Not Michael Pollan’s Food Rules

26 07 2017

One of the presenters at the 2011 Living Building Challenge (whose name I’ve been trying to find, but cannot – so apologies to the presenter who remains unnamed), inspired by writer Michael Pollan’s Food Rules, shared a list of ways to choose products that remove the worst of the chemical contamination that plagues many products. These rules apply to all products, including fabrics:

  • If it is cheap, it probably has hidden costs.
  • If it starts as a toxic input (like ethylene glycol in the manufacture of polyester), you probably don’t want it in your house or office.
  • Use materials made from substances you can imagine in their raw or natural state.
  • Use carbohydrate-based materials (i.e., natural fibers) when you can.
  • Just because almost anything can kill you doesn’t mean fabrics should.
  • Pay more, use less.
  • Consult your nose – if it stinks, don’t use it.
  • If they can’t tell you what’s in it, you probably don’t want to live with it. (Note: this is not just the fibers used to weave the fabric – did the processing use specific chemicals, like heavy metals in the dyestuff, or are there any finishes on the fabric?)
  • Avoid materials that are pretending to be something they are not (like polyester mimicking linen).
  • Question materials that make health claims.
  • Regard space-age materials with skepticism.

 

Advertisements




Why do we offer safe fabrics?

3 10 2016

Why do we say we want to change the textile industry?  Why do we say we want to produce fabrics in ways that are non-toxic, ethical and sustainable?  What could be so bad about the fabrics we live with?

The textile industry is enormous, and because of its size its impacts are profound.  It uses a lot of three ingredients:

  • Water
  • Chemicals
  • Energy

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, corporate interests are controlling water, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.(1) Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN. Our global water consumption rose six fold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, and bleaching use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used before moving on to the next step.  The water is usually returned to our ecosystem without treatment – meaning that the wastewater, which is returned to our streams, contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.  The textile industry is the #1 industrial polluter of fresh water on the planet – the 9 trillion liters of water used annually in textile processing is usually expelled into our rivers without treatment and is a major source of groundwater pollution.  Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.  Just Google “Greenpeace and the textile industry” to find out what Greenpeace is doing to make people aware of this issue.

Over 8,000 chemicals are used in textile processing, some so hazardous that OSHA requires textile scraps be handled as hazardous waste.   The final product is, by weight, about 23% synthetic chemicals – often the same chemicals that are outlawed in other products.  The following is by no means an all-inclusive list of these chemicals:

  • Alkylphenolethoxylates (APEOs), which are endocrine disruptors;
    • o Endocrine disruptors are a wide range of chemicals which interfere with the body’s endocrine system to produce adverse developmental, reproductive, neurological and immune effects in both humans and wildlife; exposure us suspected to be associated with altered reproductive function in both males and females, increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children.(2)
  • Pentachlorophenols (PCP)
    • o Long-term exposure to low levels can cause damage to the liver, kidneys, blood, and nervous system. Studies in animals also suggest that the endocrine system and immune system can also be damaged following long-term exposure to low levels of pentachlorophenol. All of these effects get worse as the level of exposure increases.(3)
  • Toluene and other aromatic amines
    • carcinogens (4)
  • Dichloromethane (DCM)
    • Exposure leads to decreased motor activity, impaired memory and other neurobehavioral deficits; brain and liver cancer.(5)
  • Formaldehyde
    • The National Toxicology Program named formaldehyde as a known human carcinogen in its 12th Report on Carcinogens.(6)
  • Phthalates –
    • Associated with a range of effects from liver and kidney diseases to developmental and reproductive effects, reduced fetal weight.(7)
  • Polybrominated diphenyl ethers (PBDE’s)
    • A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, decreased sperm count, fetal malformations and, possibly, cancer.(8)
  • Perfluorooctane sulfonates (PFOS)
    • To date, associations have been found between PFOS or PFOA levels in the general population and reduced female fertility and sperm quality, reduced birth weight, attention deficit hyperactivity disorder (ADHD), increased total and non-HDL (bad) cholesterol levels, and changes in thyroid hormone levels.(9)
  • Heavy metals – cadmium, lead, antimony, mercury among others
    • Lead is a neurotoxin (affects the brain and cognitive development) and affects the reproductive system; mercury is a neurotoxin and possibly carcinogenic; cadmium damages the kidneys, bones and the International Agency for Research on Cancer has classified it as a human carcinogen; exposure to antimony can cause reproductive disorders and chromosome damage.

The textile industry uses huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.  For example, steam used in the textile manufacturing process is often generated in inefficient and polluting coal-fired boilers.  Based on estimated annual global textile production of 60 billion kilograms (KG) of fabric, the estimated energy needed to produce that fabric boggles the mind:  1,074 billion KWh of electricity (or 132 million metric tons of coal).  It takes 3886 MJ of energy to produce 25 yards of nylon fabric (about the amount needed to cover one sofa).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(10)

Today’s textile industry is also one of the largest sources of greenhouse gasses on the planet: in the USA alone, it accounts for 5% of the country’s CO2 production annually; China’s textile sector alone would rank as the 24th– largest country in the world.(11)

We succeeded in producing the world’s first collection of organic fabrics that were gorgeous and green – and safe.    In 2007, those fabrics won “Best Merchandise” at Decorex (www.decorex.com).    In 2008, our collection was named one of the Top Green Products of 2008 by BuiltGreen/Environmental Building News. As BuiltGreen/EBN takes no advertising dollars, their extensive research is prized by the green building industry (www.buildinggreen.com).

We are a tiny company with an oversized mission.  We are challenged to be a triple bottom line company, and we want to make an outsized difference through education for change  – so that a sufficiently large number of consumers will know which questions to ask that will force change in an industry.  We believe that a sufficiently large number of people will respond to our message to force profound positive change: by demanding safe fabric, produced safely, our environment and our health will be improved.

The issues that distinguish us from other fabric distributors, in addition to offering fabrics whose green pedigree is second to none:

    1. We manage each step of the production process from fiber to finished fabric, unlike other companies, which buy mill product and choose only the color palette of the production run.    Those production process steps include fiber preparation, spinning, weaving, dyeing, printing and finishing; with many sub-steps such as sizing and de-sizing, bleaching, slashing, etc.
    2. We educate consumers and designers on the issues that are important to them – and to all of us. Our blog on the topic of sustainability in the textile industry has grown from about 2 hits a day to 2,000, and is our largest source of new customers.
    3. We are completely transparent in all aspects of our production and products.    We want our brand to be known not only as the “the greenest”, but for honesty and authenticity in all claims.  This alignment between our values, our claims and our products fuels our passion for the business.
    4. We are the only collection we know of which sells only “safe” fabrics.

We serve multiple communities, but we see ourselves as being especially important to two communities:  those who work to produce our fabric and those who use it, especially children and their parents.

    • By insisting on the use of safe chemicals exclusively, we improve the working conditions for textile workers.  And by insisting on water treatment, we mitigate the effects of even benign chemicals on the environment – and the workers’ homes and agricultural land.  Even salt, used in copious amounts in textile processing, will ruin farmland and destroy local flora and fauna if not neutralized before being returned to the local waters.
    • For those who use our fabric, chemicals retained in the finished fibers do not add to our “body burden “, which is especially important for children, part of our second special community.  A finished fabric is, by weight, approximately 23% synthetic chemicals. Those chemicals are not benign.  Textile processing routinely uses chemicals with known toxic profiles such as lead, mercury, formaldehyde, arsenic and benzene – and many other chemicals, many of which have never been tested for safety.

Another thing we’d like you to know about this business is the increasing number of people who contact us who have been harmed by fabric (of all things!) because we represent what they believe is an honest attempt at throwing light on the subject of fabric processing.   Many are individuals who suffer from what is now being called “Idiopathic Environmental Intolerance” or IEI (formerly called Multiple Chemical Sensitivity), who are looking for safe fabrics.  We’ve also been contacted on behalf of groups, for example,   flight attendants, who were given new uniforms in 2011, which caused allergic reactions in a large number of union members.

These incidences of fabric-induced reactions are on the rise.   As we become more aware of the factors that influence our health, such as we’re seeing currently with increased awareness of the effects of interior air quality, designers and others will begin to see their way to specifying “safe” fabrics  just as their code of ethics demands.(12)  We feel certain that the trajectory for such an important consumer product as fabric, which surrounds us most of every hour of the day, will mimic that of organic food.

We say our fabrics are luxurious – because luxury has become more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends, the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.  In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

 

(1) Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

(2)World Health Organization, http://www.who.int/ceh/risks/cehemerging2/en/

(3)Agency for Toxic Substances & Disease Registry 2001, https://www.atsdr.cdc.gov/phs/phs.asp?id=400&tid=70

(4)Centers for Disease Control and Prevention, Publication # 90-101; https://www.cdc.gov/niosh/docs/90-101/

(5)Cooper GS, Scott CS, Bale AS. 2011. Insights from epidemiology into dichloromethane and cancer risk. Int J Environ Res Public Health 8:3380–3398.

(6)National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.

(7)Hauser, R and Calafat, AM, “Phthalates and Human Health”, Occup Environ Med 2005;62:806–818. doi: 10.1136/oem.2004.017590

(8)Environmental Working Group, http://www.ewg.org/research/mothers-milk/health-risks-pbdes

(9)School of Environmental Health, University of British Columbia; http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf

(10) Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

(11)Based on China carbon emissions reporting for 2010 from Energy Information Administration (EIA); see U.S. Department of Energy, Carbon Emissions from Energy Generation by Country, http://www.eia.gov/ cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed September 28, 2012). Estimate for China textile sector based on industrial emissions at 74% of total emissions, and textile industry
as 4.3% of total industrial emissions; see EIA, International Energy Outlook 2011, U.S. Department of Energy.

(12)Nussbaumer, L.L, “Multiple Chemical Sensitivity: The Controversy and Relation to Interior Design”, Abstract, South Dakota State University





Another concern for vigilant parents

19 11 2014

We live in an environment that is full of chemicals – some which are bad for us and yet are completely natural.   We don’t subscribe to the notion that man-made is absolutely bad and natural is absolutely good – botulism is completely natural and can kill you just as dead. But sometimes we adopt products for our use in ways that can hurt us, because we don’t pay attention to the chemicals that are contained in that product nor of how we use the product. Recently, the crushed up tires that are appearing in playgrounds and as the playfield surface of schools around the country have become an object of concern, so let’s take a look at those.

Discarded rubber tires are the bane of waste management – according to the EPA, we generate 290 million scrap tires each year.[1] Obviously finding a market for these slow-to-decompose materials is desirable, and many innovative uses have been developed, including using ground up tires on playground and sports field surfaces. According to the Synthetic Turf Council, this “crumb rubber has been installed in approximately 11,000 U.S. fields, tracks and playgrounds in the United States.[2] And the California Office of Environmental Health says that recycled rubber tires have become one of the top choice materials for surfacing children’s playgrounds.[3]

Crumb rubber is a black, pellet-like substance the size of a cracker crumb. Run your hand through the field, and you’ll pick up black dust, similar to the consistency of pencil graphite. It’s easy to spread, and can easily get into your mouth, shoes, clothing and nostrils. Routes of exposure, especially in the case of infants, can include dermal absorption, inhalation, and even ingestion directly from the material.

Here’s a story about crumb rubber from NBC news:

Various studies have identified the chemicals found in tires, which are made of 40-60% rubber polymers, carbon black (20-35%), silicas, process and extender oils (up to 28%), vulcanization chemicals and chemical anti-degradents, and plasticizers and softeners. It is well known that rubber tire debris contains toxic compounds such as highly aromatic oils and other reactive additives.[1]

The EPA has identified a number of compounds which may be found in tires, though they’re quick to point out that not all are contained in every tire:[2]

  • heavy metals ( cadmium, chromium, iron, lead, magnesium, manganese, molybdenum, selenium, sulfur, and zinc, which can be as much as 2% of tire mass) – most of which have documented health consequences including damage to the central nervous system.
  • Plasticizers (such as phthalates)- phthalates act as estrogens once absorbed by the body. They are considered endocrine disrupting chemicals (EDC’s); conditions associated with EDC’s include infertility; breast, prostate and ovarian cancers; asthma; and allergies.[3]
  • Styrene butadiene – associated with risk of leukemia[4]; known to be genotoxic[5]
  • Benzene – known to be a human carcinogen; also impacts the nervous and immune systems[6]
  • Chloroethane, which causes cancer in mice, is also a neurotoxin[7]
  • Halogenated flame retardants – need we reiterate how these impact human health?
  • Methyl ethyl ketone and methyl isobutyl ketone – there is no evidence of carcinogenicy or mutagenicy but studies show impairment of central nervous system; both are on the Hazardous Substances List by OSHA.[8]
  • Naphthalene – a group C carcinogen (possible human carcinogen); also causes neurological damage.[9]

Another concern is the smell that wafts up from the playing field – like old tires – coupled with the fact that the fields often are 10 – 15 degrees warmer than the ambient temperature, and many of the compounds evaporate at temperatures as low as 77 degrees F. Compounds found to be present in the air in a study done by the Connecticut Agricultural Experiment Station include: [10]

  • Benzothiazole: A skin and eye irritation, harmful if swallowed. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Butylated hydroxyanisole: A recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immunotoxicant, neurotoxicant, skin and sense-organ toxicant. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • n-hexadecane: A severe irritant based on human and animal studies. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • 4-(t-octyl) phenol: Corrosive and destructive to mucous membranes. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Polycyclic aromatic hydrocarbons (PAHs): heavy occupational exposure leads to risk of lung, skin or bladder cancers; genotoxic, leading to malignancies and heritable genetic damage in humans. [11] In 2010, the EPA concluded that in the case of PAHs, “breathing PAHs and skin contact seem to be associated with cancer in humans.”[12] The total concentration of PAHs in crumb rubber exceedes the Norwegian Pollution Control Authority’s normative values for most sensitive land use.[13]

A 2012 study analyzing rubber mulch taken from children’s playgrounds in Spain found harmful chemicals present in all, frequently at high levels.[14] Twenty-one samples were collected from 9 playgrounds in urban locations and screened for various pollutants. The results showed that all samples contained at least one hazardous chemical, with most containing multiple PAHs found at high concentrations. The authors concluded that the use of rubber recycled tires on playgrounds “should be restricted or even prohibited in some cases.”[15]

Many, if not most, of the compounds present in tire crumbs and shreds have been incompletely tested for human health effects, so there is no data available to evaluate the chemicals (as evidenced by the four compounds above).

Artificial turf and rubber crumb manufacturers point to the fact that no research has linked cancer to artificial turf – yet most studies add the caveat that more research should be conducted.

According to Dr. Joel Forman, associate professor of pediatrics and preventive medicine at New York’s Mt. Sinai Hospital, in all these studies, data gaps make it difficult to draw firm conclusions. As he says, “None of [the studies] are long term, they rarely involve very young children and they only look for concentrations of chemicals and compare it to some sort of standard for what’s considered acceptable,” said Dr. Forman. “That doesn’t really take into account subclinical effects, long-term effects, the developing brain and developing kids.” Forman said that it is known that some of the compounds found in tires, “even in chronic lower exposures” can be associated with subtle neurodevelopmental issues in children.

“If you never study anything,” said Dr. Forman, “you can always say, ‘Well there’s no evidence that shows you have a problem,’ but that’s because you haven’t looked. To look is hard.”

Another notable critic of the stuff is Dr. Phillip Landrigan of the Mount Sinai School of Medicine, who submitted a letter to the New York City Planning Department last year expressing concerns over the carcinogens in tire crumbs.

He wrote that the principal chemical components of crumb rubber are Styrene and Butadiene — Styrene is neurotoxic, and Butadiene is a proven human carcinogen that has been shown to cause leukemia and lymphoma.

“There is a potential for all of these toxins to be inhaled, absorbed through the skin and even swallowed by children who play on synthetic turf fields,” Dr. Landrigan wrote. “Only a few studies have been done to evaluate this type of exposure risk.”

So if it walks like a duck, quacks like a duck and looks like a duck…

And as if to add insult to injury, wood chips were found to do a better job of protecting children from head trauma![16]

Remember that children are much more likely to be harmed by exposure to chemicals in their environment than adults because they’re smaller (therefore exposure is greater) and their bodies are still developing. So what’s a concerned parent to do?

  • First – ignore the tire crumb playgrounds and find a good old wood chip or grass site.
  • Teach your children the importance of frequent hand washing as many chemicals enter bodies via the mouth.
  • And persuade local officials to use wood chips rather than recycled rubber.

 

[1] Llompart, Maria et al, “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”, Chemosphere, Vol. 90, issue 2, January 2013, pages 423-431

[2] http://www.epa.gov/nerl/features/tire_crumbs.html

[3] http://www.everydayexposures.com/toxins/phthalates

[4] Santos-Burgoa, Carlos; “Lymphohematopoietic Cancer in Styrene-Butadiene Polymerization Workers”, American Journal of Epidemiology, Volume 136, issue 7, pp. 843-854.

[5] Norppa, H and Sorsa, M; “Genetic toxicity of 1,3-butadiene and styrene”, IARC Scientific Publications, 1993 (127): 185-193.

[6] http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=14

[7] US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Chloroethane”, December 1998 http://www.atsdr.cdc.gov/toxprofiles/tp105.pdf

[8] http://nj.gov/health/eoh/rtkweb/documents/fs/1258.pdf; and http://nj.gov/health/eoh/rtkweb/documents/fs/1268.pdf

[9] http://www.epa.gov/ttnatw01/hlthef/naphthal.html

[10]Mattina, MaryJane et al; “Examination of Crumb Rubber Produced From Recycled Tires”, The Connecticut Agricultural Experiment Station, 2007, http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/examinationofcrumbrubberac005.pdf

[11] http://www.atsdr.cdc.gov/csem/csem.asp?csem=13

[12] US Environmental Protection Agency (EPA). Polycyclic Aromatic Hydrocarbons (PAHs)-Fact Sheet. January 2008. http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/pahs.pdf

[13] Llompart M, Sanchez-Prado L, Lamas JP, Garcia-Jares C, et al. “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”. Chemosphere. 2012; Article In Press. http://dx.doi.org/10.1016/j.chemosphere.2012.07.053

[14]Ibid.

[15] Ibid.

[16] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track PrRememoducts. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

[1] http://www.epa.gov/osw/conserve/materials/tires/basic.htm

[2] http://www.nbcnews.com/news/investigations/how-safe-artificial-turf-your-child-plays-n220166

[3] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

 





Do we exaggerate the dangers of conventional fabrics?

18 06 2014

We received a comment on one of our blog posts recently in which the reader chastised us for exaggerating issues which they believe are disproportionate to the facts. In their words: For instance formaldehyde… is a volatile chemical…no doubt it is used in the textile industry a great deal…but looking for this chemical in end products is an example chasing a ghost…. It has to be put in perspective. I do not know of any citation that a human developed cancer because they wore durable press finished clothing.

Please follow along as I itemize the reasons that we don’t feel the issues are exaggerated.

Textiles are full of chemicals. The chemicals found in fabrics have been deemed to be, even by conservative organizations such as the Swedish government, simply doing us no good – and even harming us in ways ranging from subtle to profound. But fabrics are just one of the many stressors that people face during the day: these stressors (i.e., chemicals of concern) are in our food, our cosmetics, our electronics, our cleaning products, in dust in our houses and pollution from automobile exhaust in our air.  This is not even close to an exhaustive list of the products containing the kinds of chemical stressors we face each day. And this is a new thing – it wasn’t until around the middle of the last century that these synthetic chemicals became so ubiquitous. Remember “better living through chemistry”? And if you don’t know the history of such events as Minamata, or about places like Dzershinsk, Russia or Hazaribagh, Bangladesh, then do some homework to get up to speed.

Add to that the fact that new research is being done which is profoundly changing our old belief systems. For example, we used to think that a little dose of a poison would do a little bit of harm, and a big dose would do a lot of harm (i.e., “the dose makes the poison”) – because water can kill you just as surely as arsenic, given sufficient quantity.   The new paradigm shows that exposure to even tiny amounts of chemicals (in the parts-per-trillion range) can have significant impacts on our health – in fact some chemcials impact the body profoundly in the parts per trillion range, but do little harm at much greater dosages. The old belief system did not address how chemicals can change the subtle organization of the brain. Now, according to Dr. Laura Vandenberg of the Tufts University Center for Regenerative and Developmental Biology [1] “we found chemicals that are working at that really low level, which can take a brain that’s in a girl animal and make it look like a brain from a boy animal, so, really subtle changes that have really important effects.”

In making a risk assessment of any chemical, we now also know that timing and order of exposure is critical – exposures can happen all at once, or one after the other, and that can make a world of difference.   And we also know another thing: mixtures of chemicals can make each other more toxic. For example: a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

And finally, the new science called “epigenetics” is finding that pollutants and chemicals might be altering the 20,000-25,000 genes we’re born with—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations. So exposure to chemicals can alter genetic expression, not only in your children, but in your children’s children – and their children too. Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical. [2]  Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[3]

So that’s the thing: we’re exposed to chemicals all day, every day – heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, Prozac (and a host of other pharmaceuticals) and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’ These exposures all add up – and the body can flush out some of these chemicals, while it cannot excrete others.  Chlorinated pesticides, such as DDT, for example, can remain in the body for 50 years.   Scientists call the chemicals in our body our “body burden”.  Everyone alive carries within their body at least 700 contaminants.[4]

This cumulative exposure could mean that at some point your body reaches a tipping point and, like falling dominoes, the stage is set for something disastrous happening to your health.

I am especially concerned because these manufactured chemicals – not just the elements which have been with us forever but those synthetic combinations  – have not been tested, so we don’t really have a clue what they’re doing to us.

But back to our main argument:

The generations born from 1970 on are the first to be raised in a truly toxified world. Probably one in three of the children you know suffers from a chronic illness – based on the finding of many studies on children’s health issues.[5]   It could be cancer, or birth defects – perhaps asthma, or a problem that affects the child’s mind and behavior, such as a learning disorder, ADHD or autism or even a peanut allergy. We do know, for example:

Childhood cancer, once a medical rarity, is the second leading cause of death (following accidents) in children aged 5 to 14 years.[6]

According to the American Academy of Allergy Asthma & Immunology, for the period 2008-2010, asthma prevalence was higher among children than adults – and asthma rates for both continue to grow. [7]

Autism rates without a doubt have increased at least 200 percent.

Miscarriages and premature births are also on the rise,

while the ratio of male to female babies dwindles and

teenage girls face endometriosis.

Dr. Warren Porter delivered a talk at the 25th National Pesticide Forum in 2007, in which he explained that a lawn chemical used across the country, 2,4-D, mecoprop and dicambra was tested to see if it would change or alter the capacity of mice to keep fetuses in utero. The test found that the lowest dosage of this chemical had the greatest effect – a common endocrine response.[8]

Illness does not necessarily show up in childhood. Environmental exposures, from conception to early life, can set a person’s  cellular code for life and can cause disease at any time, through old age. And the new science of epigenetics is showing us that these exposures can impact not only us, but our children, grandchildren and great-grandchildren.

Let’s look at the formaldehyde which our reader mentioned. Formaldehyde is one of many chemical stressors – and it is used in fabrics as finishes to prevent stains and wrinkles (for example, most cotton/poly sheet sets found in the US have a formaldehyde finish), but it’s also used as a binding agent in printing inks, for the hardening of casein fibers, as a wool protection , and for its anti-mold properties.

Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-linking with proteins, DNA and unsaturated fatty acids. These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption.[9]

Formaldehyde in clothing is not regulated in the United States, but 13 countries do have laws that regulate the amount of formaldehyde allowed in clothing.   Greenpeace tested a series of Disney clothing articles and found from 23ppm – 1,100 ppm of formaldehyde in 8 of the 16 products tested.  In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras. Then in January 2009, new blue uniforms issued to Transportation Security Administration officers, gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers – because of the formaldehyde in the uniforms.[10]

Studies have been done which link formaldehyde in indoor air as a risk factor for childhood asthma[11]. Rates of formaldehyde in indoor air have grown from 0.014 ppm in 1980 to 0.2 ppm in 2010 – and these rates are increasing.

Studies have also been found which link formaldehyde to a variety of ailments in textile workers, specifically: Besides being a well known irritant of the eyes, nose and upper and lower airways, as well as being a cause of occupational asthma[12], a number of studies have linked formaldehyde exposure with the development of lung and nasopharyngeal cancers[13] and with myeloid leukemia. [14]   A cohort study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[15] By the way, OSHA has established a Federal standard what restricts the amount of formaldehyde that a worker can be exposed to over an 8 hour workday – currently that’s 0.75 ppm.

That means if you have 0.2 ppm of formaldehyde in your indoor air, and your baby is wearing the Disney Finding Nemo t-shirt which registered as 1,100 ppm – what do you think the formaldehyde is doing to your baby?

So our argument is not that any one piece of clothing can necessarily do irreparable harm to somebody – but if that piece of clothing contains a chemical (pick any one of a number of chemicals) that is part of what scientists call our “body burden”, then it just might be the thing that pushes you over the edge. And if you can find products that do not contain the chemicals of concern, why would you not use them, given the risk of not doing so?

 

[1] Living on Earth, March 16, 2012, http://www.loe.org/shows/segments.html?programID=12-P13-00011&segmentID=1

[2] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[3]http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[4] http://www.chemicalbodyburden.org/whatisbb.htm

[5] Theofanidis, D, MSc., “Chronic Illness in Childhood: Psychosocial and Nursing Support for the Family”, Health Science Journal, http://www.hsj.gr/volume1/issue2/issue02_rev01.pdf

[6] Ward, Elizabeth, et al; Childhood and adolescent cancer statistics, 2014, CA: Cancer Journal for Clinicians, Vol 64, issue 2, pp. 83-103, March/April 2014

[7] http://www.aaaai.org/about-the-aaaai/newsroom/asthma-statistics.aspx

[8] Porter, Warren, PhD; “Facing Scientific Realities: Debunking the “Dose Makes the Poison” Myth”, National Pesticide Forum, Chicago, 2007; http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2007-08/dose-poison-debunk.pdf

[9] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[10] http://www.examiner.com/article/new-tsa-uniforms-making-workers-sick-afge-demands-replacement

[11] Rumchev, K.B., et al, “Domestic exposure to formaldehyde significantly increases the risk of asthma in young children”, Microsoft Academic Search 2002

[12] Thrasher JD etal., “Immune activation and autoantibodies in humans with long-term inhalation exposure to formaldehyde,” Archive Env. Health, 45: 217-223, 1990.

[13] Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. American Journal of Epidemiology 2004; 159(12):1117–1130

 

[14] National Cancer Institute, “Formaldehyde and Cancer Risk”, http://www.cancer.gov/cancertopics/factsheet/Risk/formaldehyde

[15] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental 
Medicine, 2004 March, 61(3): 193-200.

 

 

 





Can your fabric choices make you fat?

31 01 2013

We have all heard the stories of our “growing obesity epidemic” – especially in western nations. It’s an important national problem, and is partly responsible for our soaring health care costs. We often point to obesity as being caused by overeating, fast food, and/or sedentary lifestyles for those having a genetic predisposition to the disease. But the rates of obesity have escalated in such an exponential manner that the commonly held causes of obesity – overeating and inactivity – cannot explain the current obesity epidemic. A growing number of studies have suggested a new culprit: environmental rather than genetic causes.

Our world is different than it was 100 years ago. We have developed many synthetic organic and inorganic chemicals to make our lives easier – and used them in a fabulously wide range of products. In fact, you could say, as some do, that we’re living in a toxic soup of these chemicals. And those chemicals are changing us. Some of the chemicals changing us are called “endocrine disruptors” (which we discussed in last week’s post) since they interfere with the body’s hormone balance, which confuses the body. Initially, they caused concern because of their links to cancers and the malformation of sex organs. Those concerns continue, but the newest area of research is the impact that they have on fat storage.

It has been found that the developing organism (us!) is extremely sensitive to chemicals with estrogenic or endocrine disrupting activity and that exposure to these chemicals during critical stages of development may have permanent long-lasting consequences, some of which may not be expressed or detected until later in life.(1)

But back to obesity, which is what we’re concentrating on this week. (I know it’s difficult to stay on task, because these chemicals are synergistic, have multi-dimensional effects and often degrade into different substances altogether).

Nicholas Kristof, writing in the New York Times last weekend, talked about the results of a study which I found disturbing. Look at these two mice:

The only difference between these mice: The one at the top was exposed at birth to a tiny amount of an endocrine-disrupting chemical.  New York Times

The only difference between these mice: The one at the top was exposed at birth to a tiny amount of an endocrine-disrupting chemical. New York Times

According to Kristof, “they’re genetically the same, raised in the same lab and given the same food and chance to exercise. Yet the bottom one is svelte, while the other looks like, well, an American. The only difference is that the top one was exposed at birth to just one part per billion of an endocrine-disrupting chemical (2) . The brief exposure programmed the mouse to put on fat, and although there were no significant differences in caloric intake or expenditure, it continued to put on flab long after the chemical was gone.”

Bruce Blumberg, a developmental biologist at the University of California, Irvine, coined the term “obesogen” in a 2006 journal article to refer to chemicals that cause animals to store fat. Initially, this concept was highly controversial among obesity experts, but a growing number of peer-reviewed studies have confirmed his finding and identified some 20 substances as obesogens.

Manufacturers have already exploited obesogens by using them to fatten livestock, and by formulating pharmaceuticals to induce weight gain in grossly underweight patients. A study by Dr. Baillie-Hamilton presents the hypothesis that the current level of human exposure to these chemicals may have damaged many of the body’s natural weight-control mechanisms and that these effects, together with a wide range of additional, possibly synergistic, factors may play a significant role in the worldwide obesity epidemic.(3) And these changes continue generation after generation. It’s clear that the most important time for exposure is in utero and during childhood.(4)

The magazine Scientific American recently asked whether doctors should do more to warn pregnant women about certain chemicals.(5)  It cited a survey indicating that only 19% of doctors cautioned pregnant women about pesticides, only 8% about BPA (an endocrine disruptor in some plastics and receipts), and only 5% about phthalates (endocrine disruptors found in cosmetics and shampoos). Dr. Blumberg, the pioneer of the field, says he strongly recommends that people — especially children and women who are pregnant or may become pregnant — try to eat organic foods to reduce exposure to endocrine disruptors, and try to avoid using plastics to store food or water. “My daughter uses a stainless steel water bottle, and so do I,” he said.

Endocrine disruptors are found in fabrics – Greenpeace did a study of 141 clothing items purchased in 29 different countries from authorized retailers. Endocrine disruptors were found in 89 of the 141 articles tested. According to the report: “Overall, a variety of hazardous chemicals were detected within the broad range of high street fashion textile products analysed. These covered a diverse range of brands and countries of manufacture. These results indicate the ongoing – and in some cases widespread – use of hazardous chemicals in the manufacture of textile products openly marketed to consumers.”

It’s not clear whether most obesogens will do much to make an ordinary adult, even a pregnant woman, fatter (although one has been shown to do so). But what about our children, and their children? How does fabric processing impact my weight, or my child’s weight? Should I avoid certain processing chemicals in my own home?

The government made a tremendous impact on public health when it outlawed lead in gasoline. Now we need to make those same hard choices about doing without some of the things we’ve learned to like but which we know to be impacting our health. Support the Safe Chemicals Act and spread the word. This is too important to ignore.

[1] Newbold, R. R., Padilla-Banks, E., Snyder, R. J. and Jefferson, W. N. (2005), Developmental exposure to estrogenic compounds and obesity. Birth Defects Research Part A: Clinical and Molecular Teratology, 73: 478–480. doi: 10.1002/bdra.20147

[2] Newbold, R. R., Padilla-Banks, E., Snyder, R. J. and Jefferson, W. N. (2005), Developmental exposure to estrogenic compounds and obesity. Birth Defects Research Part A: Clinical and Molecular Teratology, 73: 478–480. doi: 10.1002/bdra.20147

[3] Baillie-Hamilton, PF, “Chemical toxins: a hypothesis to explain the global obesity epidemic”, Journal of Alternative and Complementary Medicine, April 2002,

[4] Blumberg, Bruce et al, “Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Obesogen Tributyltin in Mice”, Environmental Health Perspectives, January 15, 2013.

[5] Kay, Jane, “Should Doctors Warn Pregnant Women about Environmental Risks?”, Scientific American, December 10, 2012.





Textile chemicals – beginning with the one used the most

16 01 2013

saltLet’s begin our review of chemicals used in textile processing with the one chemical that is used most often and in far greater quantity than any other: salt. That’s right. Common table salt, the kind you probably use every day. But in the quantities used by this industry it becomes a monster – we’ll get to that in a minute.

Salt is used in the dye process. The way the dyestuff bonds to the fibers is very important – and the most permanent, colorfast dyes are the ones that are most tightly attached to the fiber molecules (called reactive dyes). Here’s how salt comes into the picture:

When fabrics made of cellulosic (i.e., cotton, linen, hemp or viscose) are dyed, they’re immersed in water which contains dyes which have been dissolved in the water. The surface of the fabric gets covered in negative ionic charges. The reactive dyes used most often to dye cellulosic fabrics also develop a negative charge, so the fibers actually repel the dye – like two magnets repelling each other. If we try to dye a cellulosic fabric without using salt, the dye molecules just roll off the surface of the fibers and the fabric does not show much color change. So these reactive dyes need the addition of salt to “push” the dyes out of solution and into the cloth by neutralizing the negative charge.

The salt acts like a glue to hold the dye molecules in place, and with the addition of alkali, a certain percentage of the dyestuff (called the “fixation rate”) will permanently grab hold of the fiber and become a part of the fiber molecule rather than remaining as an independent chemical entity. For conventional reactive dyes, the fixation rate is often less than 80%, resulting in waste of dyestuff, and also the need to remove that 20% (which is not fixed) from the fabric.(1) But this is incredibly difficult when the “unreacted” dyes are still “glued” onto the fabric by salt. So vast amounts of water are required to simply dilute the salt concentrations to a point where it no longer acts as glue.

That means the textile effluent contains both dyestuff and salt (lots of salt!) The concentrations of salt in the dye bath can be as high as 100 gm per liter. In the worst cases, equal weights of salt to fabric is used to apply reactive dye (i.e., if dyeing 10 lbs of fabric, you need 10 lbs of salt). Think of the billions of yards of fabric that’s produced each year: In Europe alone, 1 million tons of salt is discharged into waterways each year.(2) In areas where salt is discharged into the ecosystem, it takes a long, long time for affected areas to recover, especially in areas of sparse rainfall – such as Tirupur, India.

Tirupur is one of the world’s centers for clothing production , home of 765 dyeing and bleaching industries. These dyehouses had been dumping untreated effluent into the Noyyal River for years, rendering the water unsuitable or irrigation – or drinking. In 2005, the government shut down 571 dyehouses because of the effluent being discharged into the Noyyal. The mill owners said they simply couldn’t afford to put pollution measures into place. The industry is too important to India to keep the mills closed for long, so the government banned the discharge of salt and asked for an advance from the mills before allowing them to re-open. But … on February 4, 2011, the Madras high court ordered 700 dye plants to be shut down because of the damage the effluent was doing to the local environment. Sigh. (Read more about Tirupur here.)

Unfortunately, the salt in textile effluent is not made harmless by treatment plants and can pass straight through to our rivers even if it has been treated. The salt expelled into waterways (untreated) coupled with salt from roadway de-icing has led to the increase in salt in our waters in the United States – salt levels in Lake George have nearly tripled since 1980,(3) which mirrors many other parts of the U.S. Highest levels occur during the annual ice-out and snowmelt where high salt concentrations in streams flowing into Lake George have been linked to die offs of fish, and is known as “spring shock”. A study in Toronto found that half the wells tested exceeded the limit of 20mg of salt per liter of water, 20% exceeded 100mg/liter and 6% exceeded 250mg/liter. (4) It becomes a public health concern for people who drink this water, because it can exacerbate high blood pressure and hypertension in humans. This increase in our drinking water can also cause problems with water balance in the human body. Salt in water is also responsible for the release of mercury into the water system.

Recycling the salt used during the dye process is possible, and this has been used by many of the dyers in Tirupur, and elsewhere, who operate zero discharge facilities. The effluent is cleaned and then the salt is recovered using an energy intensive process to evaporate the water and leave the solid, re-useable salt. This sounds like a good idea – it reduces the pollution levels – but the carbon footprint goes through the roof, so salt recovery isn’t necessarily the best option. In fact, in some areas of the world where water is plentiful and the salt can be diluted in the rivers adequately, it may be better to simply discharge salt than to recover it.

There are some new “low salt” dyes that require only half the amount of “glue”: Ciba Specialty Chemicals, a Swiss manufacturer of textile dyes (now part of BASF) produces a dyestuff which requires less salt. As the company brochure puts it: “Textile companies using the new dyes are able to reduce their costs for salt by up to 2 percent of revenues, a significant drop in an industry with razor-thin profit margins” but these dyes are not widely used because they’re expensive – and manufacturers are following our lead in demanding ever cheaper costs. There are also new low-liquor-ratio (LLR) jet dyeing machines – but that doesn’t mean zero salt, so there is still salt infused effluent which must be treated. And these new ultra low liquor ratio machines are very expensive.

The best option is to avoid salt altogether. Though the salt itself is not expensive, using less salt delivers substantial benefits to the mill because the fabric requires less rinsing in hot water (and hence reductions in energy and water) as well as cost savings of up to 10% of the total process costs.(5) So what about using no salt at all?

There are two ways to dye fabrics without salt: “continuous dyeing” and “cold pad batch dyeing”. Continuous dyeing means that the dye is applied with alkali to activate the dye fixation; the fabric is then steamed for a few minutes to completely fix the dyestuff. Cold pad batch dyeing applies the dyestuff with alkali and the fabric is simply left at room temperature for 24 hours to fix the dye.

Both of these methods don’t use salt, so the unfixed dye chemicals are easier to remove because there is no salt acting as the “glue” – and therefore less water is used. An additional benefit is having a lower salt content in the effluent. So why don’t companies use this method? Continuous dyeing requires investment in big, expensive machines that only make environmental sense if they can be filled with large orders – because they use lots of energy even during downtime.

Cold pad batch machines are relatively inexpensive to buy and run, they are highly productive and can be used for a wide range of fabrics. Yet only 3% of knitted cotton fabric is dyed in Asia using cold pad batch machines.
Why on earth don’t these mills use cold pad batch dyeing? I would love to hear from any mill owners who might let us know more about the economics of dyeing operations.

(1) http://lifestylemonitor.cottoninc.com/Supply-Chain-Insights/Sustainable-Dyeing-Solutions-02-10/
(2) Dyeing for a change: Current Conventions and New Futures in the Textile Color Industry (2006, July) http://www.betterthinking.co.uk
(3) http://www.fundforlakegeorge.org/assets/pdf_files/Fact%20Sheet%2011%20Salt.pdf
(4) http://www.digitaltermpapers.com/a2206.htm
(5) “A Practical Guide For Responsible Sourcing”, The National Resources Defense Council (NRDC), February 2010.





How to buy a “quality” sofa – soy foam

19 09 2012

In my last post I explained that polyurethane foam (polyfoam) has a plethora of problems associated with it:

  • The chemicals used to manufacture the foam have been formally identified as carcinogens; and the flame retardant chemicals added to almost all foams increase the chemical toxicity.  These chemicals evaporate (VOCs)  and pollute our indoor air and dust;
  • It does not decompose in the landfill; the recycling claim only perpetuates the continued use of hazardous chemicals;
  • It is dependent on a non-renewable resource: crude oil.

When untreated foam (aka, “solid gasoline”)  is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly is the toxic gas produced by burning polyurethane foam – hydrogen cyanide gas.  Hydrogen cyanide itself is so toxic that it was used by the Aum Shinrikyo terrorists who attacked Tokyo’s subway system in 1995, and in Nazi death camps during World War II. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Polyfoam is so flammable  – burning  so hot and emitting such toxic fumes while burning –  that even the National Association of State Fire Marshals (NASFM) recommends that it be placed in Class 9 (an unusual but clearly hazardous material) because they are concerned about the safety of firemen and other first responders.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.

But today – not long after jumping on the bandwagon –  we have concerns about polyurethane:  in addition to all the problems mentioned above there is concern about its carbon footprint. So now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock, CEO of Upholstery Arts,  says  – who wouldn’t sleep sounder with such promising news?   I have again leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So-called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable resource
  2. it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. As Len Laycock asks, if you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations (theoretical because 40% soy has not resulted in useable foams). This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’ as claimed.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly“, Len Laycock presents another sinister side of  soy based foam marketing:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale. As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”