Why do we offer safe fabrics?

3 10 2016

Why do we say we want to change the textile industry?  Why do we say we want to produce fabrics in ways that are non-toxic, ethical and sustainable?  What could be so bad about the fabrics we live with?

The textile industry is enormous, and because of its size its impacts are profound.  It uses a lot of three ingredients:

  • Water
  • Chemicals
  • Energy

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, corporate interests are controlling water, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.(1) Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN. Our global water consumption rose six fold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, and bleaching use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used before moving on to the next step.  The water is usually returned to our ecosystem without treatment – meaning that the wastewater, which is returned to our streams, contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.  The textile industry is the #1 industrial polluter of fresh water on the planet – the 9 trillion liters of water used annually in textile processing is usually expelled into our rivers without treatment and is a major source of groundwater pollution.  Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.  Just Google “Greenpeace and the textile industry” to find out what Greenpeace is doing to make people aware of this issue.

Over 8,000 chemicals are used in textile processing, some so hazardous that OSHA requires textile scraps be handled as hazardous waste.   The final product is, by weight, about 23% synthetic chemicals – often the same chemicals that are outlawed in other products.  The following is by no means an all-inclusive list of these chemicals:

  • Alkylphenolethoxylates (APEOs), which are endocrine disruptors;
    • o Endocrine disruptors are a wide range of chemicals which interfere with the body’s endocrine system to produce adverse developmental, reproductive, neurological and immune effects in both humans and wildlife; exposure us suspected to be associated with altered reproductive function in both males and females, increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children.(2)
  • Pentachlorophenols (PCP)
    • o Long-term exposure to low levels can cause damage to the liver, kidneys, blood, and nervous system. Studies in animals also suggest that the endocrine system and immune system can also be damaged following long-term exposure to low levels of pentachlorophenol. All of these effects get worse as the level of exposure increases.(3)
  • Toluene and other aromatic amines
    • carcinogens (4)
  • Dichloromethane (DCM)
    • Exposure leads to decreased motor activity, impaired memory and other neurobehavioral deficits; brain and liver cancer.(5)
  • Formaldehyde
    • The National Toxicology Program named formaldehyde as a known human carcinogen in its 12th Report on Carcinogens.(6)
  • Phthalates –
    • Associated with a range of effects from liver and kidney diseases to developmental and reproductive effects, reduced fetal weight.(7)
  • Polybrominated diphenyl ethers (PBDE’s)
    • A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, decreased sperm count, fetal malformations and, possibly, cancer.(8)
  • Perfluorooctane sulfonates (PFOS)
    • To date, associations have been found between PFOS or PFOA levels in the general population and reduced female fertility and sperm quality, reduced birth weight, attention deficit hyperactivity disorder (ADHD), increased total and non-HDL (bad) cholesterol levels, and changes in thyroid hormone levels.(9)
  • Heavy metals – cadmium, lead, antimony, mercury among others
    • Lead is a neurotoxin (affects the brain and cognitive development) and affects the reproductive system; mercury is a neurotoxin and possibly carcinogenic; cadmium damages the kidneys, bones and the International Agency for Research on Cancer has classified it as a human carcinogen; exposure to antimony can cause reproductive disorders and chromosome damage.

The textile industry uses huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.  For example, steam used in the textile manufacturing process is often generated in inefficient and polluting coal-fired boilers.  Based on estimated annual global textile production of 60 billion kilograms (KG) of fabric, the estimated energy needed to produce that fabric boggles the mind:  1,074 billion KWh of electricity (or 132 million metric tons of coal).  It takes 3886 MJ of energy to produce 25 yards of nylon fabric (about the amount needed to cover one sofa).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(10)

Today’s textile industry is also one of the largest sources of greenhouse gasses on the planet: in the USA alone, it accounts for 5% of the country’s CO2 production annually; China’s textile sector alone would rank as the 24th– largest country in the world.(11)

We succeeded in producing the world’s first collection of organic fabrics that were gorgeous and green – and safe.    In 2007, those fabrics won “Best Merchandise” at Decorex (www.decorex.com).    In 2008, our collection was named one of the Top Green Products of 2008 by BuiltGreen/Environmental Building News. As BuiltGreen/EBN takes no advertising dollars, their extensive research is prized by the green building industry (www.buildinggreen.com).

We are a tiny company with an oversized mission.  We are challenged to be a triple bottom line company, and we want to make an outsized difference through education for change  – so that a sufficiently large number of consumers will know which questions to ask that will force change in an industry.  We believe that a sufficiently large number of people will respond to our message to force profound positive change: by demanding safe fabric, produced safely, our environment and our health will be improved.

The issues that distinguish us from other fabric distributors, in addition to offering fabrics whose green pedigree is second to none:

    1. We manage each step of the production process from fiber to finished fabric, unlike other companies, which buy mill product and choose only the color palette of the production run.    Those production process steps include fiber preparation, spinning, weaving, dyeing, printing and finishing; with many sub-steps such as sizing and de-sizing, bleaching, slashing, etc.
    2. We educate consumers and designers on the issues that are important to them – and to all of us. Our blog on the topic of sustainability in the textile industry has grown from about 2 hits a day to 2,000, and is our largest source of new customers.
    3. We are completely transparent in all aspects of our production and products.    We want our brand to be known not only as the “the greenest”, but for honesty and authenticity in all claims.  This alignment between our values, our claims and our products fuels our passion for the business.
    4. We are the only collection we know of which sells only “safe” fabrics.

We serve multiple communities, but we see ourselves as being especially important to two communities:  those who work to produce our fabric and those who use it, especially children and their parents.

    • By insisting on the use of safe chemicals exclusively, we improve the working conditions for textile workers.  And by insisting on water treatment, we mitigate the effects of even benign chemicals on the environment – and the workers’ homes and agricultural land.  Even salt, used in copious amounts in textile processing, will ruin farmland and destroy local flora and fauna if not neutralized before being returned to the local waters.
    • For those who use our fabric, chemicals retained in the finished fibers do not add to our “body burden “, which is especially important for children, part of our second special community.  A finished fabric is, by weight, approximately 23% synthetic chemicals. Those chemicals are not benign.  Textile processing routinely uses chemicals with known toxic profiles such as lead, mercury, formaldehyde, arsenic and benzene – and many other chemicals, many of which have never been tested for safety.

Another thing we’d like you to know about this business is the increasing number of people who contact us who have been harmed by fabric (of all things!) because we represent what they believe is an honest attempt at throwing light on the subject of fabric processing.   Many are individuals who suffer from what is now being called “Idiopathic Environmental Intolerance” or IEI (formerly called Multiple Chemical Sensitivity), who are looking for safe fabrics.  We’ve also been contacted on behalf of groups, for example,   flight attendants, who were given new uniforms in 2011, which caused allergic reactions in a large number of union members.

These incidences of fabric-induced reactions are on the rise.   As we become more aware of the factors that influence our health, such as we’re seeing currently with increased awareness of the effects of interior air quality, designers and others will begin to see their way to specifying “safe” fabrics  just as their code of ethics demands.(12)  We feel certain that the trajectory for such an important consumer product as fabric, which surrounds us most of every hour of the day, will mimic that of organic food.

We say our fabrics are luxurious – because luxury has become more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends, the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.  In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.


(1) Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

(2)World Health Organization, http://www.who.int/ceh/risks/cehemerging2/en/

(3)Agency for Toxic Substances & Disease Registry 2001, https://www.atsdr.cdc.gov/phs/phs.asp?id=400&tid=70

(4)Centers for Disease Control and Prevention, Publication # 90-101; https://www.cdc.gov/niosh/docs/90-101/

(5)Cooper GS, Scott CS, Bale AS. 2011. Insights from epidemiology into dichloromethane and cancer risk. Int J Environ Res Public Health 8:3380–3398.

(6)National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.

(7)Hauser, R and Calafat, AM, “Phthalates and Human Health”, Occup Environ Med 2005;62:806–818. doi: 10.1136/oem.2004.017590

(8)Environmental Working Group, http://www.ewg.org/research/mothers-milk/health-risks-pbdes

(9)School of Environmental Health, University of British Columbia; http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf

(10) Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

(11)Based on China carbon emissions reporting for 2010 from Energy Information Administration (EIA); see U.S. Department of Energy, Carbon Emissions from Energy Generation by Country, http://www.eia.gov/ cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed September 28, 2012). Estimate for China textile sector based on industrial emissions at 74% of total emissions, and textile industry
as 4.3% of total industrial emissions; see EIA, International Energy Outlook 2011, U.S. Department of Energy.

(12)Nussbaumer, L.L, “Multiple Chemical Sensitivity: The Controversy and Relation to Interior Design”, Abstract, South Dakota State University

Knowledge is power

13 01 2014

Happy 2014 everybody!

This week’s blog was written by Alice Shabecoff, co-author with her husband Philip of Poisoned Profits: The Toxic Assault on our ChildrenPoisoned ProfitsI think she raises some issues that we all should be thinking about – and I agree with her statement that this isn’t all doom and gloom, because once we have knowledge of what some chemicals can do to us, we have the power to change it.  See what you think:

As we watched each of our five grandchildren and their friends enter this world and begin their life’s journey, it became more and more clear that something is amiss with this generation. How are your children and your friends’ children doing?

Most likely, one in three of the children you know in this generation suffers from a chronic illness. Perhaps it’s cancer, or birth defects, perhaps asthma, or a problem that affects the child’s mind and behavior, such as Downs Syndrome, learning disorders, ADHD or autism. Though one in three may sound exaggerated and unbelievable, the figures are there amidst various government files.

This generation is different.

  • Childhood cancer, once a medical rarity, has grown 67 percent since 1950.
  • Asthma has increased 140 percent in the last twenty years
  •  autism rates without a doubt have increased at least 200 percent.
  • Miscarriages and premature births are also on the rise,
  • while the ratio of male babies dwindles and
  • teenage girls face endometriosis.

The generations born from 1970 on are the first to be raised in a truly toxified world. Even before conception and on into adulthood, the assault is everywhere: heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, prozac and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’

What’s wrong with rinsing a pacifier in soapy water?

Despite naysayers (who pays them to say nay?–that’s a whole story in itself), it’s clear there is both an association and a causative connection between the vast explosion of poisons in our everyday lives and our childrens’ “issues.”

Over 80,000 industrial chemicals (tested only by the manufacturer) are in commerce in this country, produced or imported at 15 trillion pounds a year. Pesticide use has leaped from the troubling 400 million pounds Rachel Carson wrote about in the 1960s to the mind-boggling 4.4 billion pounds in use today. Nuclear power plants, aging and under-maintained, increasingly leak wastes, often without notifying their community.

What could be more elemental than our desire to protect our children? Children and fetuses, because of their undeveloped defense systems, are ten to sixty-five times more susceptible to specific toxics than adults. These toxics diminish the capacities of our children…the future of our families, our communities, our nation.

Illness does not necessarily show up in childhood. Environmental exposures, from conception to early life, can set a person´s cellular code for life and can cause disease at any time, through old age. This accounts for the rise in Parkinson´s and Alzheimer´s diseases, prostate and breast cancer.

A message of hope and optimism
Yet this is not the dispiriting ‘Bad News’ it might seem. It is, actually, a message of hope and optimism. We are fearful only when we are ignorant and powerless. Now that we know what is happening, we can determine not to let it happen further.

These poisons are manmade; manufacturers can take them out of our children´s lives and make profits from safe products. ‘Green chemistry’ can replace toxic molecules with harmless ones. We can connect global climate change actions to environmental health strategies. If we replace coal-fired power, in the process we reduce not only carbon but also emissions of the tons of lead, mercury, hydrochloric acid, chromium, arsenic, sulfur and nitrogen oxides that cause autism, Alzheimer’s and other public health menaces.

In a riff on Pogo, let’s say, “We have met the heroes and it is us.” We cannot bury our heads and hope it will all go away. We cannot leave the job to someone else. Some may feel the problem is so massive, it’s best to pretend it doesn’t exist. But it isn’t more massive than we allow it to be. It’s totally within our reach.

We can make each other smarter and stronger. It is in our power to learn about what harms our children and to share our knowledge. It is in our power as a community of citizens and parents to demand action against the current harmful policies and practices and against the indiscriminate use of processes and practices that destroy and degrade all life on our planet.

Do we need a national plastics control law?

20 10 2010

John Wargo wears at least three hats:  he is a professor of environmental policy, risk analysis, and political science at the Yale School of Forestry & Environmental Studies, he chairs the Environmental Studies Major at Yale College, and is an advisor to the U.S. Centers for Disease Control and Prevention.  He published this opinion on plastics in the United States last year – and I couldn’t have said it better myself:

Since 1950, plastics have quickly and quietly entered the lives and bodies of most people and ecosystems on the planet. In the United States alone, more than 100 billion pounds of resins are formed each year into food and beverage packaging, electronics, building products, furnishings, vehicles, toys, and medical devices. In 2007, the average American purchased more than 220 pounds of plastic, creating nearly $400 billion in sales.

It is now impossible to avoid exposure to plastics. They surround and pervade our homes, bodies, foods, and water supplies, from the plastic diapers and polyester pajamas worn by our children as well as our own sheets, clothing and upholstery,  to the cars we drive and the frying pans in which we cook our food.

The ubiquitous nature of plastics is a significant factor in an unexpected side effect of 20th century prosperity — a change in the chemistry of the human body. Today, most individuals carry in their bodies a mixture of metals, pesticides, solvents, fire retardants, waterproofing agents, and by-products of fuel combustion, according to studies of human tissues conducted across the U.S. by the Centers for Disease Control and Prevention. Children often carry higher concentrations than adults, with the amounts also varying according to gender and ethnicity. Many of these substances are recognized by the governments of the United States and the European Union to be carcinogens, neurotoxins, reproductive and developmental toxins, or endocrine disruptors that mimic or block human hormones.

Significantly, these chemicals were once thought to be safe at doses now known to be hazardous; as with other substances, the perception of danger grew as governments tested chemicals more thoroughly. Such is the case with Bisphenol-A (BPA), the primary component of hard and clear polycarbonate plastics, which people are exposed to daily through water bottles, baby bottles, and the linings of canned foods.

Given the proven health threat posed by some plastics, the scatter shot and weak regulation of the plastics industry, and the enormous environmental costs of plastics — the plastics industry accounts for 5 percent of the nation’s consumption of petroleum and natural gas, and more than 1 trillion pounds of plastic wastes now sit in U.S. garbage dumps — the time has come to pass a comprehensive national plastics control law.

One might assume the United States already has such a law. Indeed, Congress adopted the Toxic Substances Control Act (TSCA) in 1976 intending to manage chemicals such as those polymers used to form plastics. Yet TSCA was and is fundamentally flawed for several reasons that have long been obvious. Nearly 80,000 chemicals are now traded in global markets, and Congress exempted nearly 60,000 of them from TSCA testing requirements. Among 20,000 new compounds introduced since the law’s passage, the U.S. Environmental Protection Agency (EPA) has issued permits for all except five, but has required intensive reviews for only 200. This means that nearly all chemicals in commerce have been poorly tested to determine their environmental behavior or effects on human health. The statute’s ineffectiveness has been recognized for decades, yet Congress, the EPA, and manufacturers all share blame for the failure to do anything about it.

In contrast, the European Union in 2007 adopted a new directive known as “REACH” that requires the testing of both older and newly introduced chemicals. Importantly the new regulations create a burden on manufacturers to prove safety; under TSCA the burden rests on EPA to prove danger, and the agency has never taken up the challenge. Unless the U.S. chooses to adopt similar restrictions, U.S. chemical manufacturers will face barriers to their untested exports intended for European markets. Thus the chemical industry itself recognizes the need to harmonize U.S. and EU chemical safety law.

The most promising proposal for reform in the U.S. is the “Kid-Safe Chemical Act,” a bill first introduced in 2008 that would require industry to show that chemicals are safe for children before they are added to consumer products. Such a law is needed because there is little doubt that the growing burden of synthetic chemicals has been accompanied by an increase in the prevalence of many illnesses during the past half-century. These include respiratory diseases (such as childhood asthma), neurological impairments, declining sperm counts, fertility failure, immune dysfunction, breast and prostate cancers, and developmental disorders among the young. Some of these illnesses are now known to be caused or exacerbated by exposure to commercial chemicals and pollutants.

Few people realize how pervasive plastics have become. Most homes constructed since 1985 are wrapped in plastic film such as Tyvek, and many exterior shells are made from polyvinyl chloride (PVC) siding. Some modern buildings receive water and transport wastes via PVC pipes. Wooden floors are coated with polyurethane finishes and polyvinyl chloride tiles.

Foods and beverages are normally packaged in plastic, including milk bottles made from high-density polyethylene. Most families have at least one “non-stick” pan, often made from Teflon, a soft polymer that can scratch and hitchhike on foods to the dinner table. Between 1997 and 2005, annual sales of small bottles of water — those holding less than one liter — increased from 4 billion to nearly 30 billion bottles.

The billions of video games, computers, MP3 players, cameras, and cell phones purchased each year in the United States use a wide variety of plastic resins. And the almost 7.5 million new vehicles sold in the United States each year contain 2.5 billion pounds of plastic components, which have little hope of being recycled, especially if made from polyvinyl chloride or polycarbonate.  The American Plastics Council now estimates that only about 5 percent of all plastics manufactured are recycled; 95 billion pounds are discarded on average yearly.

The chemical contents of plastics have always been a mystery to consumers. Under federal law, ingredients need not be labeled, and most manufacturers are unwilling or unable to disclose these contents or their sources. Indeed, often the only clue consumers have to the chemical identity of the plastics they use is the voluntary resin code designed to identify products that should and should not be recycled — but it offers little usable information.

The true costs of plastics — including the energy required to manufacture them, the environmental contamination caused by their disposal, their health impacts, and the recycling and eventual disposal costs — are not reflected in product prices.  Adding to the environmental toll, most plastic is produced from natural gas and petroleum products, exacerbating global warming.

Plastics and Human Health

The controversy over BPA — the primary component of hard and clear plastics — and its potential role in human hormone disruption provides the most recent example of the need for a national plastics control law.

Normal growth and development among fetuses, infants, children, and adolescents is regulated in the body by a diverse set of hormones that promote or inhibit cell division. More than a thousand chemicals are now suspected of affecting normal human hormonal activity. These include many pharmaceuticals, pesticides, plasticizers, solvents, metals, and flame retardants.

Scientists’ growing interest in hormone disruption coincided with a consensus within the National Academy of Sciences that children are often at greater risk of health effects than adults because of their rapidly growing but immature organ systems, hormone pathways, and metabolic systems. And many forms of human illness associated with abnormal hormonal activity have become more commonplace during the past several decades, including infertility, breast and prostate cancer, and various neurological problems.

BPA illustrates well the endocrine disruption problem. Each year several billion pounds of BPA are produced in the United States. The Centers for Disease Control and Prevention has found, in results consistent with those found in other countries, that 95 percent of human urine samples tested have measurable BPA levels. BPA has also been detected in human serum, breast milk, and maternal and fetal plasma. BPA travels easily across the placenta, and levels in many pregnant women and their fetuses were similar to those found in animal studies to be toxic to the reproductive organs of the animals’ male and female offspring.

Government scientists believe that the primary source of human BPA exposure is foods, especially those that are canned, as BPA-based epoxy resins can migrate from the resins into the foods. In 1997, the FDA found that BPA migrated from polycarbonate water containers — such as the five-gallon water jugs found in offices — into water at room temperature and that concentrations increased over time. Another study reported that boiling water in polycarbonate bottles increased the rate of migration by up to 55-fold, suggesting that it would be wise to avoid filling polycarbonate baby bottles with boiling water to make infant formula from powders.

Scientists have reported BPA detected in nonstick-coated cookware, PVC stretch film used for food packaging, recycled paperboard food boxes, and clothing treated with fire retardants.

Since 1995 numerous scientists have reported that BPA caused health effects in animals that were similar to diseases becoming more prevalent in humans, abnormal penile or urethra development in males, obesity and type 2 diabetes, and immune system disorders. BPA can bind with estrogen receptors in cell membranes following part-per-trillion doses — exposures nearly 1,000 times lower than the EPA’s recommended acceptable limit.

In 2007, the National Institutes of Health convened a panel of 38 scientists to review the state of research on BPA-induced health effects. The panel, selected for its independence from the plastics industry, issued a strong warning about the chemical’s hazards:

“There is chronic, low level exposure of virtually everyone in developed countries to BPA… The wide range of adverse effects of low doses of BPA in laboratory animals exposed both during development and in adulthood is a great cause for concern with regard to the potential for similar adverse effects in humans.”

The American Chemistry Council, which advocates for the plastics industry, has criticized most scientific research that has reported an association between BPA and adverse health effects. The council’s complaints have included claims that sample sizes are too small, that animals are poor models for understanding hazards to humans, that doses administered in animal studies are normally far higher than those experienced by humans, that the mechanism of chemical action is poorly understood, and that health effects among those exposed are not necessarily “adverse.”

Research on plastics, however, now comprises a large and robust literature reporting adverse health effects in laboratory animals and wildlife at even low doses. Claims of associations between BPA and hormonal activity in humans are strengthened by consensus that everyone is routinely exposed and by the rising incidence of many human diseases similar to those induced in animals dosed with the chemical. Two competing narratives — one forwarded by independent scientists and the other promoted by industry representatives — have delayed government action to protect the health of citizens through bans or restrictions.

Action Needed

How has the plastics industry escaped serious regulation by the federal government, especially since other federally regulated sectors that create environmental or health risks such as pharmaceuticals, pesticides, motor vehicles, and tobacco have their own statutes? In the case of plastics, Congress instead has been content with limited federal regulatory responsibility, now fractured among at least four agencies: the EPA, the Food and Drug Administration, the Consumer Product Safety Commission, and the Occupational Safety and Health Administration. None of these agencies has demanded pre-market testing of plastic ingredients, none has required ingredient labeling or warnings on plastic products, and none has limited production, environmental release, or human exposure. As a result, the entire U.S. population continues to be exposed to hormonally active chemicals from plastics without their knowledge or consent.

What should be done? The Kids Safe Chemical Act represents a comprehensive solution that would apply to all commercial chemicals including plastic ingredients. Yet the nation’s chemical companies, with their enormous political power, are not likely to agree to assume the testing costs, nor are they likely to accept a health protective standard. Rather than pass another weak statute, Congress should consider a stronger alternative.

The nation needs a comprehensive plastics control law, just as we have national laws to control firms that produce other risky products, such as pesticides. Key elements of a national plastics policy should include:

  • tough  government regulations that demand pre-market testing and prohibit chemicals that do not quickly degrade into harmless compounds. Exempting previously permitted ingredients from this evaluation makes little sense, as older chemicals have often been proven more dangerous than newer ones.
  • The chemical industry itself needs to replace persistent and hazardous chemicals with those that are proven to be safe.  Plastics ingredients found to pose a significant threat to the environment or human health should be quickly phased out of production. Congress chose this approach to manage pesticide hazards, and it has proven to be reasonably effective since the passage of the Food Quality Protection Act in 1996.
  • Federal redemption fees for products containing plastics should be set at levels tied to chemical persistence, toxicity, and production volume. These fees should be high enough that consumers have a strong incentive to recycle.
  • We need mandatory labeling of plastic ingredients, in order to allow consumers to make responsible choices in the marketplace.
  • Finally, manufacturers should take responsibility for cleaning up environmental contamination from the more than one trillion pounds of plastic wastes they have produced over the past 50 years.

Our toxic drinking water and the Clean Water Act of 1972

15 09 2009


I had a blog post about genetically modified organisims (GMOs) all ready to go,  but then I got  Sunday’s New York Times (September 13, 2009) with a front page story about rising incidences of  violations of the Clean Water Act in the U.S.:  more than half a million violations in the last five years alone.  I had been keeping track of reports of various types of pollution which come to my attention – every week on average, sometimes daily,  there is at least one article in my local paper which gets my blood boiling. Today’s article is about the widespread feminization of fish in American waters, a situation experts see as a wider problem of endocrine disruptive chemicals in our environment.  A few weeks ago I was tempted to write about the 60 Minutes segment that appeared on August 27, 2009.  As 60 Minutes says,  “this is a story about recycling – about how your best intentions to be green can be channeled into an underground sewer that flows from the United States and into the wasteland.”   You can read the story here about a place in China “where you can’t breathe the air or drink the water, a town where the blood of the children is laced with lead”.

But it was today’s article that pushed me over the edge, because we have been working so hard  to remind  people why treating the water used in textile processing is critically important!  People still think using “organic cotton” or “organic anything” results in an organic fabric, when the difference is as much as that between crude oil and silky microfiber.  The textile industry remains the number 1 industrial polluter of fresh water on the planet, and water is a precious resource that we’re having to spread among more and more people.  We can’t afford to keep discharging effluent filled with toxic chemicals that may cause grave damage to us years down the line.  The Clean Water Act regulates 100 pollutants and the Safe Drinking Water Act limits 91 chemicals in our tap water – that’s  191 chemicals in all.  Small potatoes when the list of chemicals used routinely by industry tops 100,000 – but it’s better than nothing.  Now we find even that protection may be illusory.

The article in question is part of a series that the New York Times is running called “Toxic Waters”, which examines the worsening pollution in American waters, and the response by regulators.  Today’s article, “Clean Water Laws Neglected, at a Cost”, by Charles Duhigg, is based on the hundreds of thousands of water pollution records which the Times obtained through the Freedom of Information Act, and the national database of violations they compiled from that information.   This database is more comprehensive than those maintained by any state or the E.P.A.  Click here to see the entire report online (where you can also find any violations which may have occurred in your community).

They found:

  • that an estimated 1 in 10 Americans have been exposed to drinking water that contains dangerous chemicals or fails to meet federal health benchmarks.
  • that 40% of the nation’s community water systems violated the Safe Drinking Water Act at least once during the past year – violations that ranged from failing to maintain paperwork to allowing carcinogens into tap water.
  • that more than 23 million people received drinking water that violated a health-based standard.
  • that the number of violations is growing significantly.
  • and that only 3% of Clean Water Act violations resulted in fines or other significant punishments.

Critics say that the E.P.A. and the states have dropped the ball.  “Without oversight and enforcement, companies will use our lakes and rivers as dumping grounds – and that’s exactly what is apparently going on,” says Representative James L. Oberstar, from Minnesota.  But regulators say they’re overwhelmed, citing the increase in workloads and dwindling resources.

And there are those who say nothing will happen until there is some public outrage.  So please read the story and let’s have some outrage!

We need to take care of the scare resources we have.  We’re running out of water for everybody, and can’t afford to squander it.  Does anybody else get uneasy when you read something like this investor’s recommendation:   “A world that’s running out of clean, dependable supplies of water located where and when farmers need it makes irrigation one of the trends I’d like to invest in.”

water crisis

So when you read about the jeans factory in Lesotho which supplies denim to Levi’s and the Gap which is leaking untreated wastewater, dyed deep blue and polluted with chemicals, into the  local river – and when you read that most of the children living there have chest infections and skin irritations – don’t think it’s a world away and you’re safely protected by municipal water treatment facilities.  The New York Times findings give us scant reason to depend on our local water treatment facilities to protect us from these insults to our ecosystem.  That factory in Lesotho is spewing the effluent into your groundwater and it circulates in your water system.  Apparently that kind of egregious flaunting of the law is going on in West Virginia (and other states) too.

Note:  I live in Seattle, where the Seattle Times gets a feed from the New York Times; often a prominent story in the New York Times is displayed on the first page (or at least in the first section) of the  Seattle Times.  But this article was not carried by the Seattle Times in any section, let alone the front page.

Why should I choose an organic fabric when I have to put an FR treatment on it anyway?

9 05 2009

The questions is whether it’s a better choice to use inherently flame retardant fabrics such as AvoraFR rather than a natural fiber (like cotton) which has been doused with toxic FR chemicals.  The answer is complicated and like most in this emerging green area, there may be no “best” answer.  We think the answers may lie in the tradeoffs we have to make.  But we’ve got an opinion, and it’s based on the following reasoning:

Fabrics which are inherently flame retardant are synthetics which have been changed at the molecular level to make the fabrics thermally stable and able to pass commercial flame tests.   Some petroleum-based synthetic fibers, such as Avora FR, Trevira CS and Lenzing FR viscose – add a flame retardant to the chemical treatment before polymer extrusion rather than change the molecular structure of the polymer.  This process builds the chemical treatment into the backbone of the polyester rather than adding it later to the finished product.  It is presumed to be less likely to expose the occupants to chemicals.

So how do you compare the two?

When comparing the synthetic with a natural fiber, we think it’s important to look at the carbon footprint of the fibers.  A synthetic like polyester requires much more energy to produce a ton of fiber than does conventional cotton – in megajoules (MJ) of energy the difference is about four times: 126,000 MJ polyester vs. 33,000 MJ for conventional cotton.  Organic cotton is even less:  only 16,000MJ.

It’s important to look at how these fibers are woven into fabric.  (And that’s a different set of carbon calculations).  If the polyester or the cotton is produced conventionally, the finished fabric has residuals of many chemicals which have been proven to harm human health.  The majority of Americans mistakenly believes that the government tests chemicals used in consumer products to ensure safety, accoring to an opinion poll released by the Washington Toxics Coalition.  However, under the Toxic Substances Control Act (TSCA), there is no legal requirements to test most chemicals for health effects, including impacts on neurological development, at any stage of production, marketing and use.  An organic fabric is one which has not used any of the many chemicals used in textile production which are known to be toxic.

So looking at two fabrics (even if one polyester fabric is produced using optimized production methods – i.e., avoiding the toxic chemicals) the organic cotton (or better yet, hemp or linen) fabric is one I’d rather live with.  But fire kills many people every year and we have reason to keep fire codes in place in public spaces.  So the issue focuses on the chemistry used to fire retard the fabrics.

Natural fibers must have a topical FR treatment applied after manufacture.  In the past, these treatments were based on halogenated chemistry, like PBDEs.  The industry is moving away from these chemicals and most have been banned, but decaBDE is still allowed in the US.  With careful attention and questioning of your supplier, you can have a natural fiber fabric that has an FR treatment which meets all codes – and which is not persisten, bioaccumulative and compromises your health.

So now the question becomes how dothe two fibers react in actual fires?

An important thing to remember about synthetics is that they do not burn, they melt.  That’s why protective clothing (firemen, police, rescue) is not made of synthetics – even inherently fire retardant synthetics – because the melting fabric would cause severe burns.

Another issue (and one we think is most important) is that the smoke created by burning or melting fabrics.   Conventionally produced fabrics (natural fiber or synthetic) release chemicals which add an extra dimension to the already toxic smoke.


So where do we stand?

  • With a carbon footprint of 16,000 MJ vs 126,000 MJ (organic cotton vs. polyester) to make the fiber and
  • with organic fabrics having little or none of the chemicals which have been proven to harm human health and
  • because of the ability to use a nonhalogenated FR treatment on an organic fabric and
  • in the case of a fire, not having to breathe toxic fumes from melting synthetics or conventionally produced fabrics

is there really a choice?

Happy May Day

1 05 2009

In honor of May Day and workers everywhere,  I’d like to suggest that you check where your cotton comes from.  Like extracting oil which has different energy requirements depending on where its found, there’s a lot of variation in cotton depending on where its grown.    And cotton from Uzbekistan is not a good choice.

Uzbekistan is the second largest exporter of cotton in the world,  but the human rights issues (putting aside the environmental issues for the time being) associated with Uzbek cotton puts it at the bottom of the heap.

According to the Environmental Justice Foundation:

Instead of using machines to harvest cotton, as is done in other major cotton exporting countries, Uzbekistan’s government uses children. Every autumn state officials shut down schools, and send students, together with their teachers, to the cotton fields. Tens of thousands of children, some as young as seven, are forced to undertake weeks of arduous labour for little or no financial reward. Headmasters are issued with cotton quotas and made to ensure that students pick the required daily amount. Children who fail to pick their target of cotton are reportedly punished with detentions and told that their grades will suffer. Those who refuse to take part can face academic expulsion.”

And if you have happy memories of picking cotton for your grandparents to help bring the crop in, read the letter from Brian Schroeter (whose wife was one of those Uzbek kids forced to pick cotton) published in the Delta Farm Press  http://deltafarmpress.com/news/uzbek-cotton-1217/ In this letter, Brian explains how the situation is such a human rights disaster.


As consumers, ask where your cotton comes from.  Ignorance on the part of the seller, as always, is no excuse.  Tell your retailer that you will not buy it if there is no credible information about where the cotton is produced.   Seek out fair trade cotton.