medicine: Lead Toxicity, Agency for Toxic Substances and Disease Registry, 1995.
(9) Bearer, C., “How Are Children Different from Adults?” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 7-12.
(10) Birnbaum, L.S., “Endocrine Effects of Prenatal Exposures to PCBs, Dioxins, and Other Xenobiotics: Implications for Policy and Future Research,” Environmental Health Perspectives, vol. 102, no. 8, 1994, pp.676-679. Y.L. Guo et al., “Growth Abnormalities in the Population Exposed in Utero and Early Postnatally to Polychlorinated Biphenyls and Dibenzrofurans,” Environmental Health Perspectives, vol. 105, suppl. 6, September 1995, pp.117-122.
(11) Jacobson, J.L. et al., “The Transfer of Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs) across the Human Placenta and into Maternal Milk,” American Journal of Public Health, vol. 74, 1984, pp.378-9. J. Jacobson et al., “Effects of In Utero Exposure to Polychlorinated Biphenyls and Related Contaminants on Cognitive Functioning in Young Children,” Pediatrics, vol. 116, 1990, pp.38-45. S.W. Jacobson et al., “The Effect of Intrauterine PCB Exposure on Visual Recognition Memory,” Child Dev, vol. 56,1985, pp.853-60. J.L. Jacobson et al., “Effects of Exposure to PCBs and Related Compounds on Growth and Activity in Children,” Neurotoxicol. Teratol., vol.12, 1990, pp. 319-26.
(12) Gilbert, S. G. and K. Grant-Webster, “Neurobehavioral Effects of Developmental Methyl-Mercury Exposure,” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 135-142.

Lead and fabrics

27 10 2010

We published a post about lead in fabrics about a year ago, but I thought it was important enough to remind you of the dangers of lead in fabrics, because we’re starting to see claims of “heavy metal free” dyestuffs used in fabrics.  What does that mean?

Lead is considered one of those “heavy metals’ , along with mercury, cadmium, copper and others – all highly toxic to humans.  “Heavy metal” is defined as any metallic element that has a relatively high density and is toxic or poisonous at low concentrations.

Heavy metals are natural components of the Earth’s crust. They cannot be degraded or destroyed.  Interestingly, small amounts of these elements are common in our environment and diet and are actually necessary for good health. Lead can even be found in natural fibers, such as cotton, flax and hemp, which can absorb it from the environment.
It’s when our bodies have to deal with large amounts of these heavy metals that we get into trouble.   Heavy metal poisoning could result, for instance, from drinking-water contamination (e.g. lead pipes), high ambient air concentrations near emission sources,  intake via the food chain or through skin absorption – and in the case of  crawling children, from inhaling carpet particles or other abraded textiles in dust.  For some heavy metals, toxic levels can be just above the background concentrations naturally found in nature. Therefore, it is important for us to inform ourselves about the heavy metals and to take protective measures against excessive exposure.  Lead accounts for most of the cases of pediatric heavy metal poisoning, according to the Agency for Toxic Substances and Disease Registry (ATSDR).

Lead is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage caused by lead are not reversible.  Specifically, it affects reading and reasoning abilities in children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies. (1)

A hundred years ago we were wearing lead right on our skin. I found this article funny and disturbing at the same time:

“Miss P. Belle Kessinger of Pennsylvania State College pulled a rat out of a warm, leaded-silk sack, noted that it had died of lead poisoning, and proceeded to Manhattan. There last week she told the American Home Economics Association that leaded silk garments seem to her potentially poisonous. Her report alarmed silk manufacturers who during the past decade have sold more than 100,000,000 yards of leaded silk without a single report of anyone’s being poisoned by their goods. Miss Kessinger’s report also embarrassed Professor Lawrence Turner Fairhall, Harvard chemist, who only two years ago said: ‘No absorption of lead occurs even under extreme conditions as a result of wearing this material in direct contact with the skin’. ”

This was published in Time magazine,  in 1934.  (Read the full article here. )

According to Ruth Ann Norton, executive director of the Coalition to End Childhood Lead Poisoning, “There are kids who are disruptive, then there are ‘lead’ kids – very disruptive, very low levels of concentration.” 
Children with a lead concentration of less than 10 micrograms ( µ) per deciliter (dl = one tenth of a liter) of blood scored an average of 11.1 points lower than the mean on the Stanford-Binet IQ test. (2)   Consistent and reproducible behavioral effects have been seen with blood levels as low as 7 µ/dl (micrograms of lead per tenth liter of blood), which is below the Federal standard of 10 µ/dl.   The image depicts what happens to human beings at the various levels of lead in blood.  Scientists are generally in agreement that there is no “safe” level of blood lead.  Lead is a uniquely cumulative poison:  the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

Lead is widely  used in consumer products, from dyestuffs made with lead (leading to lead poisoning in seamstresses at the turn of the century, who were in the habit of biting off their threads) (3), to lead in gasoline, which is widely credited for reduced IQ scores for all children born in industrialized countries between 1960 and 1980 (when lead in gasoline was banned).  Read more about this here.

Lead is used in the textile industry in a variety of ways and under a variety of names:

  • Lead acetate                     dyeing of textiles
  • Lead chloride                   preparation of lead salts
  • Lead molybdate             pigments used in dyestuffs
  • Lead nitrate                     mordant in dyeing; oxidizer in dyeing(4)

Fabrics sold in the United States, which are used to make our clothing, bedding and many other products which come into intimate contact with our bodies, are totally unregulated – except in terms of required labeling of percentage of fiber content and country of manufacture.  There are NO laws which pertain to the chemicals used as dyestuffs, in processing, in printing,  or as finishes applied to textiles, except those that come under the Toxic Substances Control Act (TSCA) of 1976, which is woefully inadequate in terms of addressing the chemicals used by industry.   With regard to lead, products cannot contain more than 100 ppm – despite many studies that show there is no safe level for lead. In fact, the Government Accounting Office (GAO) has announced that the 32 year old TSCA needs a complete overhaul (5), and the Environmental Protection Agency (EPA)  was quick to agree! (6).  Lisa Jackson, head of the EPA,  said on September 29, 2009 that the EPA lacks the tools it needs to protect people and the environment from dangerous chemicals.

Fabrics are treated with a wide range of substances that have been proven not to be good for us.  That’s why we feel it’s important to buy third party certified FABRICS, not just certified organic fibers (which do nothing to guarantee the dyestuffs or finish chemicals used in the fabric) such as GOTS (Global Organic Textile Standard) or Oeko Tex, both of which prohibit the use of lead in textile processing.

The United States has new legislation which lowers the amount of lead allowed in children’s products – and only children’s products.   (This ignores the question of  how lead  in products used by pregnant  women may affect their fetus.  Research shows that as the brains of fetuses develop, lead exposure from the mother’s blood can result in significant learning disabilities.)  The new Consumer Product Safety Improvement Act (CPSIA) had requirements to limit lead content in children’s products (to be phased in over three years) so that by August 14, 2011, lead content must be 100 ppm (parts per million) or less.

However there was an outcry from manufacturers of children’s bedding and clothing, who argued that the testing for lead in their products did not make sense, because:

  • it placed an unproductive burden on them, and
  • it required their already safe products to undergo costly or unnecessary testing.

The Consumer Product Safety Commission voted to exempt textiles from the lead testing and certification requirements of the CPSIA, despite the fact that lead accounts for most of the cases of pediatric heavy metal poisoning, according to the Agency for Toxic Substances and Disease Registry (ATSDR).

So let me repeat here: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

Children are uniquely susceptible to lead exposure over time, and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware that lead available from tested products would not be the only source of exposure in a child’s environment.  Although substantial and very successful efforts have been made in the past twenty years to reduce environmental lead, children are still exposed to lead in products other than toys or fabrics. Even though it was eliminated from most gasoline in the United States starting in the 1970s, lead continues to be used in aviation and other specialty fuels. And from all those years of leaded gasoline, the stuff that came out of cars as fuel exhaust still pollutes soil along our roadways, becoming readily airborne and easily inhaled.   All lead exposure is cumulative – so it’s important to eliminate any source that’s within our power to do so.

(1) “ ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

(2) Ibid.

(3) Thompson, William Gilmsn, The Occupational Diseases, 1914, Cornell University Library, p. 215

[4] “Pollution of Soil by Agricultural and Industrial Waste”, Centre for Soil and Agroclimate Research and Development, Bogor, Indonesia, 2002.   http://www.agnet.org/library/eb/521/

(4) http://www.atsdr.cdc.gov/toxprofiles/tp13-c5.pdf

(5) http://www.rsc.org/chemistryworld/News/2009/January/29010901.asp

(6) http://www.bdlaw.com/news-730.html

Will the antimony in polyester fabric hurt me?

17 02 2010

Synthetic fibers are the most popular fibers in the world with 65% of world production of fibers being synthetic and  35%  natural fibers. (1)  Fully  70% of that synthetic fiber production is polyester. There are many different types of polyester, but the type most often produced for use in textiles is polyethylene terephthalate, abbreviated PET.   Used in a fabric, it’s most often referred to as “polyester” or “poly”.  It is very cheap to produce, and that’s a primary driver for its use in the textile industry.

The majority of the world’s PET production – about 60% – is used to make fibers for textiles; and about  30% is used to make bottles.   Annual PET production requires 104 million barrels of oil  – that’s 70 million barrels just to produce the virgin polyester used in fabrics.(2)  That means most polyester – 70 million barrels worth –  is manufactured specifically to be made into fibers, NOT bottles, as many people think.  Of the 30% of PET which is used to make bottles, only a tiny fraction is recycled into fibers.  But the idea of using recycled bottles – “diverting waste from landfills” – and turning it into fibers has caught the public’s imagination.  There are many reasons why using recycled polyester (often called rPET) is not a good choice given our climate crisis, but today’s post is concentrating on only one aspect of polyester: the fact that antimony is used as a catalyst to create PET.  We will explore what that means.

Antimony is present in 80 – 85% of all virgin PET.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  The industry will say that  although antimony is used as a catalyst in the production process, it  is “locked” into the finished polymer, and not a concern to human health.  And that’s correct:   antimony used in the production of  PET fibers becomes chemically bound to the PET polymer  so your PET fabric does contain antimony but it isn’t available to your living system. (2)

But wait!  Antimony is leached from the fibers during the high temperature dyeing process.  The antimony that leaches from the fibers  is expelled with the wastewater into our rivers (unless the fabric is woven at a mill which treats its wastewater).  In fact, as much as 175ppm of antimony can be leached from the fiber during the dyeing process. This seemingly insignificant amount translates into a burden on water treatment facilities when multiplied by 19 million lbs each year –  and it’s still a hazardous waste when precipitated out during treatment. Countries that can afford technologies that precipitate the metals out of the solution are left with a hazardous sludge that must then be disposed of in a properly managed landfill or incinerator operations. Countries who cannot or who are unwilling to employ these end-of-pipe treatments release antimony along with a host of other dangerous substances to open waters.

But what about the antimony that remains in the PET fabric?  We do know that antimony leaches from PET bottles into the water or soda inside the bottles.  The US Agency for Toxic Substances and Disease Registry says that the antimony in fabric is very tightly bound and does not expose people to antimony, (3) as I mentioned earlier.    So if you want to take the government’s word for it,  antimony in  PET  is not a problem for human health  –  at least directly in terms of exposure from fabrics which contain antimony.  (Toxics crusader William McDonough has been on antimony’s case for years, however, and takes a much less sanguine view of antimony. (4) )

Antimony is just not a nice thing to be eating or drinking, and wearing it probably won’t hurt you, but the problem comes up during the production process  – is it released into our environment?  Recycling PET is a high temperature process, which creates wastewater tainted with antimony trioxide – and  the dyeing process for recycled PET is problematic as I mentioned in an earlier post.   Another problem occurs when the PET (recycled or virgin) is finally incinerated at the landfill – because then the antimony is released as a gas (antimony trioxide).  Antimony trioxide  has been classified as a carcinogen in the state of California since 1990, by various agencies in the U.S. (such as OSHA, ACGIH and IARC)  and in the European Union.  And the sludge produced during PET production (40 million pounds in the U.S. alone) when incinerated creates 800,000 lbs of fly ash which contains antimony, arsenic and other metals used during production.(5)

Designers are in love with polyesters because they’re so durable – and cheap (don’t forget cheap!).  So they’re used a lot for public spaces.  Abrasion results are a function not only of the fiber but also the construction of the fabric, and cotton and hemp can be designed to be very durable, but they will never achieve the same abrasion results that some polyesters have achieved – like 1,000,000 rubs.  In the residential market, I would think most people wouldn’t want a fabric to last that long – I’ve noticed sofas which people leave on the streets with “free” signs on them, and never once did I notice that the sofa was suffering from fabric degredation!  The “free” sofa just had to go because it was out of style, or stained, or something – I mean, have you even replaced a piece of furniture because the fabric had actually worn out?  Hemp linens have been known to last for generations.

But I digress.   Synthetic fibers can do many things that make our lives easier, and in many ways they’re the true miracle fibers.  I think there will always be a place for (organic) natural fibers, which are comfortable and soothing next to human skin.  And they certainly have that cachet: doesn’t  silk damask sound better than Ultrasuede? The versatile synthetics have a place in our textile set – but I think the current crop of synthetics must be changed so the toxic inputs are removed and the nonsustainable feedstock (oil) is replaced.  I have great hope for the biobased polymer research going on, because the next generation of miracle fibers just might come from sustainable sources.

(1) “New Approach of Synthetic Fibers Industry”, Textile Exchange,  http://www.teonline.com/articles/2009/01/new-approach-of-synthetic-fibe.html

(2) Polyester, Absolute Astronomy.com: http://www.absoluteastronomy.com/topics/Polyester and Pacific Institute, Energy Implications of Bottled Water, Gleick and Cooley, Feb 2009, http://www.pacinst.org/reports/bottled_water/index.htm)

(3)  Shotyk, William, et al, “Contamination of Canadian and European Bottled waters with antimony from PET containers”, Journal of Environmental Monitoring, 2006.   http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=EM&Year=2006&ManuscriptID=b517844b&Iss=2

(4)   http://www.atsdr.cdc.gov/toxprofiles/phs23.html

(5)  http://www.victor-innovatex.com/doc/sustainability.pdf

(3) http://www.greenatworkmag.com/gwsubaccess/02mayjun/eco.html