Musings about autism

20 10 2015

Please take a look at our brand new retail website (www.twosistersecotextiles.com) to see what’s been keeping me from doing these blog posts!

I’ve been thinking our environment lately, and so just couldn’t resist this post. I’m sure there is much I haven’t considered about autism, but the new book by Enriquez and Gullans struck a chord with me (see below).

The Mortality and Morbidity Weekly Report (MMWR) (like the Kelley Blue Book), provides, in mind-numbing detail, just how many people got sick or died last week. It’s not exactly beach reading, and it’s usually as exciting as watching paint dry. But within the endless columns and statistics of the MMWR, the patient and persistent can spot long-term trends and occasionally find serious short-term discontinuities. Autism is one of these discontinuities.

Conditions and diseases develop and spread at different rates. A rapid spike in airborne or waterborne infectious diseases like the flu or cholera is tragic but normal. A rapid spike in what was thought to be a genetic condition, like autism, is abnormal; when you see the latter, it is reasonable to think something has really changed, and not for the better.

Usually changes in the incidence of a genetically driven disease take place slowly, across generations. Diseases such as cystic fibrosis result from well-characterized DNA mutations in single genes, and the inheritance pattern is well understood: If parents carry the gene and pass it to a child, the child will be affected. Cystic fibrosis occurs in 1 of 3,700 newborns in the United States each year with no significant change in incidence over many years. You cannot ‘catch’ these kinds of conditions by sharing a room with someone; you inherit them. If your sibling has cystic fibrosis, then you have a 1 in 4 chance of also being sick.

Autism is diagnosed in 1 percent of individuals in Asia, Europe, and North America, and 2.6 percent of South Koreans. We know there is a strong genetic component to autism — so much so that until recently autism was thought to be a primarily genetic disease. There is clearly an underlying genetic component to many cases of autism. If one identical twin has autism, the probability that the other is also affected is around 70 percent. Until recently, the sibling of an autistic child, even though sharing many of the same parental genes and overall home environment, had only a 1 in 20 probability of being afflicted. Meanwhile, the neighbor’s child, genetically unrelated, has only a 0.6 percent probability. But even though millions of dollars have been spent trying to identify ‘the genes’ for autism, so far the picture is still murky. The hundreds of gene mutations identified in the past decade do not explain the majority of today’s cases. And while we searched for genes, a big epidemic was brewing:

Surveillance year Birth Year Prevalence per 1000 children This is about 1 in X children:
2000 1992 6.7 1 in 150
2002 1994 6.6 1 in 150
2004 1996 8.0 1 in 125
2006 1998 9.0 1 in 110
2008 2000 11.3 1 in 88
2010 2002 14.7 1 in 68

In 2008, when the MMWR reported a 78 percent increase in autism — a noncontagious condition — occurring in fewer than eight years, alarm bells began to go off in the medical community. By 2010 the Centers for Disease Control and Prevention (CDC) was reporting a further 30 percent rise in autism in just two years. This is not the way traditional genetic diseases are supposed to act. This rate of change in autism was so shocking and unexpected that the first reaction of many MDs was that it wasn’t really that serious. Many argued, and some continue to argue, that we simply got better at diagnosing (and overdiagnosing) what was already there. But as case after case accumulates and overwhelms parents, school districts, and health-care systems, there is a growing sense that something is going horribly wrong, and no one really knows why.

What we do know, because of a May 2014 study that looked at more than 2 million children[1], is that environmental factors are driving more and more autism cases. These environmental factors can range from parental age at conception, maternal nutrition and infection during pregnancy – to exposure to certain chemicals such as pesticides and phthalates. Whereas autism used to be 80 to 90% explained or predicted by genetics, now genetics is only 50 percent predictive. Autism Speaks continues to fund research on a wide range of environmental risk factors that help us advance our understanding of these environmental risk factors.

It should be remembered that genetic risk factors coupled with environmental risk factors work hand in hand. It’s not an either/or scenario, but rather a complicated interaction of genetics and environmental factors, working together.

But the fact remains, we have taken a disease we mostly inherited and rapidly turned it into a disease we can trigger. Now the chances of a brother or sister of an autistic child developing autism is 1 in 8 instead of 1 in 20.

And yet. Human clinical trials for chemicals which might lead to autism would be unethical, and the variety and interactions of various chemicals is so extensive, it’s very hard to trace exactly which chemicals, in what combinations, alter the brain.

Juan Enriquez and Steve Gullans have published a new book, “Evolving Ourselves: How Unnatural Selection and Nonrandom Mutation are Changing Life on Earth”. (Who are they? Juan Enriquez was the founding director of the Life Sciences Project at the Harvard Business School and is a fellow at Harvard’s Center for International Affairs; Dr. Gullans was on the faculty of the Harvard Medical School and Brigham and Women’s Hospital for nearly 20 years. Both of them have a curriculum vitae as long as your arm if you care to look them up.) The premise of the book is that we humans hold, in our not always careful hands, the future of life on Earth: they argue that we have discarded random mutation and natural selection for their opposites: i.e., nonrandom mutation and unnatural (i.e., human) selection. (If you want to read more it’s easy to google the title and buy on Amazon – which is what I did.)

Reading the book, I was struck by a chapter that discussed autism. Andrey Rzhetsky, director of the Conte Center for Computational Neuropsychiatric Genomics at the University of Chicago, believes there is enough data to define the causes of autism – so he queried 100 million medical records trying to figure out the best correlations between environmental changes and autism. Bit of backstory: boys are acting like the proverbial canary in a coal mine. They are especially vulnerable to environmental insults from the chemicals that surround us.   “Autism appears to be strongly correlated with rate of congenital malformations of the genitals in males across the country. This gives an indicator of environmental load and the effect is surprisingly strong.”[2] Every 1% increase in malformations corresponded to a 283% increase in autism in the same county.[3] In fact, the book says that Mr. Rzhetsky sees autism as a sort of chemical poisoning.

Naturally, not everyone agrees with Rzhetsky. And we don’t dare point fingers to any particular chemical – but shouldn’t we at least ask our government to restrict the use of some of the chemicals which are known to adversely impact human health?   Ask your congressman to support the Safe Chemicals Act of 2013.

 

[1] Sandin, Sven, Lichtenstein, Paul, et al., “The Familial Risk of Autism”, Journal of the American Medical Association (JAMA), 2014; 311(17):1770-1777

[2] Sifferlin, Alexandra, “Growing Evidence that Autism is Linked to Pollution”, Time, March 14, 2014

[3] op cit.

Advertisements




Remember the children

28 09 2015

We’ve been really busy – one of the things that has delayed our blog post is our new website:  Two Sisters Ecotextiles (twosistersecotextiles.com).  It is a retail website, because we feel everybody should have access to safe fabrics.  If you go to our new site, you’ll notice that it features lots of pictures of kids, because kids are more at risk than adults from the chemicals in our environment.  We did a blog post about this a few years ago, and it’s reproduced here.

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering – a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD – and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease” trumpeted Time magazine in 2011.[6]

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals – chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders that affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day – including textiles.

What is different now?

  • The chief argument used by manufacturers to defend their chemical use is that the amounts used in products are so low that they don’t cause harm.  Yet we now know that the old belief that “the dose makes the poison” (i.e., the higher the dose, the greater the effect) is simply wrong.  Studies are finding that even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window.[9] Surprisingly, low doses may even exert more potent effects than higher doses. 
Endocrine disrupting chemicals may affect not only the exposed individual but also their children and subsequent generations.[10] Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.
  • We also now know that time of exposure is critical – because during gestation and through early childhood the body is rapidly growing under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted – and so on – until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which subsequently impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  • There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years. The developmental basis of adult disease has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases that can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations – is called “epigenetics”. Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[11] Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[12]
  • Age at time of exposure is critical. Fetuses are most at risk, because their rapidly developing bodies can be altered and reprogrammed before birth.
  • Finally, exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[13] It is well documented that chemicals can make each other more toxic, and because we can’t know what exposures we’re being subjected to (given the cocktail of smog, auto exhaust, cosmetics, cleaning products and countless other chemicals we’re exposed to every day) coupled with an individuals unique chemistry, we can’t know when exposure to a chemical will trigger a tipping point.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including newborn infants.  Of the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than adults, and their rapid development makes them more vulnerable to environmental interference. Pound for pound, children breathe more air, consume more food, and drink more water than adults, due to their substantial growth and high metabolism. For example, a resting infant takes in twice as much air per pound of body weight as an adult. Subject to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1 million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of toxic chemicals are released into the nation’s environment each year, including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for toxicity. Fewer than 20 percent have been studied for their capacity to interfere with children’s development. This failure to assess chemicals for their possible hazards represents a grave lapse of stewardship by the chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care centers and hospitals. The United States has only 1.3% of the world’s population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into the environment. Some will persist in the environment for decades and even centuries.

Let’s take a look at just the group of chemicals which are known as endocrine disruptors:

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals.[14] Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often – and in vast quantities – in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[15] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, the pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[16], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are throwing out our old notions of toxicology (i.e., “the dose makes the poison”). In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things.”

As the TEDX (The Endocrine Disruption Exchange, Inc.) website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken.

 

 

[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D; “No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much?” Environ Health Perspect 107:155–159, 1999

[10] Anway MD, Skinner MK “Epigenetic transgenerational actions of endocrine disruptors.” Endocrinology 147: S43–S49, 2006

[11] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[12] http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[13] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K “Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals”, Pure and Applied Chemistry, SCOPE/IUPAC Project Implications of Endocrine Active Substances for Humans and Wildlife 75:2305–2320, 2003

[14] http://www.greenpeace.org/international/Global/international/publications/toxics/Water%202012/TechnicalReport-06-2012.pdf     SEE ALSO: http://www.greenpeace.org/international/Global/international/publications/toxics/2014/A-Fashionable-Lie.pdf

[15] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[16] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Type 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

 





More about fabric choices for your sofa.

25 06 2015

Our previous blog post we talked about fabric – how to determine the quality of the fabric you’re considering for your new sofa.  But the most important consideration merits a blog all its own, and that is the safety of the fabrics you’ve chosen.  We define “safe” as a fabric that has been processed with none of the many chemicals known to harm human health – and in a perfect world we’d  throw in water treatment and human rights/labor issues too.

It’s a great idea to start with organic fibers, if you can.  By substituting organic natural fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits. Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers)[1], which helps to mitigate climate change, but it also:

  • Eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity;
  • Conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • Ensures sustained biodiversity;
  • And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles. As such it can be seen as more than a set of agricultural practices, but also as a tool for social change [2]. For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But even if you start with organic natural fibers (a great choice!) but process those fibers conventionally, then you end up with a fabric that is far from safe. Think about making applesauce: if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stabilizers and who knows what else – do you end up with organic applesauce? The US Department of Agriculture would not let you sell that mixture as organic applesauce.  There is no similar protection for consumers when buying fabric, even though the same issues apply, because over 2000 chemicals are used routinely in textile processing.[4] Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates, benzenes and others). In fact, one yard of fabric made with organic cotton fiber is about 25% by weight synthetic chemicals – many of which are proven toxic to humans [5] and are outlawed in other products.

I know you’re saying that you don’t eat those fabrics, so what’s the danger? Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body). Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in. Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern? Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis, for example, which are linked to many of the chemicals used in textile processing) are reaching epidemic rates, and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t [6];
  • We know formaldehyde is bad for us, but in fabric? A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths. [7] Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories which produce acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.[9]
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.[10]

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops. [11].
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys. They are ubiquitous – and are also found in most textile inks.[12] So parents careful not to bring toxic toys into their homes for can be nevertheless unknowingly putting their kids to sleep on cute printed sheets full of phthalates.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum. And our children are the pawns in this great experiment. And if you think artificial  pathogens  are  not the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the max has replaced bacteria and viruses as the major cause of human illness. We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized – certainly not the darling of venture capitalists who look for the next big thing. So not many research dollars are going into new ways of producing fabrics. Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible: in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge [13].

You can begin to protect yourself by looking for fabrics that have third party certifications:  either Oeko-Tex or The Global Organic Textile Standard (GOTS), which we believe is the gold standard in textiles because though Oeko-Tex assures you of a safe fabric and while GOTS confirms the same assurance, GOTS  also requires water treatment (important because the textile industry is the #1 industrial polluter of water on the planet (14) – and in this era of water shortages we have to start paying attention to our water resources) and prohibits child or slave labor (sadly still an issue) and makes sure workers have safe conditions to work in and are paid fair wages.

[1] Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf Also see: Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

[4] See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

[5] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609

[6] Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

[7] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

[8] Occupational and Environmental Medicine 2010, 67:263-269 doi:

10.1136/oem.2009.049817 SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[9] Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

[10] http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp

[11]http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

[12] “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week, September 22, 2008 SEE ALSO: Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

[13] Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.

(14)  Cooper, Peter, “Clearer Communication”, Ecotextile News, May 2007





What are we doing to the children?

15 04 2014

Americans live in one of the wealthiest nations in the world, yet American children are less likely to live to age 5 than children in comparable nations – and I was shocked to find that America has the highest infant mortality rate in the industrialized world.[1]

infant-morality

Our children are especially vulnerable to the presence of toxic chemicals in their lives, and unfortunately this means that our children are sicker than we were as kids.

That is due to many different things, but one component can be found in changes to our environment. Since the middle of the last century, we have allowed a slew of chemicals (numbering now over 80,000) to be used in products – chemicals which were untested, many of which we now know to be harmful. In 2009, tests conducted by five laboratories in the U.S., Canada and Europe found up to 232 toxic chemicals in 10 umbilical cord blood samples of newborns. Substances detected for the first time in U.S. newborns included a toxic flame retardant chemical called Tetrabromobisphenol A (TBBPA) that permeates computer circuit boards, synthetic fragrances (Galaxolide and Tonalide) used in common cosmetics and detergents, and Perfluorooctanoic Acid (PFBA, or C4), a member of the notorious Teflon chemical family used to make non-stick and grease-, stain- and water-resistant coatings for cookware, textiles, food packaging and other consumer products.  Additionally, laboratory tests commissioned by Environmental Working Group (EWG) and Rachel’s Network have detected Bisphenol A (BPA) for the first time in the umbilical cord blood of U.S. newborns. The tests identified this plastics component in 9 of 10 cord blood samples from babies of African American, Asian and Hispanic descent. The findings provide hard evidence that U.S. infants are contaminated with BPA beginning in the womb.

Our immune systems can only take so much –  when the toxic burden reaches capacity we end up with the epidemic rates in inflammatory conditions like allergies and asthma.   Many experts feel that compromised immune systems have also contributed to the rise in autism, which needs no further dramatic numbers to define its horrific rise. According to the Centers for Disease Control – today, 1 in every 20 children will develop a food allergy and 1 in every 8 will have a skin allergy.[2] Allergies are a result of impacts on our body’s immune system. It is estimated that as much as 45% of children have type 2 diabetes.[3]

You would think that we’d rise up to protest these assults on our kids. But Greenpeace has a new report about the chemicals found in children’s clothing, entitled “A Little Story About Monsters in Your Closet”[4] . ( Click here to read the report.)  Their latest investigation revealed the presence of hazardous chemicals in clothing made by 12 very well known brands; from the iconic kid’s label Disney, to sportswear brands like Adidas, and even top-end luxury labels like Burberry.

The shocking truth is that no matter what type of kid’s clothes we shop for, there’s no safe haven – all of the tested brands had at least one product containing hazardous toxic monsters – toxic chemicals which mess with the normal development of our children’s bodies.

Greenpeace bought 82 items from authorized retailers in 25 countries, made in at least 12 different regions and found traces, beyond the technical limits of detection, of a number of banned and dangerous chemicals, including:

  • Nonylphenol ethoxylates (NPEs), chemicals found in 61% of the products tested and in all brands, from 1 mg/kg (the limit of detection) up to 17,000 mg/kg. NPEs degrade to nonylphenols (NP) when released into the environment; they hormone disruptors, persistent and bioaccumulative.
  • Phtalates, plastics-softeners banned in children’s toys because of toxicity and hormonal effects, were found in 33 out of 35 samples tested. A Primark t-shirt sold in Germany contained 11% phthalates, and an American Apparel baby one-piece sold in the USA contained 0.6% phthalates.
  • Organotins, fungicides banned by the EU and found in three of five shoe samples and three clothing articles (of 21 tested). Organotins impact thePe immune and nervous systems of mammals.
  • Per- and polyfluorinated chemicals (PFCs) were found in each of 15 articles tested; one adidas swimsuit tested far higher than the limit set by Norway in 2014 and even by adidas in its Restricted Substances List.
  • Antimony was found in 100% of the articles tested; antimony is similar in toxicity to arsenic.

Greenpeace is calling on textile companies to recognize the urgency of the situation and to act as leaders in committing to zero discharge of hazardous chemicals and to our governments to support these commitments to zero discharge of all hazardous chemicals within one generation.

But it probably is most important that we, consumers with the all mighty dollar, demand that brands and governments make the changes that our children deserve. If you vote with your dollars, change will happen.

Click here to get the “Little Monsters: Field Guide to Hazardous Chemicals” from Greenpeace.

[1] World Health Organization (2013): World Health Statistics 2013.

[2] http://thechart.blogs.cnn.com/2013/05/02/childhood-food-skin-allergies-on-the-rise/

[3] Alberti, George, et al, “Type 2 Diabetes in the Young: The Evolving Epidemic”, American Diabetes Association, http://care.diabetesjournals.org/content/27/7/1798.long

[4] http://www.greenpeace.org/eastasia/Global/eastasia/publications/reports/toxics/2013/A%20Little%20Story%20About%20the%20Monsters%20In%20Your%20Closet%20-%20Report.pdf





What is “body burden” – and why is it important to you?

28 07 2010

I just found a website that threw me for a loop:  It’s called Sailhome (www.sailhome.org).

It was started by a regular guy – a physicist living in San Francisco who was the VP of marketing for a semiconductor intellectual property company – named Ron.   Ron’s son, born almost 10 years ago, began to show signs of being developmentally off track by age 2.  By age 3, Ron and his wife had three separate diagnoses trying to label his condition – Asperger’s, PDD-NOS, Autism.

Before age 4, he began receiving treatment guided by the DAN! Protocol.  DAN! doctors feel that autism is a disorder caused by a combination of lowered immune response, external toxins from vaccines and other sources, and problems caused by certain foods. It includes treatment to reduce toxic loads and pathogens, boost immunity, and heal from the complexities of toxic injury.  Some of the major interventions suggested by DAN! practitioners include:

  • Nutritional supplements, including certain vitamins, minerals, amino acids, and essential fatty acids
  • Special diets totally free of gluten (from wheat, barley, rye, and possibly oats) and free of dairy (milk, ice cream, yogurt, etc.)
  • Testing for hidden food allergies, and avoidance of allergenic foods
  • Treatment of intestinal bacterial/yeast overgrowth (with pro-biotics, supplements and other non-pharmaceutical medications)
  • Detoxification of heavy metals through chelation (a potentially hazardous medical procedure)

There are some who debate about whether this approach is safe, proven, or even “quackery”.
But it’s working for Ron’s son –  who is 9 years old in 2010, and largely recovered. Ron says that most people who meet him have no inkling he’s ever been “on the spectrum” – but that successfully navigating through each day’s toxic insults will probably remain a life-long challenge for him.

Sailhome was started by this regular guy, who says he  “parked my career for 6+ years in order to help my son recover, make sure my family stayed intact during the ordeal, and to develop this web site.”

The website is an attempt to “connect the dots”, so that we have a better understanding about how easily toxic exposures occur, the types of illness that results, and how to prevail.

It’s divided into three parts under “Concerns”:

  • Body Burden
  • Excitotoxins
  • Vaccines

I want to concentrate on the “Body Burden” section, because among the chemicals often found in our bodies (contributing to our body burden) are those used most often in textile processing.

Body burden refers to the accumulation of synthetic chemicals – found in substances like household cleaners, fabrics, cosmetics, pest repellants, computers, cell phones – which helped “modernize” our lives in the post World War II chemical age and which are now found in our own bodies. When we hear that some chemicals can damage the environment, we have forgotten that we ARE the environment, as David Suzuki reminds us.  Whatever is “out there” is also inside us.  We live , breathe and eat the products of our modern industrial era, for better or for worse.  Think of it as “the pollution inside people”.

You can get tons of information about body burden on Google, and studies litter the landscape with results showing the effects this chemical onslaught is having on us. The Centers for Disease Control (CDC) is running the National Biomonitoring Program (NBP) started in 1998. Every two years the NBP attempts to assess exposure to environmental chemicals in the general U.S. population.   Data covering 2001-2002 found that the average adult American body carried 116 toxic synthetic compounds. In other studies, similar chemicals have been detected in the placenta, umbilical cord blood, bloodstream, and body fat of infants as well as in the human breast milk they drink. In a study sponsored by the Environmental Working Group (EWG), researchers at two major laboratories found an average of 200 industrial chemicals and pollutants in the umbilical cord of newborn babies,  indicating that babies are born “pre polluted”. 

Yet many people are not terribly concerned, because the industry and their government tells them that the chemicals found in products are present in such low quantities as to have no effect.  And scientists are trained to believe that “the dose makes the poison” – in other words, it’s commonly thought that a little bit won’t hurt you; that large doses always have greater effects than small doses.  But that simplistic approach overlooks greater harm that is being found at extremely small doses.  If all toxins behaved exactly the same way that might hold true.   But the effect of high doses cannot always be extrapolated to predict what happens at extremely low doses.

The effect of a ‘dose’ is not that simple.  Factors that must be considered include

• Size of dose

• Length of exposure

• Rate of absorption

• Timing

• Individual metabolism

• State of health and nutrition when exposed

• Concurrent exposure to other toxicants — including order of exposures and any  synergies

Here are some of the problems with the assumption that a low dose translates into low risk:

New research is demonstrating that harm can occur at much lower thresholds than previously considered possible.  Hormones, for example, play specific roles, at specific moments in time, throughtout a person’s life.  If the actions of hormones are prevented, interrupted, or increased then the effects can range from subtle to dramatic.

For example, exposure occurring at a young age can cause a subtle change in how a gene expresses itself. This can set up a low-level progression of conditions that eventually leads to some form of cancer.

In other cases the original disruption might occur at a key moment during development in the womb. The dramatic result might be a birth defect, mental retardation or miscarriage.

The amount of chemical necessary to cause these disruptions does not have to be large. A vanishingly small amount is all it takes — “just enough” to alter an event.   The mouse on the left is normal. The mouse on the right was exposed to 1 ppb DES while in the womb.   For years it was assumed that such low exposure would have no effect — until someone checked.

Toxins are often regulated based on finding the level of exposure that causes no harm. This is known as the ‘no observable adverse effects level’ (NOAEL).  But a NOAEL is derived by starting with a high dose and then reducing subsequent doses until no affect is observed misses other harm that can take place (from synergistic reactions with other chemicals in the body) at even lower doses.

These chemicals do not act in a vacuum and the effects cannot be isolated from other variables.  Harm can be amplified when chemicals are combined –  in other words, toxins can make each other more toxic.  For example, a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed!  This is called synergistic toxicity.

The timing – and order –  of toxic exposure plays a much more significant role than previously recognized.  Exposures can happen one after the other, or all at once. Combinations of chemicals can produce:

  • Consequences that are significantly different than would be expected from individual exposures.
  • A range of combined acute and chronic effects.
  • Effects that can appear immediately  –  or sometime later.
  • Increased or unexpected harmful effects — including entirely new kinds of effects.

The possible combinations of exposure are huge and knowledge is limited about the effects of mixed exposures. Individual susceptibility adds to the complexity of exposure and resulting outcomes.   As a result, current safety standards based on high dose experiments don’t guarantee shelter from toxic levels of exposure.

Genetic susceptibility plays a role in body burden.  For instance, a large part of the population, possibly more than 20%, are unable to effectively excrete heavy metals. Their burden accumulates faster. Their illnesses are more obvious. They are the “canaries in a coal mine” in an environment that is increasingly toxic.  It’s becoming abundantly clear that both “rare” and “common” illnesses are on the rise, and research is making a connection with body burden. The National Institutes of Health defines a rare disease as one affecting 200,000 or fewer Americans yet:

  • 25 million Americans suffer from one of the nearly 6,000 identified rare diseases.  That rivals the 40 million Americans with one or more of the three “major” diseases: heart disease, cancer or diabetes.

Viruses, bacteria, yeasts, parasites, and mold aggravate body burden at any stage of life. New research demonstrates that viruses can increase susceptibility to heavy metals; or that they increase the uptake of PBDEs.  Beyond the better understood mechanisms of infection, research is revealing that some microorganisms interact directly with chemicals to enhance susceptibility to infection.

A common misconception is that “inactive ingredients will not interact”.
In fact many ingredients do interact, and it is possible for ingredients to change into different chemicals that also interact. A manufacturer may claim a product has been tested and proven to be 100% safe when used as directed. This might be true — there is no requirement to test for synergies.

These are just the highlights of Ron’s eye opening discussion.  Please take a few minutes exploring his web site and others, some of which I’ve listed below:

Resources:

www.sailhome.org

For presentation on PBS and hosted by Bill Moyers on our body burden, see http://www.pbs.org/tradesecrets/problem/bodyburden.html


For the Centers for Disease Control report: www.cdc.gov/exposurereport


For the EWG/Mount Sinai body burden report: www.ewg.org/reports/bodyburden/index.php


For the EPA study on extent of testing for modern chemicals: www.epa.gov/opptintr/chemtest/hazchem.htm


For ideas on what you can do: “Everybody’s Chemical Burden” by Shayna Cohen in The Green Guide #96 May/June 2003, www.thegreenguide.com