A non organic future?

25 05 2011

According to the World Population Clock at the Office of Population Research at Princeton University, the population of the world is now 6.92 billion people.  We’re supposed to reach 7 billion by the end of October of this year, according to the United Nations.  This is much faster than anyone had expected and represents an increase of one billion people in just 12 years[1].

Hania Zlotnik,  director of the population division in the UN department of economic and social affairs, says  “What is astounding is that the last two billion have been reached in record time… it’s not about how many people there are but where they are:  most of these people are being added in the poorest countries of the world.”  That means those countries least able to handle these new citizens, and they’re already the most vulnerable to famine.

Whether there is a reasonable chance of slowing the population growth rate is still being hotly debated, but all agree that these new numbers are causing shockwaves in many areas.   One area which is attracting lots of attention looks at how we’re going to feed all these people.  And because we’re proponents of using organically grown fibers (and organic agriculture in general), we think it’s important to investigate these arguments about the benefits of organic vs. conventional agriculture.

At the start of 2011, according to The Economist in a special report  about feeding the  world, “The 9 billion – people question“, the “fact that agriculture has experienced two big price spikes in under four years suggests that something serious is rattling the world’s food chain.”   World food prices have risen above the peak they reached in early 2008.  The food industry is in crisis – and certainly the era of cheap food is over.   There are mounting concerns that we cannot feed even the current population, let alone the 9 billion people expected by 2050.

According to The Economist:  The world looks to farmers to do more than just produce food. Agriculture is also central to reducing hunger (which is not quite the same thing) and provides many people’s main route out of poverty. Food is probably the biggest single influence on people’s health, though in radically different ways in poor countries than in rich ones, where the big problem now is obesity. Food is also one of the few pleasures available to the poorest.

In The Economist’s view (which is held by many scientists, food companies, plant breeders and international development agencies)  traditional and organic agriculture is a luxury of the rich.  They say that this type of farming could feed Europeans and Americans well.   But it cannot feed the world.

Central panel: The Garden of Earthly Delights" by Hieronymus Bosch

Pedro Sanchez, Director and Senior Research Scholar at the Earth Institute of Columbia University, says  If you ask me point blank whether organic-based farming is better than conventional, my answer is no.  There are just too many of us, we just need too many nutrients.  And those nutrients come from plants that need nutrients that organic fertilizers can’t always provide.”

And Mark Rosegrant, of the International Food Policy Research Institute, points out that  organic production tends to have somewhat lower yields compared to non-organics. He says going all organic would require a whole lot more land. Organic farming is, he says, a niche market. It’s not bad, per se, but it’s not an important part of the overall process to feed 9 billion people.

Needless to say, we’re interested in finding out more about this topic!  We’ll start our own series (feeding and clothing 9 billion!) next week – the subject is really complex and we will need several weeks to do it justice.


Pesticide residues in cotton fibers

19 05 2011

We’re often asked if there are traces of pesticides in conventionally grown natural fibers – because people make the assumption that if pesticides are used on the plants, then there must be residuals in the fibers.  And because the chemicals used on conventional cotton crops are among the most toxic known, such as aldicarb ( which  can kill a man by just one drop absorbed thru the skin) and endosulfan (thought to be the most important source of fatal poisoning among cotton farmers in West Africa), as well as a host of confirmed carcinogens[1],   that seems a reasonable cause for concern.

But that question misses the whole point, as we’ll explain.

According to the modern agricultural industry,  cotton agriculture uses integrated pest management (IPM) systems to promote cotton’s environmental stance (author’s note:  reduction of costs doesn’t hurt either).

As the result, the use of chemicals on cotton crops is down:  On average “only” 20 lbs. of pesticides are applied to an acre of cotton today – as opposed to about 40 lbs. in the past. 

IPM is a great advance on the part of agriculture to use biological controls.  But 20 lbs. per acre is still a lot of really bad chemicals being used.  So the Bremen Cotton Exchange,[2]  on behalf of the industry, has sponsored a series of tests which were carried out by the Hohehnstein Research Institute  according to Oeko-Tex 100 Standard (also known as Eco Tex).  They tested for 228 possible substances including:

  • Formaldehyde
  • PCP
  • pH Value
  • Heavy Metals
  • Defoliants

All the test series confirm that the treatment and use of pesticides in cotton production, according to their report,  “does not pose any hazard for the processor of the raw material and none at all for the end consumer.”  This is the industry’s position, based on the test results from their studies.  On the other hand, there are other studies that do find pesticide residues in cotton textiles –  of nine different organochlorine pesticides at levels of 0.5 to 2 mg/kg.[3]  So there seems to be a difference of opinion as to whether there are pesticide residues in the cotton fibers or finished cloth.

But there is not much difference of opinion in the fact that pesticide residues pollute our soils.    Many different studies have found pesticide residues which pollute agriculture soils in various parts of the world. [4]

“Pesticide Residues in Soil & Water from Four Areas of Mali”, From Journal of Agricultural, Food & Environmental Sciences, Vol 1, issue 1, 2007

And just recently,  Science News reported that children exposed in the womb to pesticides have lower IQs than do kids with virtually no exposure.  According to Science News:

“Three new studies began in the late 1990s and followed children through age 7. Pesticide exposures stem from farm work in more than 300 low-income Mexican-American families in California, researchers from the University of California, Berkeley and their colleagues report. In two comparably sized New York City populations, exposures likely trace to bug spraying of homes or eating treated produce.”

Among the California families, the average IQ for the 20 percent of children with the highest prenatal organophosphate exposure was 7 points lower compared with the least-exposed group.

“There was an amazing degree of consistency in the findings across all three studies,” notes Bruce Lanphear of Simon Fraser University in Vancouver. And that’s concerning, he says, because a drop of seven IQ points “is a big deal. In fact, half of seven IQ points would be a big deal, especially when you see this across a population.”[5]

There is no dispute about the fact that cotton crops are grown using many millions of pounds of chemical pesticides and synthetic fertilizers.  And research shows that extensive and intensive use of synthetic fertilizers, soil additives, defoliants and other substances wreak terrible havoc on soil, water, air and many, many living things – such as in the study cited above.

So what is the point that’s being missed?  Because conventional agriculture – despite advances in IPM – uses so many chemicals which are bad for us, shouldn’t the crops be grown organically?  That cuts to the chase –  in organically raised crops, there would be no toxic residues in the fibers, nor would the chemicals be wreaking havoc on our soils, water and air.  So the question of whether there are pesticide residues in the fibers becomes moot.  And though the United States and other countries might have banned the use of some chemicals, such as DDT, they’re still in use in parts of the world.

We’ve often touted the benefits of organic agriculture, and this seems to be yet another.  We think organic farming is so important that we’ll spend some time on the subject in our next few posts – because there are some who say that organic farming is just not the answer.  Are we between a rock and a hard place?

[1] Five of the top nine pesticides used on cotton in the U.S. (cyanide, dicofol, naled, propargite, and trifluralin) are known cancer-causing chemicals. All nine are classified by the U.S. EPA as Category I and II (dangerous chemicals).

[2] The purpose of the Bremen Cotton Exchange is “to maintain and promote the interests of all those connected with the cotton trade”.

[3] Zhang, X., Liao, Q and Zhang, Y, “Simultaneous determination of nine organochlorine pesticide residues in textile by high performance liquid chromatography, SEPU, 2007, 25(3), 380-383.

[4] http://www.scribd.com/doc/55465538/Insecticide-Residues-on-Cotton-Soils ALSO: Journal of Agricultural, Food and Environmental Sciences, Vol 1, Issue 1, 2007; “Pesticide Residues in Soil and Water from Four Cotton Growing Areas of Mali, West Africa   ALSO: Luchini, LC et al., “Monitoring of pesticide residues in a cotton crop soil”, Journal of Environmental Science and Health, January 2000, 35(1): 51-9  SEE ALSO: http://www.bashanfoundation.org/ivan/ivanmapping.pdf

Organic agriculture and climate change

29 07 2009


The debate over sustainable agriculture has gone beyond the health and environmental benefits that it could bring in place of conventional industrial agriculture. For one thing, conventional industrial agriculture is heavily dependent on oil, which is running out; and it is getting increasingly unproductive as the soil is eroded and depleted. Climate change will force us to adopt sustainable, low input agriculture to ameliorate the worst consequences of conventional agriculture, and to genuinely feed the world.

And climate change is upon us.  I’m sitting in Seattle experiencing an “historic heat wave” while reading that the Hadley Center of the British Meteorological Organization has said the world’s temperature will increase by 8.8 degrees F rather than 5.8 degrees F this century.

The Inter-Governmental Panel on Climate Change (IPCC) has said we can expect a considerable increase in heat waves, storms, floods, and the spread of tropical diseases into temperate areas, impacting  the health of humans, livestock and crops. It also predicts a rise in sea levels up to 35 inches this century, which will affect something like 30% of the world’s agricultural lands (by seawater intrusion into the soils underlying croplands and by temporary as well as permanent flooding). If the Hadley Center is right, the implications will be even more horrifying: Melting of the Antarctic, the Arctic, and especially the Greenland ice-shields is occurring far more rapidly than was predicted by the IPCC. This will reduce the salinity of the oceans, which in turn  weakens (if not diverts) oceanic currents such as the Gulf Stream from their present course . And if that continues, it would eventually freeze up areas that at present have a temperate climate, such as Northern Europe.

According to the Institute of Science in Society, “It is becoming clear that climate change and its different manifestations (as mentioned above) will be the most important constraints on our ability to feed ourselves in the coming decades. We cannot afford to just sit and wait for things to get worse. Instead, we must do everything we can to transform our food production system to help combat global warming and, at the same time, to feed ourselves, in what will almost certainly be far less favorable conditions.”

But before we tackle the question of how best to feed ourselves during these “less favorable” times: how can organic agriculture help with global warming?

It’s generally assumed that various Greenhouse Gases (GHG) are responsible for
global warming and climate change.   On a global scale, according to a study commissioned by IFOAM, agriculture has been responsible for approximately 15% of all GHG emissions:

  • 25% of all CO2 emissions come from agriculture
  • 60% of CH4 (methane) emissions come from agriculture
  • 80% of N2O (nitrous oxide) emissions  come from agriculture

About 60% of the CO2 emissions from human and animal activities is absorbed by the oceans and plants; the remaining 40% builds up in our atmosphere.    So what to do about the 40% that’s building up in our atmosphere?  Where can it be stored?


In  looking at ways to “defuse” this CO2 build up, scientists began looking at carbon “sinks”.  Carbon sinks are natural systems that suck up and store carbon dioxide from the atmosphere. The main natural carbon sinks are plants, the ocean and soil. Plants grab carbon dioxide from the atmosphere to use in photosynthesis; some of this carbon is transferred to soil as plants die and decompose. The oceans are a major carbon storage system for carbon dioxide. Marine animals also take up the gas for photosynthesis, while some carbon dioxide simply dissolves in the seawater.

Initially forests were thought to be the most efficient way to sequester (or absorb) this carbon.  It was thought that escalating fossil fuel consumption could be balanced by vast forests breathing in all that CO2.   But  these sinks, critical in the effort to soak up some of our greenhouse gas emissions, may be maxing out, thanks to deforestation, and human-induced weather changes that are causing the oceanic carbon dioxide “sponge” to weaken.

New data is beginning to show that it may be that the soil itself makes more of a difference (in terms of carbon sequestration)  than what’s growing on it.  On a global scale, soils hold more than twice as much carbon as does vegetation (1.74 trillion tons for soil vs. 672 billion tons for vegetation) – and more than twice as much as is contained in our atmosphere.

The Rodale Institute Farming Systems Trial (FST), launched in 1981, is a 12 acre side by side experiment comparing three agricultural management systems: one conventional, one legume-based organic and one manure-based organic.  In 23 years of continuous recordkeeping,  the FST’s two organic systems have shown an increase in soil carbon of 15 – 23%, with virtually no increase in non-organic systems.


This soil carbon data  shows  that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [2]

But although it is well established that organic farming methods sequester atmospheric carbon, researchers have yet to flesh out the precise mechanisms by which this takes place.   One of the keys seems to be in the handling of organic matter – while conventional agriculture typically depletes organic matter, organic farming builds it thru the use of composed animal manures and cover crops.  In the FST, soil carbon levels increased more in the manure-based organic system than in the legume-based organic system, presumably because of the incorporation of manures, but the study also showed that soil carbon depends on more than just total carbon additions to the system–cropping system diversity or carbon-to-nitrogen ratios of inputs may have an effect. “We believe that the differences in decay rates [of soil organic matter] have a lot to do with it,” says Hepperly, since “soluble nitrogen fertilizer accelerates decomposition” in the conventional system.

The people at Rodale put the carbon sequestration argument into an equivalency we can all understand: think of it in terms of the number of cars that would be taken off the road each year by farmers converting to organic production.  Organic farms sequester as much as 3,670 pounds of carbon per acre-foot each year. A typical passenger car, according to the EPA, emits 10,000 pounds of carbon dioxide a year (traveling an average of 12,500 miles per year). Here’s how many cars farms can take off the road by transitioning to organic:  car

U.S. agriculture as currently practiced emits a total of 1.5 trillion pounds of CO2 annually into the atmosphere. Converting all U.S. cropland to organic would not only wipe out agriculture’s massive emission problem, but by eliminating energy-costly chemical fertilizers, it would actually give us a net increase in soil carbon of 734 billion pounds.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager.  In addition to emitting fewer GHGs while sequestering carbon, organic agriculture uses less energy for production.  A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles.  As such it can be seen as more than a set of agricultural practices, but also as a tool for social change.[3] For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

And actually, it seems that modern industrial agriculture is on the way out.  The Food and Agriculture Organization of the United Nations (FAO) admitted in 1997 that wheat yields in both Mexico and the USA had shown no increase in 13 years  – blamed on the fact that fertilizers are becoming  less and less effective, as are pesticides.   The farmers are losing the battle.  Conventional agrochemical use (which includes many highly toxic substances) also has many immediate human impacts:  documented cases of short term illnesses, increased medical costs and the build up of pesticides in human and animal food chains.  The chemicals also contaminate the drinking and ground water.  And industrial agriculture is far too vulnerable to shortages in the availability of fuel and to increases in the price of oil.

That’s a lot to think about when looking for your next T shirt, so before you plunk down your money for another really cool shirt,  think about what you  will be getting in exchange.

[1] I should point out that although “sinks” in vegetation and soils  have a high
potential to mitigate increases of CO2 in the atmosphere, they are not
sufficient to compensate for heavy inputs from fossil fuel burning.  The long-term solution to global warming is simple:  reduce our use of fossil fuel, somehow, anyhow!
Yet the contribution from agriculture  could buy time during which
alternatives to fossil fuel can take affect – especially if that agricultural system is organic.

[2] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[3] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19