Relationships and systems

1 07 2014

 

 

 

From Jewel  Renee Illustration; jewelrenee.blogspot.com/2011/06/starfish-7-legged-and-otherwise.html

From Jewel Renee Illustration; jewelrenee.blogspot.com/2011/06/starfish-7-legged-and-otherwise.html


From Alaska to Southern California, sea stars (or as I call them,  starfish.    But  scientists like to point out they’re not fish, ergo: “sea stars”) are dying by the millions.  Drew Harvell, a marine epidemiologist at Cornell University, calls it the largest documented marine epidemic in human history.   The disease deflates sea stars, causing them to become weak, lose limbs  and develop lesions that eat through their entire bodies – or simply disintegrate into bacterial goop within days.   

Two affected species – sunflower and ochre stars – are “keystone species” in their respective habitats. That is, they are species that have disproportionately large impacts on their ecosystems, and they fill a vital niche. The term was coined 45 years ago by zoology professor Robert Paine, of the University of Washington, specifically to describe the importance of the ochre star in the Pacific Northwest.  They are a top predator, eating mussels, barnacles and sea snails.

“This is the species that defined the term, which is a central concept in ecological theory,” explained Drew Harvell.   “We do expect the impact to be dramatic. And to take away not just one, but both of these keystone species in adjoining ecosystems? It’s going to have a big effect.”[1]

Nobody knows why the sea stars are dying.  Theories have run from waterborne pathogens or other disease agents, manmade chemicals, ocean acidification, wastewater discharge or warming oceans.  There is even a contingent that thinks the Fukushima nuclear meltdown is the cause.  The newest theory is that they’re being infected with a disease that can more easily grow in the Pacific Ocean thanks to warming waters, which provide a better place for the disease organisms to multiply.  According to the scientists, the warmer waters also compromises the immune systems of the sea stars, allowing them to be more susceptible to the disease.

I’m sure you know where I’m going with this:  like Colony Collapse Disorder (CCD) of honeybees, the sea star wasting syndrome is beyond the range of what we expect in a healthy ecosystem.  Most scientists have concurred that the CCD was caused by a variety of environmental stresses (malnutrition, pathogens, mites, pesticides, radiation from cell phones and other man made devices, as well as genetically modified crops with pest control characteristics) which increased stress and reduced the immune systems of the honeybees.

And though bees and sea stars are both rather small and seem insignificant, they are both essential components of our ecosystem.  Without bees, for example, there would be significantly less pollination, which would result in limited plant growth and lower food supplies. According to Dr. Albert Einstein, “If the bee disappears from the surface of the earth, man would have no more than four years to live. No more bees, no more pollination…no more men”.[2]    It’s a bit early to assess the impact of the loss of sea stars, but according to Carol Blanchette, a research biologist at University of California Santa Barbara,  “losing a predator like that is bound to have some pretty serious ecological consequences and we really don’t know exactly how the system is going to look but we’re quite certain that it’s going to have an impact.”[3]

I read a book many years ago about time travelers who went to the distant past.  One of them stepped on an insect.  When they returned to their own time, everything had changed.  Ecologists tell us that everything is connected to everything else – ecosystems are complex and interconnected.  “The system,” Barry Commoner writes, “is stabilized by its dynamic self-compensating properties; these same properties, if overstressed, can lead to a dramatic collapse.” Further, “the ecological system is an amplifier, so that a small perturbation in one place may have large, distant, long-delayed effects elsewhere.”[4]

So how does the textile industry figure into this equation?  Answer:  the textile industry pollutes our water.  In fact, some sources put it as the leading industrial polluter of water on the planet.  It takes about 505 gallons of water to produce one pair of Levi’s 501 jeans.[5]  Imagine how much water is used every day by textile mills worldwide.   The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

Maude Barlow, in her book, Blue Covenant [6] argues that water is not a commercial good but rather a human right and a public trust.   She shares these startling facts about water during her presentations:

  • Every 8 seconds a child dies from drinking dirty water.
  • 50% of the world’s hospital beds are occupied by people who have contracted waterborne diseases.
  • The World Health Organization says contaminated water is the cause of 80% of all sickness and disease worldwide.
  • 9 countries control 60% of the world’s available freshwater.[7]
  • In China, 80% of all major rivers are so polluted they don’t support aquatic life at all.

This year’s drought in the US pointed to a new water related issue, the generation of energy.  Power plants are completely dependent on water for cooling and make up about half the water usage in the US.  If water levels in the rivers that cool them drop too low, the power plant – already overworked from the heat – won’t be able to draw in enough water. In addition, if the cooling water discharged from a plant raises already-hot river temperatures above certain thresholds, environmental regulations require the plant to shut down.[8]

The textile mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water as a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

Please ask whether the fabric you buy has been produced in a mill which treats its wastewater.   The Global Organic Textile Standard (GOTS) assures consumers that the mill which produced the fabric has treated its wastewater, but so far it is the only third party certification with that requirement as a standard.  Oeko Tex 1000 has also included that in its requirements, however I have never seen an Oeko Tex 1000 certification – most fabrics are simply Oeko Tex certified.  Also look into the Greenpeace Detox challenge, which is working to “expose the direct links between global clothing brands, their suppliers, and toxic water pollution around the world.”  Click here for more information.

 

[1] Gashler, Krisy, “Sea star wasting devastates Pacific Coast species”, Cornell Chronicle, Feb 17, 2014

[2] http://www.beesfree.biz/The%20Buzz/Bees-Dying

[3] http://www.pbs.org/newshour/updates/scientists-zero-whats-causing-starfish-die-offs/

[4] Commoner, Barry; “The Closing Circle: Nature, Man and Technology”, Random House, October 1971

[5] Alter, Alexandra, “Yet Another Footprint to Worry About: Water”, The Wall Street Journal, February 17, 2009.

[6] Barlow, Maude; “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008.

[7] WBCSD, Facts and Trends: Water (version 2), 2009.

[8] Reardon, Sara, “Water shortages hit US power supply”, New Scientist, 20 August 2012.

 

Advertisements




Textiles and water use

24 02 2010

Water.  Our lives depend on it.  It’s so plentiful that the Earth is sometimes called the blue planet – but freshwater is a remarkably finite resource that is not evenly distributed everywhere or to everyone.  The number of people on our planet is growing fast, and our water use is growing even faster.  About 1 billion people lack access to potable water, and about 5 million people die each year from poor drinking water, or poor sanitation often resulting from water shortage[1] – that’s 10 times the number of people killed in wars around the globe.[2] And the blues singers got it right: you don’t miss your water till the well runs dry.

I just discovered that the word “rival” comes from the Latin (rivalis) meaning those who share a common stream.  The original meaning, apparently, was closer to our present word for companion, but as words have a way of doing, the meaning became skewed to mean competition between those seeking a common goal.

This concept – competition between those seeking a common goal – will soon turn again to water, since water, as they say, is becoming the “next oil”;  there’s also talk of “water futures” and “water footprints”  – and both governments and big business are looking at water (to either control it or profit from it).  Our global water consumption rose sixfold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.  The pressure is on.

Note: There are many websites and books which talk about the current water situation in the world, please see our bibliography which is at the bottom of this post.

What does all this have to do with fabrics you buy?

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, bleaching and mercerizing, use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used in that step before moving on to the next step.  The water used is usually returned to our ecosystem without treatment – meaning that the wastewater which is returned to our streams contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

When we say the textile industry uses a lot of water, just how much is a lot?  One example we found:  the Indian textile industry uses 425,000,000 gallons of water every day [3] to process the fabrics it produces.  Put another way, it takes about 20 gallons of water to produce one yard of upholstery weight fabric.  If we assume one sofa uses about 25 yards of fabric, then the water necessary to produce the fabric to cover that one sofa is 500 gallons.  Those figures vary widely, however, and often the water footprint is deemed higher.  The graphic here is from the Wall Street Journal, which assigns 505 gallons to one pair of Levi’s 501 jeans [4]:

The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

The process chemicals used by the mills are used on organic fibers just as they’re used on polyesters and conventionally produced natural fibers.  Unless the manufacturer treats their wastewater – and if they do they will most assuredly let you know it, because it costs them money – then we have to assume the worst.  And the worst is plenty bad.  So just because you buy something made of “organic X”, there is no assurance that the fibers were processed using chemicals that will NOT hurt you or that the effluent was NOT discharged into our ecosystem, to circulate around our planet.

You might hear from plastic manufacturers that polyester has virtually NO water footprint, because the manufacturing of the polyester polymer uses very little water – compared to the water needed to grow or produce any natural fiber.  That is correct.  However, we try to remind everyone that the production of a fabric involves two parts:

  • The production of the fiber
  • The weaving of the fiber into cloth

The weaving portion uses the same types of process chemicals – same dyestuffs, solubalisers and dispersents, leveling agents, soaping, and dyeing agents, the same finishing chemicals,  cationic and nonionic softeners, the same FR, soil and stain, anti wrinkling or other finishes – and the same amount of water and energy.  And recycled polyesters have specific issues:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[5]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.

So water treatment of polyester manufacturing should be in place also.  In fact there is a new standard called the Global Recycle Standard, which was issued by Control Union Certifications.   The standard has strict environmental processing criteria in place in addition to percentage content of recycled  product – it includes wastewater treatment as well as chemical use that is based on the Global Organic Textile Standard (GOTS) and the Oeko-Tex 100.

And to add to all of this, Maude Barlow, in her new book, Blue Covenant (see bibliography below) argues that water is not a commercial good but rather a human right and a public trust.  These mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water a a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

BIBLIOGRAPHY:

The World’s Water:  http://www.worldwater.org/

Water.org:    http://water.org/learn-about-the-water-crisis/facts/

Ground water and drinking water:  http://www.epa.gov/ogwdw000/faq/faq.html

New York Times series, Toxic Waters:  http://projects.nytimes.com/toxic-waters

Barlow, Maude, “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008

Water Footprint Network:  http://www.waterfootprint.org/?page=files/home


[1]Tackling the Big Three (air and water pollution, and sanitation), David J. Tenenbaum, Environmental Health Perspectives, Volume 106, Number 5, May 1998.

[2] Kirby, Alex, “Water Scarcity: A Looming Crisis?”, BBC News Online

[3] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment, New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur, South India”, Prakash Nelliyat, Madras School of Economics.

[4] Alter, Alexandra, “Yet Another Footprint to worry about: Water”, Wall Street Journal, February 17, 2009

[5] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008