Synergy

31 07 2014

I just read the article by Mark Winston in the New York Times (July 15, 2014) in which he talks about the “thousand little cuts” suffered by honeybees which has led to the catastrophic decline of these insects. (The article is reproduced at the end of this blog.) I had been thinking about synergy and this seems to fit right in.

Synergy means the interaction of two (or more) things that produce an overall effect that’s greater than – or different from – the sum of the individual effects. In other words, we cannot predict the whole simply by looking at the parts.   Even so, we are challenged to understand and predict the impacts that contaminants have on communities – when understanding the effect of a single contaminant on a single organism is daunting. There are almost unlimited variables that impact any situation.

The EPA tests chemicals for adverse health effects, which they assume will occur individually. But in the real world, we’re exposed to a medley of chemicals every day – from car exhaust, to cosmetics, clothing, pesticide sprays for agriculture or mosquitos, even smog. The fact that these exposures can react with each other, and in effect, make each other more toxic, is a newly emerging science. In 1996, the EPA was required for the first time to consider cumulative pesticide exposure under the Food Quality Protection Act (FQPA). The FQPA recognizes that real-world pesticide exposure doesn’t occur as a single discrete exposure to a single pesticide, but rather as a combination of several pesticides at once. For example, USDA data shows that apples sold in the United States contained 22 different pesticide residues, and peaches contained 40.[1]

I just discovered the term “co-carcinogen”, which means the additive or synergistic effect of two or more agents which leads to cancer. These “co-carcinogens” may not themselves be a carcinogen. For example, a study by the University of Minnesota published a paper about the cancer-promoting effects of capsaicin – found in foods that contain hot chili peppers. It’s complicated – if you’re interested, please click here.

Here’s an interesting story:

In the summer of 1985, 30 year-old Thomas Latimer was leading a good life in the suburbs of Dallas, TX. He was a vigorous, athletic man with a promising engineering career. On one particular Saturday afternoon, Mr. Latimer spent the day mowing the lawn, picking up the clippings and edging the walkways. After about an hour, he began to feel dizziness, nausea, tightness in his chest and a pounding headache. Ten days later, he felt even worse and went to see his doctor.

Over the next six years, Mr. Latimer found himself unable to exercise. He suffered from brain seizures. He visited 20 different doctors and underwent numerous tests to determine the source of his medical problems. His symptoms were consistent with organophosphate poisoning, most likely from the insecticide diazinon that had been applied to his lawn. But because his symptoms were so severe and the amount of pesticide he was exposed to was so low, the doctors continued to look for a complicating factor. After further research, a toxicologist, three neurologists and two neuro-ophthalmologists all concluded independently that the popular ulcer drug Tagamet that Mr. Latimer was taking had suppressed his liver, making him more susceptible to pesticide poisoning.

Alfredo A Sudan, a professor of neurology and ophthalmology at the University of Southern California, who conducted extensive tests evaluating an eye disorder that Mr. Latimer developed, estimates that taking a medication like Tagamet “can make a person 100 to 1,000 times more sensitive to organophosphate poisoning.”[2]

In 2001, researchers at Duke University’s Department of Pharmacology and Cancer Biology published a series of papers looking at the synergistic effects of DEET (the active ingredient in most insect repellants) and permethrin (a pesticides commonly used in community mosquite programs, as well as many household bug killers.) The purpose of the studies was to determine a possible link between pesticides and other chemicals used during the Persian Gulf War and the “Gulf War Syndrome” – a neurological disease. When DEET, permethrin and pyridostigmine bromide (a drug taken by soldiers to counteract toxic gas warfare chemicals) were administered alone – even at doses three times the level soldiers received – no effects were observed. But when the three chemicals were used in combination, test animals suffered neurological symptoms similar to the Gulf War veterans.[3]

Neurology experts give three possible reasons for the synergistic effects seen in the above experiments. First, the stress endured by animals when exposed to a combination of chemicals undermines the protective role of the blood brain barrier, allowing the level of toxics to cross into the brain to be 100 times higher. Second, tissue that has been exposed becomes more sensitive and receptive to other toxic substances. Third, certain chemicals bind to enzymes that detoxify the body, making the enzymes unavailable to protect the body from other intruding chemicals. Dr. Goran Jamal, a neurologist at the West London Regional Neuro-Science Center of the Imperial College of Medicine, makes the following comparison, “It’s like releasing 200 criminals in London and taking away the police officers that are usually on duty. There is bound to be some damage.”[4]

The organization Beyond Pesticides suggests a variety of tests: testing for interactions between pesticides commonly used in agriculture, between pesticides used in agriculture and food contaminants, for pesticides commonly found in drinking water, for pesticides and pharmaceuticals, and for pesticides that are likely to drift. However, this testing is probably unrealistic so the best approach might be to limit exposure – by limiting exposure you also limit synergistic health effects.

Here is Mark Winston’s article, “Our Bees, Ourselves”:

New York Times, Katie Scott

New York Times, Katie Scott

AROUND the world, honeybee colonies are dying in huge numbers: About one-third of hives collapse each year, a pattern going back a decade. For bees and the plants they pollinate — as well as for beekeepers, farmers, honey lovers and everyone else who appreciates this marvelous social insect — this is a catastrophe.

But in the midst of crisis can come learning. Honeybee collapse has much to teach us about how humans can avoid a similar fate, brought on by the increasingly severe environmental perturbations that challenge modern society.

Honeybee collapse has been particularly vexing because there is no one cause, but rather a thousand little cuts. The main elements include the compounding impact of pesticides applied to fields, as well as pesticides applied directly into hives to control mites; fungal, bacterial and viral pests and diseases; nutritional deficiencies caused by vast acreages of single-crop fields that lack diverse flowering plants; and, in the United States, commercial beekeeping itself, which disrupts colonies by moving most bees around the country multiple times each year to pollinate crops.

The real issue, though, is not the volume of problems, but the interactions among them. Here we find a core lesson from the bees that we ignore at our peril: the concept of synergy, where one plus one equals three, or four, or more. A typical honeybee colony contains residue from more than 120 pesticides. Alone, each represents a benign dose. But together they form a toxic soup of chemicals whose interplay can substantially reduce the effectiveness of bees’ immune systems, making them more susceptible to diseases.

These findings provide the most sophisticated data set available for any species about synergies among pesticides, and between pesticides and disease. The only human equivalent is research into pharmaceutical interactions, with many prescription drugs showing harmful or fatal side effects when used together, particularly in patients who already are disease-compromised. Pesticides have medical impacts as potent as pharmaceuticals do, yet we know virtually nothing about their synergistic impacts on our health, or their interplay with human diseases.

Observing the tumultuous demise of honeybees should alert us that our own well-being might be similarly threatened. The honeybee is a remarkably resilient species that has thrived for 40 million years, and the widespread collapse of so many colonies presents a clear message: We must demand that our regulatory authorities require studies on how exposure to low dosages of combined chemicals may affect human health before approving compounds.

Bees also provide some clues to how we may build a more collaborative relationship with the services that ecosystems can provide. Beyond honeybees, there are thousands of wild bee species that could offer some of the pollination service needed for agriculture. Yet feral bees — that is, bees not kept by beekeepers — also are threatened by factors similar to those afflicting honeybees: heavy pesticide use, destruction of nesting sites by overly intensive agriculture and a lack of diverse nectar and pollen sources thanks to highly effective weed killers, which decimate the unmanaged plants that bees depend on for nutrition.

Recently, my laboratory at Simon Fraser University conducted a study on farms that produce canola oil that illustrated the profound value of wild bees. We discovered that crop yields, and thus profits, are maximized if considerable acreages of cropland are left uncultivated to support wild pollinators.

means a healthier, more diverse bee population, which will then move to the planted fields next door in larger and more active numbers. Indeed, farmers who planted their entire field would earn about $27,000 in profit per farm, whereas those who left a third unplanted for bees to nest and forage in would earn $65,000 on a farm of similar size.

Such logic goes against conventional wisdom that fields and bees alike can be uniformly micromanaged. The current challenges faced by managed honeybees and wild bees remind us that we can manage too much. Excessive cultivation, chemical use and habitat destruction eventually destroy the very organisms that could be our partners.

And this insight goes beyond mere agricultural economics. There is a lesson in the decline of bees about how to respond to the most fundamental challenges facing contemporary human societies. We can best meet our own needs if we maintain a balance with nature — a balance that is as important to our health and prosperity as it is to the bees.[5]

 

 

 

 

[1] http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2003-04/Synergy.pdf

[2] Allen, Frank Edward. 1991. One Man’s Suffering Spurs Doctors to Probe Pesticide-Drug Link. The Wall Street Journal. October 14.

[3] Abou-Donia, M.B., et. al. 1996. Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: Implications of Gulf War chemical exposures. J. Toxicol. Environ. Health 48:35-56.

[4] http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2003-04/Synergy.pdf

[5] Winston, Mark, “Our Bees, Ourselves”, New York Times, July 15, 2014, pg. A25

 

Advertisements




Nanotechnology in the textile industry

1 08 2012

We did a post on the use of nanotechnology in the textile industry about two years ago, and new research has just settled the long-standing controversy over the mechanism by which  silver nanoparticles (the most widely used nanomaterial in the world) kills bacteria.    You know, all those new textiles that advertise that they’re bacteria  and odor free – they  are  even claimed to prevent colds and flu and never need washing![1]  Not to keep you in suspense:  the  research comes with a warning:  use enough.  If you don’t kill the bacteria, you make them stronger. In honor of this new study (summarized below) we’re re-posting our previous posts on nanomaterials:

Recently, I have been noticing various products claiming to have some kind of nanotechnology-based credential. Turns out that’s because the nanotech tsunami is just gaining steam – one tally says that over 10,000 products using nanotechnology are already on the market. In the food industry, the FDA says there are no nano-containing foods on the market in the U.S., yet DK Matai, Chairman of the Asymmetric Threats Contingency Alliance, says that the USA is the world leader in nano foods, followed by Japan, Europe and China[1]. The Environmental Working Group has done it’s own count of lotions, creams, sprays, washes, cosmetics and nutritional supplements on the market in the U.S. and has found close to 10,000 that contain nanoparticles. And there’s an app for that: The Project on Emerging Nanotechnologies has an iPhone app called findNano, which urges users to photograph and submit information on a possible nanotech product for inclusion in its inventory.

Turns out that there are many who think the next Industrial Revolution is right around the corner – because of nanotechnology. They think that nanotechnology will radically transform the world, and the people, of the early 21st century. It has the capacity to change the nature of almost every human-made object. Whether that transformation will be peaceful and beneficial or horrendously destructive is unknown. So naturally it’s become very controversial. More about that later.

It seems the better term is really nanoscience.  Nanoscience is the study of things that are really really small: A nanometer is one billionth of a meter (10-9 m). This is roughly ten times the size of an individual atom. For comparison, 10 NM is 1000 times smaller than the diameter of a human hair. How small is that? “If a centimeter is represented by a football field, a nanometer would be the width of a human hair lying on the field,” offers William Hofmeister of the University of Tennessee Space Institute’s Center for Laser Applications.

From National Nanotechnology Initiative

Nanoparticles are bits of a material in which all three dimensions of the particle are within the nanoscale: nanotubes have a diameter that’s nanosize, but can be several hundred nanometers (nm) long or even longer.   A cubic centimeter of material, about the size of a sugar cube, has the same surface area of a half a stick of gum. But if you fill that cube with particles that are 1 nanometer in size, the surface area of all those particles is an astonishing 6,000 square meters, nearly the surface area of 3 football fields.Nanofilms or nanoplates have a thickness that’s nanosize, but their other two dimensions can be quite large. These nanoparticles can be designed into structures of a specific size, shape, chemical composition and surface design to create whatever is needed to do the job at hand. They can be suspended in liquid, ground into a powder, embedded into a composite or even added to a gas.

Many important functions of living organisms take place at the nanoscale. The human body uses natural nanoscale materials, such as proteins and other molecules, to control the body’s many systems and processes. A typical protein such as hemoglobin, which carries oxygen through the bloodstream, is 5 nms in diameter. Based on the definition of nanotech given above, biotech can be thought of as a subset of nanotech – “nature’s nanotechnology.”

Manipulating something so mind-bogglingly small is where the “technology” part comes in – it’s about trying to make technologies, such as computers and medical devices, out of these nanoscale structures. Nanotechnology is different from older technologies because unusual physical, chemical, and biological properties can emerge in materials at the nanoscale. Nano particles have different physical properties from their macro or life-size scale counterparts. For example, copper is an opaque mineral, but at the nano scale it is transparent. Some particles, like aluminum, are stable at macro scale but become combustible when reduced to nano-particles; a gold nanowire is twenty times stronger than a large bar of gold.

Molecular manufacturing is the name given to a specific type of “bottom-up” construction technology. As its name implies, molecular manufacturing will be achieved when we are able to build things from the molecule up, and we will be able to rearrange matter with atomic precision.

As I mentioned earlier, something so little understood is controversial, with many different points of view. These differences start with the very definition of nanotechnology, and moves on to what nanotechnology can achieve. Then there is the ethical challenge – what is the moral imperative about making technology that might help increase our lifespans available to all, for example?

Finally, the concern about possible health and environmental implications is perhaps the most controversial. The problem is that some properties of these tiny particles are unknown, and potentially harmful, and scientists are still trying to determine whether their size affects their toxicity. Scientists worry that the small particles used in nanotechnology could penetrate biological barriers designed to keep out larger particles; also we don’t have guidelines about how much we can safely ingest without harm. For more on possible harm to human health, click here.

Nanotechnology has been discovered by the textile industry – in fact, a new area has developed in the area of textile finishing called “Nanofinishing”. Making fabric with nano-sized particles creates many desirable properties in the fabrics without a significant increase in weight, thickness or stiffness, as was the case with previously used techniques. Nanofinishing techniques include: UV blocking, anti-microbial, bacterial and fungal, flame retardant, wrinkle resistant, anti-static, insect and/or water repellant and self-cleaning properties.

One of the most common ways to use nanotechnology in the textile industry is to create stain and water resistance. To do this, the fabrics are embedded with billions of tiny fibers, called “nanowhiskers” (think of the fuzz on a peach), which are waterproof and increase the density of the fabric. The Nanowhiskers can repel stains because they form a cushion of air around each cotton fiber. When something is spilled on the surface of the fabric, the miniature whiskers actually cohesively prop up the liquid drops, allowing the liquid drops to roll off. This treatment lasts, they say, for about 50 home wash cycles before its effectiveness is lost.    A corollary finish is that of using nanoparticles to provide a “lotus plant” effect which causes dirt to rinse off easily, such as in the rain.

Nanotechnology can also be used in the opposite manner to increase the ability of textiles, particularly synthetics, to absorb dyes. Until now most polypropylenes have resisted dyeing, so they were deemed unsuitable for consumer goods like clothing, table cloths, or floor and window coverings. A new technique being developed is to add nanosized particles of dye friendly clay to raw polypropylene stock before it is extruded into fibres. The resultant composite material can absorb dyes without weakening the fabric.

The other main use of nanoparticles in textiles is that of using silver nanoparticles for antimicrobial, antibacterial effects, thereby eliminating odors in fabrics. Nanoparticles of silver are the most widely used form of nanotechnology in use today, says Todd Kuiken, PhD, research associate at the Project on Emerging Nanotechnologies (PEN). “Silver’s antimicrobial property is one that suits a lot of different products, and companies pretty much run the gamut of how many consumer products they put it in.” 

PEN’s database of consumer products that contain nanoparticles lists 150 different articles of clothing, including athletic clothes, jogging outfits, camping clothing, bras, panties, socks, and gloves, that are treated with nano-silver because it kills the bacteria that cause odor.

The new research mentioned above was published in the American Chemical Society’s Nano Letters by  researchers at Rice University[2] , who found that the assumption that silver nanoparticles are toxic to bacteria is unfounded.

Scientists have long known that silver ions, which flow from nanoparticles when oxidized, are deadly to bacteria, and the assumption was made that silver nanoparticles were equally toxic. In fact, when the possibility of ionization is taken away from silver, the nanoparticles are practically benign in the presence of microbes, said Pedro Alvarez, George R. Brown Professor and chair of Rice’s Civil and Environmental Engineering Department.[3]  He said the straightforward answer to the decade-old question is that the insoluble silver nanoparticles do not kill cells by direct contact. But soluble ions, when activated via oxidation in the vicinity of bacteria, do the job nicely.

To figure that out, the researchers had to strip the particles of their powers. “Our original expectation was that the smaller a particle is, the greater the toxicity,” said Zongming Xiu, a Rice postdoctoral researcher and lead author of the paper. “We found the particles, even up to a concentration of 195 parts per million, were still not toxic to bacteria,” Xiu said. “But for the ionic silver, a concentration of about 15 parts per billion would kill all the bacteria present. That told us the particle is 7,665 times less toxic than the silver ions, indicating a negligible toxicity.”  In fact, E. coli bacteria became stimulated by silver ions when they encountered doses too small to kill them.

The Environmental Protection Agency (EPA) granted  it’s first-ever approval to use nanosilver particles in fabrics in December 2011, and is based on a conditional four year registration. . “Conditional” means that the manufacturer must provide test results (within four years) showing how the nanosilver particles interact with the environment. However, the EPA has a long history of letting such approvals linter, and has already expressed concern about nanosilver particles impacts on health, saying the approval “will likely lead to low levels of human and environmental exposure and risks.”

Last year, the Swiss Federal Laboratories for Materials Testing and Research examined what happens to silver nanoparticles in fabrics during washing – and found that these silver nanoparticles actually wash out of fabrics – so there is a high likelihood that the silver will spread into the environment. Another study found that socks treated with nanosilver lost, on average, half the nanoparticles embedded in the fabric during washing.

Among other well documented studies (see sites listed below) which have shown silver nanoparticles to be highly toxic to bacteria, fungi and other microorganisms is one by Duke University, in which it was found that silver nanoparticles negatively impacted the growth of plants – and also kills the beneficial soil microbes which sustain the plants. “Nanoparticles likely enter the environment through wastewater, where they accumulate in biosolids (sewage sludge) at wastewater treatment plants. One of the ways in which the sludge is disposed of is through land application, because it is valuable as a fertilizer. Whereas fertilizers add nutrients to the soil that are essential for plant growth, plants also depend on soil bacteria and fungi to help mine nutrients from the air and soil. Therefore, the antimicrobial effects of silver nanoparticles could have impacts at the ecosystem level—for example, affecting plants whose growth is dependent on soil-dwelling microorganisms.” Another study (Choi, Yu, Fernandez et al in Water Research 2010) found that once nanosilver is washed down the drain, it’s highly effective at killing the microorganisms used to treat sewage in wastewater treatment plants, which could lead to bigger problems with drinking-water safety.

The future for textile applications using nanotechnology is exploding due to various end uses like protective textiles for soldiers, medical textiles and smart textiles. Consider the T-shirt. Research is being done that will use nanotechnology-enhanced fabric so the T-shirt can monitor your heart rate and breathing, analyze your sweat and even cool you off on a hot summer’s day. What about a pillow that monitors your brain waves, or a solar-powered dress that can charge your ipod or MP4 player? The laboratory of Juan Hinestroza, assistant professor of Fiber Science and Apparel Design at Cornell University, has developed cotton threads that can conduct electric current as well as a metal wire can, yet remain light and comfortable enough to give a whole new meaning to multi-use garments. This technology works so well that simple knots in such specially treated thread can complete a circuit – and solar-powered dress with this technology literally woven into its fabric. Dr. Hinestroza designed the fabrics used in a Cornell Univesity fashion show by designer Olivia Ong, which guards the wearer against bacteria, repels stains, fights off allergies and oxidizes smog. And costs about $10,000 per yard to make.

And yet, there is mounting evidence that nanotechnology requires special attention. Here’s an excerpt from an interview with Andrew Maynard, science advisor to the Project on Emerging Technologies (PEN), from Technology Review:

  • “Individual experiments have indicated that if you develop materials with a nanostructure, they do behave differently in the body and in the environment.
  • We know from animal studies that very, very fine particles, particles with high surface area, lead to a greater inflammatory response than the same amount of larger particles. We also know that they can enter the lining of the lungs and get through to the blood and enter other organs. There is some evidence that nanoparticles can move into the brain along the olfactory nerve, so this is completely circumventing the blood-brain barrier.
  • There really isn’t any consensus on how you go about evaluating the risks associated with carbon nanotubes yet. In cell cultures, you have to have some idea what kind of response you’re looking for. We already know in some studies that the lungs see carbon nanotubes almost as biological materials–they don’t see it as a foreign material. But then because of that, they start building up layers of collagen and cells around these nanotubes. They almost see them as a framework for building tissue on. Now, that actually may be a good thing in parts of the body, but in the lungs you end up using up the air space. But without that information, you wouldn’t necessarily know what were the appropriate cell tests to do in the first place.
  • The thing that concerns me is, there is very much a mind-set that is based on the conventional understanding of chemicals. But nanomaterials are not chemicals. They have a structural component there as well as a chemical component.

At the recent meeting of the Society of Environmental Toxicology and Chemistry (SETAC), more than 20 studies were presented on the fate of nanoparticles once they enter the environment, and nearly all found that these materials were building up in organisms, such as earthworms, insects, and fish, and having subtle effects on their abilities to survive

The Rodale website had some suggestions for those of us who are worried about smelly clothes: Try nature and a little common sense.

  • Pretreat. Before you wash your smelly gym clothes, sprinkle some baking soda on them, leaving it on for about an hour before laundering them to remove perspiration odors as well as stains.
  • Launder with care. Because sweat can be oily, it can build up on clothing, becoming difficult to remove with regular detergents and water. Add a cup of white vinegar to the rinse cycle; vinegar helps break through oils on fabric, and it serves as a deodorizer. Or hand-wash your clothes with shampoo, which is designed to cut through body oils.
  • Line-dry. Nothing cuts through bad odors like oxygen and sunlight. Let your clothes dry outside, rather than in a machine, and you’ll save energy, make your clothes last longer, and prevent offensive odors the next time you hit the gym. Read our Nickel Pincher’s line-drying story for the ultimate in line-drying advice.

Some other studies on toxicity of nanoparticles:

http://www.scientificamerican.com/article.cfm?id=nanotechnology-silver-nanoparticles-fish-malformation

http://www.nanotech-now.com/news.cgi?story_id=34185

http://nanosafety.ihep.ac.cn/2006/2006.15.pdf

http://www.klgates.com/files/Publication/2b1f4c2a-298b-4948-9ce7-69f1396b61ac/Presentation/PublicationAttachment/bbdf8cdc-be42-4fa6-b942-7263b449d0b3/Article_Stimers_Nanotech.pdf





The President’s Cancer Panel and fabric choices

6 10 2010

Ever wonder why you buy those organic foods that cost more?  It’s always a bit of sticker shock when you see the organic and conventional side by side.   The organic strawberries may taste better, but this economy means we have to pinch every penny.  As my husband says, an apple is an apple, so why pay more for one when you can get the other cheaper?  It’s not going to do anything to me – at least not today.

Turns out you might want to re-think those – and lots of other –  choices you make every day.  The President’s Cancer Panel issued a 240-page report in May, 2010, called “Reducing Environmental Cancer Risk: What We Can Do Now” This year’s report is the first time the panel has emphasized the environmental causes of cancer. It warns of “grievous harm” from chemicals and other hazards, and “a growing body of evidence linking environmental exposures to cancer.” Children are especially vulnerable.

The report is based on testimony from a series of meetings held between September 08 and January 09 which  included 45 invited experts from academia, government, industry, the environmental and cancer advocacy communities, and the public. The report urged President Obama to “use the power of your office to remove the carcinogens and other toxins from our food, water, and air that needlessly increase health care costs, cripple our nation’s productivity, and devastate American lives.”  Because industrial chemicals are so ubiquitous and exposure to these potential environmental carcinogens so widespread, “the Panel was particularly concerned to find that the true burden of environmentally induced cancers has been grossly underestimated,”

The report said previous estimates that environmental pollutants and occupational exposures cause 6% of all cancers are low and “woefully out of date.”  In fact, the National Institutes of Health estimates that environmental factors contribute to 75-80% of all cancers: from tobacco smoke, ultraviolet light, radiation, obesity and certain viruses and sexually-transmitted diseases – in addition to environmental carcinogens. One excerpt reads, “With nearly 80,000 chemicals on the market. … many of which are used by millions of Americans in their daily lives and are. … largely unregulated, exposure to potential environmental carcinogens is widespread.”

The President’s Panel report clearly states that much work has to be done to better characterize environmental determinants of cancer—including better research methods, standardized measurements, and more realistic models that can help estimate the cumulative risks associated with multiple environmental toxins.  But scientists have been scrambling for decades for scarce funding  – and the work was given a low priority.  The fundamental problem is that research into environmental causes of cancer has little potential for yielding profits—at least in the short-term. In fact, it is more likely to cost industry through stronger regulation and removal of products from the market, litigation and the added expense of developing new products based on “green chemistry.” So it’s not a stretch to understand why the government and the pharmaceutical industry would rather spend billions of dollars promoting screening and developing profitable new cancer drugs.  Peter Montague, a long-time environmental advocate puts it this way: “To be blunt about it, there’s no money in prevention, and once you’ve got cancer you’ll pay anything to try to stay alive.”

Environmental toxins are rarely considered in health policy initiatives (except for tobacco and sunlight), despite the findings that people who live in polluted areas and work with toxic substances (most often the poor and minorities) have higher rates of cancer incidence.  The Cancer Panel  pointed out  “Cancer Alley“, the stretch along the Mississippi between Baton Rouge and New Orleans, as an example.  Louisiana ranked second in the nation for on-site toxic releases, and many studies exist which demonstrate the cancer rate is above the average for the rest of the United States.  In one small Louisiana town in Cancer Alley, 3 cases of rhabdomyosarcoma were reported in a 14 month period.  Rhabdomyosarcoma is an extremely rare and devastating childhood cancer, with a national average of one child in a million.  Five years ago a group of residents of Mossville, Louisiana, filed a human rights complaint against the US government, alleging it was not protecting their right to live in a healthy environment.  The Inter-American Commission on Human Rights agreed this year to hear their complaint.

In a consensus statement,  the Collaborative on Health and the Environment, an international partnership of some 3,000 individuals and organizations, says that the net result of this inadequate funding is a body of research that is in danger of being irrelevant:

“The methods that have been used to attribute cancer risk to environmental exposures are outdated and flawed, and should no longer be used to determine policy or set research priorities.”

So it’s not just organic foods that we should be concerned about, but the whole phalanx of products which are made using harmful chemistry, and the manufacturers that don’t capture emissions or treat their waste products, thereby polluting our entire ecosystem.  That’s why O Ecotextiles has made a commitment to sell only fabrics which are safe for both you and the Earth.

I found it interesting that there is a new branch of science that is also studying how these environmental factors can influence us.  Called epigenetics, it is the study of changes in gene activity that don’t involve changes to the genetic code but still get passed down to at least one successive generation.   These patterns of gene expression are governed by the cellular material — the epigenome — that sits on top of the genome, just outside it (hence the prefix epi-, which means above). It is these epigenetic “marks” that tell your genes to switch on or off, to speak loudly or whisper. It is through epigenetic marks that environmental factors like diet, stress and prenatal nutrition can make an imprint on genes that is passed from one generation to the next.

One could think of the genome as a book of blueprints,  laying out a number of options in the form of genes. The epigenome is like the contractor who goes through the book, deciding which options to include in a house. Two different contractors can build radically different houses from the same book of blueprints, in the same way that two organisms with identical DNA can look very different.

This field of study, some believe, might hold the key to understanding how environmental toxins cause serious, and often life-threatening diseases, such as obesity, diabetes and cancer.  For quite some time scientists have been trying to determine how exposure to environmental toxins can result in serious disease years or even decades later. Epigenetics may provide the mechanism. An exposure to an environmental toxin at one point in a person’s life (and most critically during gestation) can trigger the epigenome to turn on or turn off a key gene. Years later, because of that epigenetic change, a disease may appear.

“We can no longer argue whether genes or environment has a greater impact on our health and development, because both are inextricably linked,” said Randy Jirtle,  Ph.D., a genetics researcher in Duke’s Department of Radiation Oncology. “Each nutrient, each interaction, each experience can manifest itself through biochemical changes that ultimately dictate gene expression, whether at birth or 40 years down the road.”

Exposures to pesticides, toxins and synthetic compounds can give rise to a host of diseases – such as cancer and asthma — whose prevalence has soared in recent decades, says H. Kim Lyerly, M.D., director of the Duke Comprehensive Cancer Center.  Pesticides encountered in utero might be dormant in the fetus, only to cause cancer ten, 20 or 50 years later, he said.

Even the lowest detectable limits of a chemical can have dire effects on a living organism, added William Schlesinger, Ph.D., Dean of the Nicholas School of the Environment and Earth Sciences at Duke. Atrizine is a prime example. Less than one part per billion of this widely used corn herbicide de-masculinizes developing frogs or causes dual male-female genitalia. Yet often the Environmental Protection Agency’s instrumentation doesn’t record such minute levels of chemical exposure, he said.

What does the Cancer Panel suggest we do in the meantime?  Here is their list, with a few of additions of our own:

  • Remove your shoes before entering your home to avoid tracking in toxic chemicals such as pesticides.
  • Filter tap water.
  • Use stainless steel, glass or BPA-free plastic water bottles.
  • Microwave in ceramic or glass instead of plastic containers.
  • Become aware of what you’re eating:  minimize consumption of food grown with pesticides, and meat raised with antibiotics and growth hormone.
  • Minimize consumption of processed, charred or well-done meats, which contain carcinogenic heterocyclic amines and polyaromatic hydrocarbons.
  • Reduce radiation from X-rays and other medical sources.
  • Be aware of the products you use, especially those that come in contact with your skin, such as:  lotions, cosmetics, wipes, sheets, clothing, hair dyes.  Check ingredient labels, look for third party certifications where appropriate.
  • And finally:  use sunscreen, stop smoking and lose weight if necessary.