10 reasons to make sure your sofa choices are upholstered with safely processed fabrics.

28 10 2013

If a fabric is identified as 100%  “cotton” – or even 100% “organic cotton”  —  it’s important to remember that processing the fiber, and then weaving it into fabric, is very chemically intense.  One-quarter of the total weight of the finished fabric is made up of synthetic chemicals, so it’s important to know that the chemicals used in your fabrics are safe! [1]

There have not been a lot of studies which show the effects that chemicals contained in a fabric have on humans as a result of using that fabric, perhaps because there are no interested parties other than universities and government entities.   But there are numerous studies which document the effects which the individual chemicals have on humans – perhaps because the textile industry is so fragmented that the few really large corporations with the resources to do this kind of research tend to finance research which supports  new products (such as DuPont’s PLA fibers or Teijin’s recycling efforts).  But there have been some, and we found the following:

  1. Formaldehyde is used often in finishing textiles to give the fabrics easy care properties (like wrinkle resistance, anti cling, stain resistance, etc.).  Formaldehyde resins are used on almost all cotton/poly sheet sets in the USA.
    1. Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-linking with proteins, DNA and unsaturated fatty acids.13 These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption. [3]
      1. In January 2009, new blue uniforms issued to Transportation Security Administration officers gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers.
      2. In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras.
      3. Contact dermatitis is a well-known condition, and there are many websites which feature ways to get help.
      4. A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[2]
    2. Dioxins:  Main uses of dioxin in relation to textiles is as a preservative for cotton and other fibers during sea transit,  and in cotton bleaching. It is also found in some dyestuffs.  Dioxin is known as one of the strongest poisons which man is able to produce. It causes cancer of the liver and lung, and interferes with the immune system, resulting in a predisposition to infectious diseases and embrional misgrowth.
      1. Studies have found dioxin leached from clothing  onto  the skin of participants:[3]  It was shown that these contaminants are transferred from textiles to human skin during wearing. They were also present in shower water and were washed out of textiles during washing. Extensive evidence was found indicating that contaminated textiles are a major source of chlorinated dioxins and furans in non-industrial sewage sludge, dry cleaning residues and house dust.
    3. Perfluorocarbons (PFC’s)  break down within the body and in the environment to PFOA, PFOS and similar chemicals. (Note: the chemistry here is quite dense; I’ve tried to differentiate between the groups. Please let me know if I’ve made a mistake!) They are the most persistent synthetic chemicals known to man. Once they are in the body, it takes decades to get them out – assuming you are exposed to no more. They are toxic in humans with health effects from increased chloesterol to stroke and cancer. Although little PFOA can be found in the finished product, the breakdown of the fluorotelomers used on paper products and fabric treatments might explain how more than 90% of all Americans have these hyper-persistent, toxic chemicals in their blood. A growing number of researchers believe that fabric-based, stain-resistant coatings, which are ubiquitous, may be the largest environmental source of this  controversial chemical family of PFCs.

PFC’s are used in stain resistant finishes/fabrics such as Scotchgard, GoreTex, Crypton, Crypton Green, GreenShield, Teflon:

  1. PFC’s cause developmental and other adverse effects in animals.[4]
  2. According to a study published in the Journal of the American Medical Association, the more exposure children have to PFC’s (perfluorinated compounds), the less likely they are to have a good immune response to vaccinations (click here to read the study).[5]

According to the U.S. Environmental Protection Agency, PFC’s:

  • Are very persistent in the environment.
  • Are found at very low levels both in the environment and in the blood of the U.S. population.
  • Remain in people for a very long time.
  • Cause developmental and other adverse effects in laboratory animals.

The levels of PFC’s globally are not going down – and in fact there are places (such as China) where the PFC level is going up. And as there is not a “no peeing” part of the pool, the exposure problem deserves international attention.

4. Tributylphosphate – or TBP – is used in the production of synthetic resins and as a flame-retarding plasticizer. It is also used as a primary plasticizer in the manufacture of plastics and as a pasting agent for pigment pastes used in printing. Because it is a strong wetting agent, it is used often in the textile industry.  In addition to being a known skin irritant (click here to see the MSDS with a warning that it causes eye and skin irritation), TBP also causes bladder cancer in rats. (2)

  1. Alaska Airlines flight attendants were given new uniforms in 2010; shortly thereafter many reported “dermal symptoms” (e.g., hives, rash, blisters, skin irritation), while some also referenced respiratory symptoms and eye irritation; some have more recently been diagnosed with abnormal thyroid function. The symptoms apparently occurred only while wearing the new uniforms. (To read the report filed with the Consumer Product Safety Commission by the Association of Flight Attendants, click here. )

The only fact which can be agreed upon between the union, the CPSC and the manufacturer is that some unknown percent of the fabric used to make the uniforms was “contaminated” with TBP, tributylphosphate, as reported by the manufacturer – but since not all the fabric was tested, it is unknown the final percentage of contaminated fabric.

5.  Acrylic fibers are made from acrolynitrile  (also called vinyl cyanide), which is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system. According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  It is not easily recycled nor is it biodegradeable.

  1. Women who work in factories which produce acrylic fibers have seven times the rate of breast cancer as the normal population [6] – those working with nylon have double the risk.

6.  Chemicals used in textile processing which are associated with the immune system include formaldehyde, benzenes, toluene, phthalates. In 2007, The National Institutes of Health and the University of Washington released the findings of a 14 year study that demonstrates those who work with textiles were significantly more likely to die from an autoimmune disease than people who didn’t [7].

  1. Allergies and asthma are both thought to be associated with impaired immune systems.   Twice as many Americans (not just children) have asthma now as 20 yrs ago[8] and 10% of American children now have asthma.[9]
  2. As well as allergies and asthma, there are numerous other ‘chronic inflammatory diseases’ (CIDs) such as Type 1 diabetes and multiple sclerosis which seem to stem from impaired regulation of our immune systems.[10]

7.  Chemicals commonly used in textiles which contribute to developmental disorders (such as (ADD, ADHA, autism, Dyslexia): Bisphenol A, flame retardants, heavy metals (lead, mercury, cadmium), phthalates, PCB’s:

  1. Currently one of every six American children has a developmental disorder of some kind.[11]
  2. Bisphenol A  – used as a finish in the production of synthetic fibers: It mimics estrogens (is an endocrine disruptor) and can cause infertility and cancer.[12] 

8.  PCB’s :  used in flame retardants on fabrics; they are neurotoxins, endocrine disruptors and carcinogenic

  1. The Environmental Protection Agency (EPA) commissioned psychologists to study children whose mothers were exposed to PCB’s during pregnancy. The researchers found  that the more PCBs  found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2 [13].

9.  Cancer – chemicals used in textile processing which are linked to cancer include formaldehyde, lead, cadmium, pesticides, benzene, vinyl chloride – as well as pesticides on crops: 

  1. all childhood cancers have grown at about 1% per year for the past two decades[14]
  2.  brain cancer in children increased nearly 40% from 1973 to 1994[15]
  3. the environmental attributable fraction of childhood cancer can be between 5% and 90%, depending on the type of cancer[16]

10.  Lead – used in the textile industry in a variety of ways and as a component in dyestuffs –  is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage  caused by lead are not reversible.        Specifically, it affects reading and reasoning abilities in  children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies.[17]     Children are uniquely susceptible to lead exposure over time,  and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware  that lead available from tested products would not be the only source of  exposure in a child’s environment.        Lead is used in the textile industry in a variety of ways and under a variety of names:

    1. Lead acetate:                        dyeing of textiles
    2. Lead  chloride                      preparation of lead salts
    3. Lead molybdate                   pigments used in dyestuffs
    4. Lead nitrate                         mordant in dyeing; oxidizer in dyeing(4)

Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[18]

Lead is a uniquely cumulative poison: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

 


[1] Lacasse and Baumann, Textile Chemicals, Springer, New York, 2004,  page 609; on behalf of the German Environmental Protection Agency.

[2] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[3] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[4] Philippe Grandjean, et al, “Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds”, Journal of the American Medical Association,  january 25, 2012

[6] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817 (abstract: http://oem.bmj.com/content/67/4/263.abstract)
SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp
AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[7] Nakazawa, Donna Jackson, “Diseases Like Mine Are a Growing Hazard”, Washington
Post
, March 16, 2008.

[11] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[12] Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”, www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf

[13] Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.

[15] New York Times, “New Toxins Suspected as Cancer Rate Rises in children”, September 29, 1997

[16] Gouveia-Vigeant, Tami and Tickner, Joel, “Toxic Chemicals and Childhood Cancer: a review of the evidence”, U of Massachusetts, May 2003

[17] ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

[18] Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead
Exposure”, PLoS Med 2008 5(5): e112.

Advertisements




How to get rid of chemicals in fabrics. (Hint: trick question.)

10 11 2010

Can you wash or otherwise clean conventional fabrics to remove all the toxic residues so that you’d end up with  a fabric that’s as safe as  an organic fabric?  It seems a reasonable question, and sure would be an easy fix if the answer was yes, wouldn’t it?  But let’s explore this question, because it’s really interesting.

Let’s start by looking at one common type of fabric: a lightweight, 4 ounce cotton printed quilting fabric.  In this case the answer is no (and as you’ll find out, our answers will always be no, but read on to see why).

The toxic chemicals in conventionally produced (versus “organically” produced)  cotton fabric that cannot be washed out come from both:

1.      the pesticides and herbicides applied to the crops when growing the cotton and

2.      from the dyes and printing inks and other chemicals used to turn the fibers into fabric.

Let’s first look at the pesticides used during growing of the fiber.

Conventional cotton cultivation uses copious amounts of chemical inputs.  These pesticides are absorbed by the leaves and the roots of the plants. Most pesticides applied to plants have a half life of less than 4 days before degredation.(1)   So pesticides can be found in the plants, but over time the chemicals are degraded so the amount to be found in any bale of cotton fiber is highly depending on time of harvest and how recently the crop had been sprayed.  

Gas chromatography easily shows that  common pesticides used on cotton crops are found in the fibers, such as:  Hexachlorobenzene,  Aldrin, Dieldrin, DDT and DDT. (2)   Look up the toxicity profiles  of those chemicals if you want encouragement to keep even tiny amounts of them out of your house.   With time, as the cotton fibers degrade, these residual chemicals are released.

We could find no studies which looked at the fibers themselves to see if pesticides could be removed by washing, but we did find a study of laundering pesticide-soiled clothing to see if the pesticide could be removed.  Remember, this study (and others like it) was done only on protective clothing worn by workers who are applying the pesticides – so the pesticides are on the outside of the fibers  –   NOT on the fibers themselves during growth.  The study found that, after six washings in a home washing machine, the percent of pesticide remaining in a textile substrate (cotton)  ranged from 1% to 42%.  (3)

If you’re trying to avoid pesticides which are applied to cotton crops, you’d do better to avoid cottonseed oil than the fiber (if processed conventionally) because we eat more of the cotton crop than we wear.  Most of the damage done by the use of pesticides is to our environment – our groundwater and soils.

Before we go further,  let’s do away with the notion that organic cotton, woven conventionally, is safe to use.  Not so.  There are so many chemicals used during the processing phase of fabric production, including detergents, brighteners, bleaches, softeners, and many others that the final fabric is a chemical smorgasbord, and is by weight at least 10% synthetic chemicals (4), many of which have been proven to cause harm to humans.

The chemicals used in conventionally processed organic cotton fabrics make the concerns about  pesticides used in growing the crop pale in comparison:  If we use the new lower chemical inputs that GMO cotton has introduced, it’s now possible to produce 1 lb. of conventionally grown cotton, using just  2.85 oz of chemical pesticides – that’s down from over 4.5 oz used during the 1990’s – a 58% decrease.   So to produce enough cotton fiber to make 25 lbs of cloth,  it would require  just 4.45 lbs of chemical pesticides, fertilizers and insecticides.  Processing that fiber into cloth, however, requires between 2.5 – 25 lbs. of chemicals.  If we take the midpoint, that’s 12.5 lbs of processing chemicals – almost three times what it took to produce the fiber!

There are over 2,000 different kinds of chemicals regularly used in textile production, many of them so toxic that they’re outlawed in other products.  And this toxic bath is used on both organic fibers as well as non-organic fibers – the fibers are just the first step in the weaving and finishing of a fabric. (Make sure you buy organic fibers that are also organically processed  or you do not have an organic fabric.   An organic fabric is one that is  third party certified  to the Global Organic Textile Standard. )      Fabrics – even those made with  organic fibers like organic cotton IF they are conventionally produced and not produced according to GOTS –  contain chemicals such as formaldehyde, azo dyes, dioxin, and heavy metals.  Some of the chemicals  are there as residues from the production, others are added to give certain characteristics to the fabrics such as color, softness, crispness, wrinkle resistance, etc.    And these chemicals are designed to do a job, and do it well. They are designed to NOT wash out.  The dyes, for instance, are called “fiber reactive” dyes because they chemically bind with the fiber molecules in order to remain color fast.   The chemical components of your fabric dye is there as long as the color is there. Many dyes contain a whole host of toxic chemicals.  The heavy metals are common components of fabric dyes.  They are part of the dye and part of the fabric fiber as long as the color remains.

And these chemicals are found in the fabrics we live with.  Studies have shown that the chemicals are available to our bodies:  dioxins (such as the 75 polychlorinated dibenzo-p-dioxins (PCDDs) and 135 polychlorinated dibenzofurans (PCDFs)) were found in new clothing in concentrations ranging from low pg/g to high 300 ng/g in several studies. (5)

 

How do these chemicals get into our bodies from the textiles?  Your skin is the largest organ of your body, and it’s highly permeable.  So skin absorption is one route; another is through inhalation of the chemicals (if they are the type that evaporate – and if they do evaporate, each chemical has a different rate of evaporation, from minutes or hours to weeks or years) and a third route:  Think of microscopic particles of fabric that abrade each time we use a towel, sit on a sofa, put on our clothes.  These microscopic particles fly into the air and then we breathe them in or ingest them.  Or they  fall into the dust of our homes, where people and pets, especially crawling children and pets, continue to breathe or ingest them.

In the United States, often the standards for exposure to these toxins is limited to  workplace standards (based on limits in water or air) or they’re product specific: the FDA sets a maximum limit of cadmium in bottled water to be 0.005 mg/L for example.  So that leaves lots of avenues for continued contamination!

The bad news is that existing legislation on chemicals fails to prohibit the use of hazardous chemicals in consumer products -–and the textile industry, in particular, has no organized voice to advocate for change.  It’s a complex, highly fragmented industry, and it’s up to consumers to demand companies change their policies.  In the United States we’re waking up to the dangers of industrial chemicals, but rather than banning a certain chemical in ALL products, the United States is taking a piece meal approach:  for example,  certain azo dyes (like Red 2G) are prohibited in foods – but only in foods, not fabrics.  But just because the product is not meant to be eaten doesn’t mean we’re not absorbing that Red 2G.  Phthalates are outlawed in California and Washington state in children’s toys – but not in their clothing or bedding.  A Greenpeace study of a Walt Disney PVC Winne the Pooh raincoat found that it contained an astounding 320,000 mg/kg of total phthalates in the coat – or 32% of the weight of the raincoat! (6)

Concerns continue to mount about the safety of textiles and apparel products used by U.S. consumers.  As reports of potential health threats continue to come to light, “we are quite concerned about potentially toxic materials that U.S. consumers are exposed to everyday in textiles and apparel available in this country,” said David Brookstein, Sc.D., dean of the School of Engineering and Textile and director of Philadelphia University’s Institute for Textile and Apparel Product Safety (ITAPS).

The good news is that there are fabrics that have been produced without resorting to these hazardous chemicals.  Look for GOTS!  Demand safe fabrics!

(1)  “Degradation of Pesiticides on Plant Surfaces amd It’s prediction – a case study of tea leaves”, Zongmao, C and Haibin, W., Tea Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, China.   http://www.springerlink.com/content/vg5w5467743r5p41/

(2) “Extraction of Residual Chlorinated Pesticides from Cotton Matrix, El-Nagar, Schantz et.al, Journal of Textile and Apparel, Technology and management,  Vol 4, Issue 2, Fall 2004

(3)  Archives of Environmental Contamination and Toxicology 1992  (23, 85-90)

(4) Laucasse and Baumann,  Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609.

(5) “Dioxins and Dioxin-Like Persistent Organic Pollutants in Textiles” Krizanec, B and Le marechal, Al, Faculty of Mechanical Engineering, Smetanova 17, SI-2000, Maribor, Slovenia, 2006; hrcak.srce.hr/file/6721

(6)   http://www.greenpeace.org/raw/content/greece/137368/toxic-childrensware-by-disney.pdf