Sofa cushions – foam, soy foam or latex?

12 09 2013

So we have produced the frame and put in the suspension system.  Next in line are the cushions – something soft to sit on.

In an upholstered piece of furniture, the cushions need a filler of some kind.  Before plastics, our grandparents used feathers, horsehair or wool or cotton batting.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is start with good foam and you won’t be sorry.”

Cushions are generally measured by two values:

  • The density or weight per cubic foot of polyurethane foam. The higher the number the more it weighs.   Foam that has a density of 1.8 foam, for example, contains 1.8 lbs of foam per cubic foot and foam that is 2.5 foam would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  • The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block one third.

The foam is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually, and explore issues other than embodied energy :

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is      considered the ‘workhorse’ of flexible foam production.
    • Both methyloxirane  and TDI have been formally identified as carcinogens by the State of California
    • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
    • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.       However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2]

Now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable  resource
  2. it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for      the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”.   Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain.  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

Is there really a question as to which to buy?


[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

Advertisements




Chrome-free leather?

6 03 2013

leather sofaLast week we took a look at chromium in textiles – and leather. With the increased interest in avoidance of certain chemicals and industrial products that are particularly harmful to our environment, it’s not surprising that manufacturers are becoming ingenious in pointing out attributes that play to this script. So we now see claims for “chrome free” leather as being “eco friendly”.

Although most leather is tanned using chromium (from 80 – 95% of all leather produced uses chrome tanning [1]) there is a third type of leather tanning, called aldehyde tanning, which like vegetable tanning does not use chromium.

Often leather is advertised as being “pure aniline”, “full or semi aniline”, “top grain” “nubuk”- these are just terms which describe how the dye is applied or in the case of “top grain”, where the hide comes from on the animal. These terms have nothing to do with tanning.

Let’s look at leather tanning for a minute and find out what that means:

Sometimes leather manufacturers will tell you that they don’t use the toxic form of chromium in tanning – the toxic form is called chromium VI or hexavalent chromium. And that is correct: chromium tanned leathers use chromium III salts (also called trivalent chromium) in the form of chromium sulfate. This form of chromium is found naturally in the environment and is a necessary nutrient for the human body. However, the leather manufacturers fail to explain that chromium III oxidizes into chromium VI in the presence of oxygen combined with other factors, such as extremes in pH. This happens during the tanning process. Chromium-tanned leather can contain between 4 and 5% of chromium [2] – often hexavalent chromium, which produces allergic reactions and easily moves across membranes such as skin. End of life issues, recovery and reuse are a great concern – chromium (whether III or VI) is persistent (it cannot be destroyed) and will always be in the environment. Incineration, composting and gasification will not eliminate chromium.

Vegetable tanning is simply the replacement of the chromium for bark or plant tannins –all other steps remain the same. And since there are about 250 chemicals used in tanning, the replacement of chromium for plant tannins, without addressing the other chemicals used, is a drop in the bucket. Last week I mentioned some of the other 249 chemicals routinely used in tanning: alcohol, coal tar , sodium sulfate, sulfuric acid, chlorinated phenols (e.g. 3,5-dichlorophenol), azo dyes, cadmium, cobalt, copper, antimony, cyanide, barium, lead, selenium, mercury, zinc, polychlorinated biphenyels (PCBs), nickel, formaldehyde and pesticide residues.[3]

Aldehyde tanning is the main type of leather referred to as “chrome-free”, and is often used in automobiles and baby’s shoes. Aldehyde tanning is often referred to as “wet white” due to the pale cream color it imparts to the skins. But aldehydes are a group of chemicals that contain one chemical which many people are familiar with: formaldehyde. And we all know about formaldehyde: it is highly toxic to all animals; ingestion of as little as little as 30 mL (1 oz.) of a solution containing 37% formaldehyde has been reported to cause death in an adult human[4] and the Department of Health and Human Services has said it may reasonably be anticipated to be a carcinogen.

Aldehyde tanning essentially uses formaldehyde, which reacts with proteins in the leather to prevent putrefication. BLC Leather Technology Center, a leading independent leather testing center, states that leathers should contain no more than 200ppm of formaldehyde for articles in general use. If the item is in direct skin contact this should be 75ppm, and 20ppm for items used by babies (<36 months). Typically, with modern tanning techniques, leathers contain 400ppm or less.[5] Yet that far exceeds levels set elsewhere – in New Zealand, for example, acceptable levels of formaldehyde in products is set at 100 ppm[6] – the European Union Ecolabel restricts formaldehyde to 20 ppm for infant articles, 30 ppm for children and adults, while GOTS prohibits any detectable level.

BLC Leather Technology Center commissioned a study by Ecobilan S.A. (Reference BLC Report 002) to do a life cycle analysis to evaluate the various tanning chemicals, to see if there was an environmentally preferable choice between chrome, vegetable and aldehyde based processes. The result? They found no significant differences between the three – all have environmental impacts, just different ones. These LCA’s demonstrate that tanning is just one of the impacts – other steps may have equal impacts. Chrome was cited as having the disadvantage of being environmentally persistent. “Another consideration, in terms of end-of-life leather or management of chrome tanned leather waste, is the possibility of the valency state changing from the benign Cr III to the carcinogenic Cr VI.”[7]

So much for “chrome free” leather. But since all three tanning processes impact the environment to the same degree, the least toxic (vegetable) is the one I’d choose. But there are precious few tanneries doing vegetable tanned leather.

One issue which is a hot topic in leather production is that of deforestation and the sourcing of skins from Brazil – cattle ranching in Brazil accounted for 14% of global deforestation and ranches occupy approximately 80% of all deforested land in the Amazon. [8] Greenpeace and the National Wildlife Federation (NWF) aims to stop all deforestation in the Amazon by encouraging the meat processors to insist that their suppliers register their farms and map and log their boundaries as a minimum requirement. They also encourage companies to cancel orders with suppliers that are not prepared to stop deforestation and adhere to these minimum requirements. Many of the Leather Working Group (LWG)(for a list of these members, see footnote 9) member brands have made commitments to a moratorium on hides sourced from farms involved in deforestation and LWG itself has a project to identify and engage with the key stakeholders in Brazil, investigate traceability solutions, conduct trials and implement third party auditing solutions.
________________________________________
[1] Richards, Matt, et al, “Leather for Life”, Future Fashion White Papers, Earth Pledge Foundation
[2] Gustavson, K.H. “The Chemistry of Tanning Processes” Academic Press Inc., New York, 1956.
[3] Barton, Cat, “Workers pay high price at Bangladesh tanneries”, AFP, Feb. 2011
[4] Agency for Toxic Substances & Disease Registry, “Medical management guidelines for formaldehyde”, http://www.atsdr.cdc.gov/mmg/mmg.asp?id=216&tid=39
[5] BLC Leather Technology Center Ltd, “Technology Restricted substances – Formaldehyde”, Leather International, November 2008, http://www.leathermag.com/news/fullstory.php/aid/13528/Technology_Restricted_substances-Formaldehyde.html
[6] “Evaluation of alleged unacceptable formaldehyde levels in Clothing”, Wellington, New Zealand: New Zealand Ministry of Consumer Affairs, October 17, 2007.
[7] http://www.leathermag.com/news/fullstory.php/aid/13479/Technology_Restricted_substances-Chrome_VI_story.html
[8] “Broken Promises: how the cattle industry in the Amazon is still connected to deforestation…” Greenpeace, October 2011; http://www.leatherworkinggroup.com/images/documents/Broken%20promises%20-%20Oct11FINAL.pdf
(9) Currently the consumer brands involved with the LWG are: Adidas-group, Clarks International, Ikea of Sweden, New Balance Athletic Shoe, Nike Inc, Pentland Group including (Berghaus, Boxfresh, Brasher, Ellesse, Franco Sarto, Gio-Goi, Hunter, KangaROOS, Mitre, Kickers (UK), Lacoste Chaussures, ONETrueSaxon, Radcliffe, Red or Dead, Speedo, Ted Baker Footwear), The North Face, The Timberland Company, Wolverine World Wide Inc including (CAT, Merrel, Hush Puppies, Patagonia, Wolverine, Track n Trail, Sebago, Chaco, Hytest, Bates, Cushe, Soft Style). New brands recently joined are Airwair International Ltd, K-Swiss International, Marks & Spencers and Nine West Group.





The new bioeconomy

15 05 2012

Last week we explored using biomass as fuel, and some of the implications in doing that.  Previously we looked at using biomass in the world of fabrics and furnishings,  which include the new biotech products polylactic acid (PLA) (DuPont’s Ingeo and Sorona fibers) and soy-based foam for upholstery  (click  here and here to see our posts).  The ideas being presented by new bio technologies are not new – in the 19th century Rumpelstiltskin spun straw into gold – and the idea has always held a fascination for humans.

There is a new report called “The New Biomassters – Synthetic Biology and The Next Assault on Biodiversity and Livelihoods” (click here to download the report) published by The ETC Group, which focuses on the social and economic impacts of new bio technologies.  This report paints an even more troubling picture than what I’ve been able to uncover to date, and the information contained in this post comes from that report:

“Under the pretext of addressing environmental degredation, climate change and the energy and food crisis, and using the rhetoric of the “new” bioeconomy  (“sustainability”, “green economy”, “clean tech”, “clean development”) industry is talking about  solving these problems by substituting fossil carbon for that of living matter.    The term “bioeconomy” is based on the notion that biological systems and resources can be harnessed to maintain current industrial systems of production, consumption and capital accumulation.” 

Sold as an ecological switch from a ‘black carbon’ (i.e. fossil) economy to a ‘green carbon’ (plant-based) – and therefore a “clean” form of development –  this emerging bioeconomy is in fact, according to ETC,  “a red-hot resource grab of the lands, livelihoods, knowledge and resources of peoples in the global South” (because 86% of that biomass is located in the tropics and subtropics).

What does a new bioeconomy look like?  According to the ETC:   “as the DNA found in living cells is decoded into genetic information for use in biotechnology applications, genetic sequences  acquire a new value as the building blocks of designed biological production systems. By hijacking the ‘genetic instructions’ of cells … to force them to produce industrial products, industry transforms synthetic organisms into bio-factories that can be deployed elsewhere on the globe – either in private vats or plantations.  Nature is altered to meet business interests.”

They go on to say that as ecosystems collapse and biodiversity declines, new markets in ecosystem “services” will enable the trading of ecological ‘credits.’   The declared aim is to “incentivize conservation” by creating a profit motive in order to justify interventions in large-scale natural systems such as hydrological cycles, the carbon cycle or the nitrogen cycle.[1] Like the ‘services’ of an industrial production system, these ‘ecosystem services,’ created to privatize natural processes, will become progressively more effective at serving the interests of business.

It seems to be all about profit.

The ETC report states that concerted attempts are already underway by many industrial players to shift industrial production feedstocks from fossil fuels to the 230 billion tons of ‘biomass’ (living stuff) that the Earth produces every year -not just for liquid fuels but also for production of power, chemicals, plastics and more.

The visible players involved in commodifying the 76% of terrestrial living material that is not yet incorporated in the global economy include BP, Shell, Total, Exxon, Cargill, DuPont, BASF, Syngenta and Weyerhaeuser.   Enabling this attempt is the adoption of synthetic biology techniques (extreme genetic engineering) by these well-funded companies.

“We have modest goals of replacing the whole petrochemical industry and becoming a major source of energy.”

– J. Craig Venter, founder Synthetic Genomics, Inc.[2]

There is lots more in the ETC report, here’s just a summary of some other issues:

  • The report examines the next generation biofuels, including algal biofuels and synthetic hydrocarbons, and establishes the case for why this generation may be as ecologically and socially dangerous as the first.  Even leading companies and scientists involved in synthetic biology agree that some oversight is necessary – currently it’s being mostly ignored and is not on the agenda for the Rio+20 summit to be held in Brazil in June.
  • Today’s synthetic biology is unpredictable, untested and poorly understood.  Could open a Pandora’s box of consequences.  See:  http://www.cbd.int/doc/emerging-issues/foe-synthetic-biology-for-biofuels-2011-013-en.pdf
  • The “green” credentials of current bio-based plastics and chemicals are called into question.  (See our posts on biopolymers – click here and here).
  • How much biomass is enough?  “Attempting to set an ‘acceptable level’ of biomass extraction is as inappropriate as forcing a blood donation from a hemorrhaging patient. Already struggling to maintain life support, the planet simply does not have any biomass to spare. Human beings already capture on-fourth of land based biomass for food, heat and shelter; attempts to define a limit beyond which ecosystems lose resilience and begin to break down reveal that we consumed past such limits 20 years ago.”
  • Biomass is considered a “renewable resource” – and it is true that while plants may be renewable in a short period of time, the soils and ecosystem that they depend on may not be.  Industrial agriculture and forest biomass extraction rob soils of nutrients, organic matter, water and structure, decreasing fertility and leaving ecosystems more vulnerable or even prone to collapse. Associated use of industrial chemicals and poor land management can make things worse. In practice, therefore, biomass is often only truly renewable when extracted in such small amounts that they are not of interest to industry.
  • The claim that biomass technology will be a stepping stone to a new mix of energy sources misses the whole point – that we are facing a crisis of overproduction and consumption.  Reducing our overall energy demands is critical, as it boosting support for decentralized peasant agriculture.

[1] See for example, The Economics of Ecosystems and Biodiversity:

Ecological and Economic Foundations. Edited By Pushpam Kumar. An

output of TEEB: The Economics of Ecosystems and Biodiversity,

Earthscan Oct. 2010

[2] Michael Graham Richard, “Geneticist Craig Venter Wants to Create Fuel from CO2,” Treehugger, 29 February 2008. Available online at: http://www.treehugger.com/files/2008/02/craig-venter-fuel-co2-tedconference.php