The new bioeconomy

15 05 2012

Last week we explored using biomass as fuel, and some of the implications in doing that.  Previously we looked at using biomass in the world of fabrics and furnishings,  which include the new biotech products polylactic acid (PLA) (DuPont’s Ingeo and Sorona fibers) and soy-based foam for upholstery  (click  here and here to see our posts).  The ideas being presented by new bio technologies are not new – in the 19th century Rumpelstiltskin spun straw into gold – and the idea has always held a fascination for humans.

There is a new report called “The New Biomassters – Synthetic Biology and The Next Assault on Biodiversity and Livelihoods” (click here to download the report) published by The ETC Group, which focuses on the social and economic impacts of new bio technologies.  This report paints an even more troubling picture than what I’ve been able to uncover to date, and the information contained in this post comes from that report:

“Under the pretext of addressing environmental degredation, climate change and the energy and food crisis, and using the rhetoric of the “new” bioeconomy  (“sustainability”, “green economy”, “clean tech”, “clean development”) industry is talking about  solving these problems by substituting fossil carbon for that of living matter.    The term “bioeconomy” is based on the notion that biological systems and resources can be harnessed to maintain current industrial systems of production, consumption and capital accumulation.” 

Sold as an ecological switch from a ‘black carbon’ (i.e. fossil) economy to a ‘green carbon’ (plant-based) – and therefore a “clean” form of development –  this emerging bioeconomy is in fact, according to ETC,  “a red-hot resource grab of the lands, livelihoods, knowledge and resources of peoples in the global South” (because 86% of that biomass is located in the tropics and subtropics).

What does a new bioeconomy look like?  According to the ETC:   “as the DNA found in living cells is decoded into genetic information for use in biotechnology applications, genetic sequences  acquire a new value as the building blocks of designed biological production systems. By hijacking the ‘genetic instructions’ of cells … to force them to produce industrial products, industry transforms synthetic organisms into bio-factories that can be deployed elsewhere on the globe – either in private vats or plantations.  Nature is altered to meet business interests.”

They go on to say that as ecosystems collapse and biodiversity declines, new markets in ecosystem “services” will enable the trading of ecological ‘credits.’   The declared aim is to “incentivize conservation” by creating a profit motive in order to justify interventions in large-scale natural systems such as hydrological cycles, the carbon cycle or the nitrogen cycle.[1] Like the ‘services’ of an industrial production system, these ‘ecosystem services,’ created to privatize natural processes, will become progressively more effective at serving the interests of business.

It seems to be all about profit.

The ETC report states that concerted attempts are already underway by many industrial players to shift industrial production feedstocks from fossil fuels to the 230 billion tons of ‘biomass’ (living stuff) that the Earth produces every year -not just for liquid fuels but also for production of power, chemicals, plastics and more.

The visible players involved in commodifying the 76% of terrestrial living material that is not yet incorporated in the global economy include BP, Shell, Total, Exxon, Cargill, DuPont, BASF, Syngenta and Weyerhaeuser.   Enabling this attempt is the adoption of synthetic biology techniques (extreme genetic engineering) by these well-funded companies.

“We have modest goals of replacing the whole petrochemical industry and becoming a major source of energy.”

– J. Craig Venter, founder Synthetic Genomics, Inc.[2]

There is lots more in the ETC report, here’s just a summary of some other issues:

  • The report examines the next generation biofuels, including algal biofuels and synthetic hydrocarbons, and establishes the case for why this generation may be as ecologically and socially dangerous as the first.  Even leading companies and scientists involved in synthetic biology agree that some oversight is necessary – currently it’s being mostly ignored and is not on the agenda for the Rio+20 summit to be held in Brazil in June.
  • Today’s synthetic biology is unpredictable, untested and poorly understood.  Could open a Pandora’s box of consequences.  See:
  • The “green” credentials of current bio-based plastics and chemicals are called into question.  (See our posts on biopolymers – click here and here).
  • How much biomass is enough?  “Attempting to set an ‘acceptable level’ of biomass extraction is as inappropriate as forcing a blood donation from a hemorrhaging patient. Already struggling to maintain life support, the planet simply does not have any biomass to spare. Human beings already capture on-fourth of land based biomass for food, heat and shelter; attempts to define a limit beyond which ecosystems lose resilience and begin to break down reveal that we consumed past such limits 20 years ago.”
  • Biomass is considered a “renewable resource” – and it is true that while plants may be renewable in a short period of time, the soils and ecosystem that they depend on may not be.  Industrial agriculture and forest biomass extraction rob soils of nutrients, organic matter, water and structure, decreasing fertility and leaving ecosystems more vulnerable or even prone to collapse. Associated use of industrial chemicals and poor land management can make things worse. In practice, therefore, biomass is often only truly renewable when extracted in such small amounts that they are not of interest to industry.
  • The claim that biomass technology will be a stepping stone to a new mix of energy sources misses the whole point – that we are facing a crisis of overproduction and consumption.  Reducing our overall energy demands is critical, as it boosting support for decentralized peasant agriculture.

[1] See for example, The Economics of Ecosystems and Biodiversity:

Ecological and Economic Foundations. Edited By Pushpam Kumar. An

output of TEEB: The Economics of Ecosystems and Biodiversity,

Earthscan Oct. 2010

[2] Michael Graham Richard, “Geneticist Craig Venter Wants to Create Fuel from CO2,” Treehugger, 29 February 2008. Available online at:

White biotechnology and enzymes

18 11 2011

For tens of thousands of years, humans relied on nature to provide them with everything they needed to make their lives more comfortable -cotton and wool for clothes, wood for furniture, clay and ceramic for storage containers, even plants for medicines. But this all changed during the first half of the twentieth century, when organic chemistry developed methods to create many of these products from oil.  Oil-derived synthetic polymers, colored with artificial dyes, soon replaced their precursors from the natural world.

But today, with growing concerns about the dependence on imported oil and the awareness that the world’s oil supplies are not limitless, coupled with stricter environmental regulations,  chemical and biotechnology industries are exploring nature’s richness in search of methods to replace petroleum-based synthetics.  As with other forms of biotechnology, industrial biotech involves engineering biological molecules and microbes with desirable new properties. What is different is how they are then used: to replace chemical processes with biological ones. Whether this is to produce chemicals for other processes or to create products such as biopolymers with new properties, there is a  huge effort to harness biology to accomplish what previously needed big, dirty chemical factories, but in cleaner and greener ways.

The public has for a long time perceived biotechnology to mean dangerous meddling with the genes in food and fiber crops.  But biotechnology is about much more than transgenic crops – it also uses microbes to make pharmaceuticals, for example.  Industrial biotechnology is known as “white” biotechnology, as distinct from “red” biotechnology, which is devoted to medical and pharmaceutical purposes, and “green” biotechnology, or the application of biotechnology in agriculture.

From: EuropaBio

Today, the application of biotechnology to industrial processes holds many promises for sustainable development.  One of the first goals on white biotechnology’s agenda has been the production of biodegradable plastics, and in textiles,  DuPont has invested much in the production of textile fibers from corn sugar (Sorona ®) while Cargill Dow has introduced NatureWorks ™, a polymer made from lactic acid which is used in textiles under the brand name Ingeo ®.  And these new processes have resulted in considerable environmental benefits:  In the case of Sorona ®, for example,  DuPont was able to replace the toxic elements of ethylene glycol and carbon monoxide in typical PET fibers with benign corn sugars.

But there are challenges pertaining to these new bioplastics, and the evidence that they’re actually better for the planet is hotly debated.  As Jim Thomas argues in the New Internationalist online magazine:

Strictly speaking a bioplastic is a polymer that has been produced from a plant instead of from petroleum. That is neither a new breakthrough nor a guarantee of ecological soundness. The earliest plastics such as celluloid were made from tree cellulose before petroleum proved itself a cheaper source. Today, with oil prices skyrocketing, it’s cheaper feedstock –  not green principles –  that is driving chemical companies back to bio-based plastics. Bioplastics may bring in the greenbacks for investors but are they actually green for the planet? The evidence is not convincing. For a start bioplastics may or may not be degradable or biodegradable – two terms that mean very different things. Many bio-based plastics – like DuPont’s Sorona – make no claims to break down in the environment. So much for disposal. But replacing fossil fuels with plants has to be a good idea, right? This is the premise on which the green claims of bioplastics mostly rest. Unfortunately, as advocates of biofuels have learned, switching from oil to biomass as the feedstock of our industrial economy carries its own set of problems. Like hunger.

There is nothing sustainable or organic about most industrial agriculture feedstocks. At present genetically modified corn grown using pesticides is probably the leading source of starch for bioplastics.  The link between genetic contamination and bioplastics is strong.

As concerns mount, the Sustainable Biomaterials Collaborative (SBC) – a network of 16 civil society groups and ethical businesses – is working to define a truly sustainable bioplastic. One of its founders, Tom Lent, explains that the SBC started because ‘the promise of bioplastics was not being realized’.

But biotechnology is not just about bioplastics – it’s actually mostly, these days,  about enzymes.  Biotechnology can provide an unlimited and pure source of enzymes as an alternative to the harsh chemicals traditionally used in industry for accelerating chemical reactions. Enzymes are found in naturally occurring microorganisms, such as bacteria, fungi, and yeast, all of which may or may not be genetically modified.  (We’ll come back to this important point later.)

But what are enzymes?

Enzymes are large protein molecules that  act as  catalysts – substances that start or accelerate chemical reactions without themselves being affected —  and help complex reactions occur everywhere in life.  By their mere presence, and without being consumed in the process, enzymes can speed up chemical processes – reactions occur about a million times faster than they would in the absence of an enzyme. In principle, these reactions could go on forever, but in practice most enzymes have a limited life.   There are many factors that can regulate enzyme activity, including temperature, activators, pH levels, and inhibitors.

Enzymes play a diversified role in many aspects of everyday life including aiding in digestion and the production of food as well as in industrial applications. Enzymes are nature’s catalysts. Humankind has used them for thousands of years to carry out important chemical reactions for making products such as cheese, beer, and wine. Bread and yogurt also owe their flavor and texture to a range of enzyme producing organisms that were domesticated many years ago.

Enzymes are categorized according to the compounds they act upon. Some of the most common include:

  •  proteases which break down proteins,
  •  cellulases which break down cellulose,
  •  lipases which split fats (lipids) into glycerol and fatty acids, and
  •  amylases which break down starch into simple sugars.  Human saliva, for example, contains amylase, an enzyme that helps break down starchy foods into sugars.

In textile treatment, the first enzyme applications, as early as 1857, was the use of barley for removal of starchy size from woven fabrics. The first microbial amylases were used in the 1950s for the same desizing process, which today is routinely used by the industry.

Enzymes are now widely used to prepare the fabrics that your clothing, furniture and other household items are made of.  Increasing demands to reduce pollution caused by the textile industry has fueled biotechnological advances that have replaced harsh chemicals with enzymes in many textile manufacturing processes.  The use of enzymes not only make the process less toxic (by substituting enzymatic treatments for harmful chemical treatments) and eco-friendly, they reduce costs associated with the production process, and consumption of natural resources (water, electricity, fuels), while also improving the quality of the final textile product.

But how do they work?

Rader’s website  has a great explanation, which I’ve quoted below:

Think of enzymes as similar to keys which can open locks.  Just as when you need a key that is just the right shape to fit in a particular lock, enzymes complete very specific jobs and do nothing else.  

From: Chem4Kids

 They are very specific locks and the compounds they work with are the special keys. In the same way there are door keys, car keys, and bike-lock keys, there are enzymes for neural cells, intestinal cells, and your saliva.

Here’s the deal: there are four steps in the process of an enzyme working. 

  1.  An enzyme and a substrate are in the same area. The substrate is the biological molecule that the enzyme will attack. 
  2.  The enzyme grabs onto the substrate with a special area called the active site.  The active site is a specially shaped area of the enzyme that fits around the substrate. The active site is the keyhole of the lock. 
  3. A process called catalysis happens. Catalysis is when the substrate is changed. It could be broken down or combined with another molecule to make something new. 
  4.  Then the enzyme lets go.  When the enzyme lets go, it returns to normal, ready to do another reaction. But the substrate is no longer the same – the substrate is now called the product.

Next, well take a look at how enzymes are helping to make the textile industry’s environmental footprint a bit more benign.

Agroecology and the Green Revolution

30 06 2011

The promise of the Green Revolution was that it would end hunger through the magic of chemicals and genetic engineering.   The reasoning goes like this:  the miracle seeds of the Green Revolution increase grain yields;    higher yields mean more income for poor farmers, helping them to climb out of poverty, and more food means less hunger.  Dealing with the  root causes of poverty that contribute to hunger takes a very long time – but people are starving now.  So we must do what we can now  –  and that’s usually to increase production. The Green Revolution buys the time Third World countries desperately need to deal with the underlying social causes of poverty and to cut birth rates.

Today, though, growth in food production is flattening, human population continues to increase, demand outstrips production; food prices soar. As Dale Allen Pfeiffer maintains in Eating Fossil Fuels, modern intensive agriculture – as developed through the Green Revolution –  is unsustainable and has not been the panacea some hoped it would be. Technologically-enhanced agriculture has augmented soil erosion, polluted and overdrawn groundwater and surface water, and even (largely due to increased pesticide use) caused serious public health and environmental problems. Soil erosion, overtaxed cropland and water resource overdraft in turn lead to even greater use of fossil fuels and hydrocarbon products. More hydrocarbon-based fertilizers must be applied, along with more pesticides; irrigation water requires more energy to pump; and fossil fuels are used to process polluted water.  And the data on yields, and fertilizer and pesticide use (not to mention human health problems)  supports these allegations.  A study by the Union of Concerned Scientists called “Failure to Yield” sums it up nicely. (click here).

Michael Pollan, author of The Omnivore’s Dilemma,  says the Achilles heel of current green revolution methods is a dependence on fossil fuels.  “The only way you can have one farmer feed 140 Americans is with monocultures. And monocultures need lots of fossil-fuel-based fertilizers and lots of fossil-fuel-based pesticides,” Pollan says. “That only works in an era of cheap fossil fuels, and that era is coming to an end. Moving anyone to a dependence on fossil fuels seems the height of irresponsibility.”

So is a reprise of the green revolution—with the traditional package of synthetic fertilizers, pesticides, and irrigation, supercharged by genetically engineered seeds—really the answer to the world’s food crisis?  As Josh Viertel, president of Slow Food USA, describes it:  the good news is that feeding the world in 2050 is completely possible; the bad news is that there isn’t a lot of money to be made by doing so.[1]

It has become clear that agriculture has to shrink its environmental footprint – to do more with less.  The world’s growing demand for agricultural production must be met not by bringing more land into production, with more gallons of water, or with more intensive use of inputs that impact the environment, but by being better stewards of existing resources through the use of technological innovation combined with policy reforms to ensure proper incentives are in place.[2]

A massive study (published in 2009)  called the “International Assessment of Agricultural Knowledge, Science and Technology for Development”  concluded that the immense production increases brought about by science and technology in the past 30 years have failed to improve food access for many of the world’s poor. The six-year study, initiated by the World Bank and the UN’s Food and Agriculture Organization and involving some 400 agricultural experts from around the globe, called for a paradigm shift in agriculture toward more sustainable and ecologically friendly practices that would benefit the world’s 900 million small farmers, not just agribusiness.  As the report states:  “business as usual is no longer an option”.[3]

Dr. Peter Rosset, former Director of Food First/The Institute for Food and Development Policy and an internationally renowned expert on food security, has this to say about the Green Revolution:

      In the final analysis, if the history of the Green Revolution has taught
      us one thing, it is that increased food production can-and often does-go
     hand in hand with greater hunger. If the very basis of staying
     competitive in farming is buying expensive inputs, then wealthier farmers
     will inexorably win out over the poor, who are unlikely to find adequate
     employment to compensate for the loss of farming livelihoods. Hunger is
     not caused by a shortage of food, and cannot be eliminated by producing

    This is why we must be skeptical when Monsanto, DuPont, Novartis, and
     other chemical-cum-biotechnology companies tell us that genetic
     engineering will boost crop yields and feed the hungry. The technologies
     they push have dubious benefits and well-documented risks, and the second
     Green Revolution they promise is no more likely to end hunger than the

    Far too many people do not have access to the food that is already
     available because of deep and growing inequality. If agriculture can play
     any role in alleviating hunger, it will only be to the extent that the
     bias toward wealthier and larger farmers is reversed through pro-poor
     alternatives like land reform and sustainable agriculture, which reduce
     inequality and make small farmers the center of an economically vibrant
     rural economy.

We began this series a few weeks ago with statements from several people who said that organic agriculture cannot feed the world.  Yet increasing numbers of scientists, policy panels and experts  are suggesting that agricultural practices pretty close to organic — perhaps best called “sustainable” — can feed more poor people sooner, begin to repair the damage caused by industrial production and, in the long term, become the norm.  This new way of looking at agriculture is called agroecology, which is simply the application of ecological principles to the production of food, fuel and pharmaceuticals.   The term is not associated with any one type of farming (i.e., organic, conventional or intensive) or management practices, but rather recognizes that there is no one formula for success.  Agroecology is concerned with optimizing yields while minimizing negative environmental and socio-economic impacts of modern technologies.

In March, 2011, the United Nations Special Rapporteur on the Right to Food , Olivier de Schutter, presented a new report, “Agro-ecology and the right to food”,  which was based on an extensive review of recent scientific literature.  The report demonstrates that agroecology,  if sufficiently supported, can double food production in entire regions within 10 years while mitigating climate change and alleviating rural poverty.  “To feed 9 billion people in 2050, we urgently need to adopt the most efficient farming techniques available,” says De Schutter.  “Today’s scientific evidence demonstrates that agroecological methods outperform the use of chemical fertilizers in boosting food production where the hungry live — especially in unfavorable environments. …To date, agroecological projects have shown an average crop yield increase of 80% in 57 developing countries, with an average increase of 116% for all African projects,” De Schutter says. “Recent projects conducted in 20 African countries demonstrated a doubling of crop yields over a period of 3-10 years.”

The report calls for investment in extension services, storage facilities, and rural infrastructure like roads, electricity, and communication technologies, to help provide smallholders with access to markets, agricultural research and development, and education. Additionally, it notes the importance of providing farmers with credit and insurance against weather-related risks.

De Sheutter goes on to say: “We won’t solve hunger and stop climate change with industrial farming on large plantations.” Instead, the report says the solution lies with smallholder farmers. Agro-ecology, according to De Sheutter, immediately helps “small farmers who must be able to farm in ways that are less expensive and more productive. But it benefits all of us, because it decelerates global warming and ecological destruction.”

The majority of the world’s hungry are smallholder farmers, capable of growing food but currently not growing enough food to feed their families each year. A net global increase in food production alone will not guarantee the end of hunger (as the poor cannot access food even when it is available), but an increase in productivity for poor farmers will make a dent in global hunger. Potentially, gains in productivity by smallholder farmers will provide an income to farmers as well, if they grow a surplus of food that they can sell.

As an example of how this process works, the UN report suggests that “rather than treating smallholder farmers as beneficiaries of aid, they should be seen as experts with knowledge that is complementary to formalized expertise”. For example, in Kenya, researchers and farmers developed a successful “push-pull” strategy to control pests in corn, and using town meetings, national radio broadcasts, and farmer field schools, spread the system to over 10,000 households.

The push-pull method involves pushing pests away from corn by interplanting corn with an insect repelling crop called Desmodium (which can be fed to livestock), while pulling the pests toward small nearby plots of Napier grass, “a plant that excretes a sticky gum which both attracts and traps pests.” In addition to controlling pests, this system produces livestock fodder, thus doubling corn yields and milk production at the same time. And it improves the soil to boot![4]

Further, by decentralizing production, floods in Southeast Asia, for example, might not mean huge shortfalls in the world’s rice crop; smaller scale farming makes the system less susceptible to climate shocks.  If you read the  story by Justin Gillis in the New York Times on May 5, which discusses the effects climate change is having on crop yields, this can only be a good thing.

Significantly, the UN report mentions that past efforts to combat hunger focused mostly on cereals such as wheat and rice which, while important, do not provide a wide enough range of nutrients to prevent malnutrition. Thus, the biodiversity in agroecological farming systems provide much needed nutrients. “For example,” the report says, “it has been estimated that indigenous fruits contribute on average about 42 percent of the natural food-basket that rural households rely on in southern Africa. This is not only an important source of vitamins and other micronutrients, but it also may be critical for sustenance during lean seasons.” Indeed, in agroecological farming systems around the world, plants a conventional American farm might consider weeds are eaten as food or used in traditional herbal medicine.

States and donors have a key role to play here. Private companies will not invest time and money in practices that cannot be rewarded by patents and which don’t open markets for chemical products or improved seeds.  The flood-tolerant rice mentioned above was created from an old strain grown in a small area of India, but decades of work were required to improve it.  But even after it was shown that this new variety was able to survive floods for twice as long as older varieties, there was no money for distribution of the seeds to the farmers.    Indeed, the distribution was made possible only through a grant from the Bill and Melinda Gates Foundation.

American efforts to fight global hunger, to date, have focused more on crop breeding, particularly genetic engineering, and nitrogen fertilizer than agroecology. Whereas the new UN report notes that, “perhaps because [agroecological] practices cannot be rewarded by patents, the private sector has been largely absent from this line of research.”   The U.S. aggressively promotes public-private partnerships with corporations[5]  such as seed and chemical companies Monsanto, Syngenta, DuPont, and BASF; agribusiness companies Cargill, Bunge; and Archer Daniels Midland; processed food companies PepsiCo, Nestle, General Mills, Coca Cola, Unilever, and Kraft Foods; and the retail giant Wal-Mart.[6]

We need to look closely at all options since there is so much at stake.  To meet the challenges listed above, perhaps we need what Jon Foley calls a “resilient hybrid strategy”.   Foley, director of the Institute of the Environment at the University of Minnesota, puts it this way:

I think we need a new kind of agriculture – kind of a third agriculture, between the big agribusiness, commercial approach to agriculture, and the lessons from organic and local systems…. Can we take the best of both of these and invent a more sustainable, and scalable agriculture?[7]

The New York Times article pointed out the success of a new variety of rice seeds that survived recent floods in India  after being submerged for 10 days.  “It’s the best example in agriculture,” said Julia Bailey-Serres, a researcher at the University of California, Riverside. “The submergence-tolerant rice essentially sits and waits out the flood.” (8)

But this path raises many concerns – for example, genetically modified seeds are anathema to much of Europe and many environmentalists.   And so far, genetic breakthroughs such as engineering plants that can fix their own nitrogen or are resistant to drought “has proven a lot harder than they thought,” says Michael Pollan, who says the  major problem with GMO seeds is that they’re intellectual property.   He is calling for an open source code  (i.e., divorcing genetic modifications from intellectual property). De Sheutter sees promise in marker-assisted selection and participatory plant breeding, which “uses the strength of modern science, while at the same time putting farmers in the driver’s seat.”

So what can be done?

[2] 2010 GAP Report, Global Harvest Initiative,

[3] Synthesis Report: International Assessment of Agricultural Knowledge, Science and Technology for Development”, 2009

[6] Richardson, Jill, “Groundbreaking New UN Report on How to Feed the World’s Hungry:  Ditch Corporate-Controlled Agriculture”, March 13, 2011

[7] Revkin, Andrew, “A Hybrid Path to Feeding 9 Billion on a Still-Green Planet”, New York Times, March 3, 2011,

(8)  Gillis, Justin, “A Warming Planet Struggles to Feed Itself”, New York Times, May 5, 2011,

The promise of biotechnology

4 05 2011

Plastics are a problem – and becoming more of a problem as time goes on because of our voracious appetite for the stuff: global plastic production grew by more than 500% over the past 30 years.  And we have limited fossil fuels available –  that fact alone dwarfs the plastics problem because we depend on fossil fuels for so much more than plastic.  So, many are looking to biotechnology as a solution.  Biotechnology can be defined as  a variety of techniques that involve the use and manipulation of living organisms to make commercial products.

According to David Garman, US Under Secretary for Energy, Science and Environment under George W. Bush,  “Many think of biomass mainly as a source for liquid fuel products such as ethanol and biodiesel. But biomass can also be converted to a multitude of products we use every day. In fact, there are very few products that are made today from a petroleum base, including paints, inks, adhesives, plastics and other value-added products, that cannot be produced from biomass.”  And J. Craig Venter, founder of Synthetic Genomics, Inc. (which, according to their website, was founded to commercialize genomic-driven technologies), said “We have modest goals of replacing the whole petrochemical industry and becoming a major source of energy.”

The ETC Group, which focuses on the social and economic impacts of new bio technologies,  has just published a new report, “The New Biomassters – Synthetic Biology and The Next Assault on Biodiversity and Livelihoods” (click here to download the report) in which they critique what the OECD countries are calling the “new bioeconomy”:   From generating electricity to producing fuels, fertilizers and chemicals,  they say that shifts are already underway to claim biomass as a critical component in the global industrial economy. But contrary to what I expected, it’s not a pretty picture.

According to The New Biomassters report:

“What is being sold as a benign and beneficial switch from black carbon to green carbon is in fact a red hot resource grab (from South to North) to capture a new source of wealth. If the grab succeeds, then plundering the biomass of the South to cheaply run the industrial economies of the North will be an act of 21st century imperialism that deepens injustice and worsens poverty and hunger. Moreover, pillaging fragile ecosystems for their carbon and sugar stocks is a murderous move on an already overstressed planet. Instead of embracing the false promises of a new clean green bioeconomy, civil society should reject the new biomassters and their latest assault on land, livelihoods and our living world.”

In the world of fabrics and furnishings, the new biotech products which are being heavily promoted now are PLA (DuPont’s Ingeo and Sorona fibers) and soy-based foam for upholstery.

A summary of the report is given in the Sustainable Plastics web site  which I’ve reproduced here:

  • Provides an overview of the bio-based economy being envisioned by many OECD countries and Fortune 500 corporations and being sold to the global South as “clean development,” as well as a comprehensive consideration of its wider implications — a first from civil society.
  • Analyzes the impact of next-generation biofuels, the production of bio-based chemicals and plastics and the industrial burning of biomass for electricity, arguing that civil society needs to critique and confront the combined threats arising from these developments.
  • Unmasks the industrial players intent on commodifying the 76% of terrestrial living material that is not yet incorporated into the global economy. Sectors with an interest in the new bioeconomy (energy, chemical, plastics, food , textiles, pharmaceuticals, carbon trade and forestry industries) flex a combined economic muscle of over US$17 trillion a year. Visible players in the new bioeconomy include BP, Shell, Total, Exxon, Cargill, ADM, Du Pont, BASF, Weyerhaeuser and Syngenta.
  • Explores the safety concerns and threats to livelihoods inherent in the high-risk, game-changing field of synthetic biology. Relying on synthetic biology to provide higher yields and transform sugars could open a Pandora’s box of consequences. See pages 36-41.
  • Surveys the industrial landscape of next generation biofuels, including cellulosic ethanol, algal biofuels, sugar cane, jatropha and synthetic hydrocarbon, and sets out the case for why this next generation may be as ecologically and socially dangerous as the first. See pages 43- 50.
  • Poses challenging questions about the ‘green’ credentials of bio-based plastics and chemicals and their future impact on food supplies and world hunger. See pages 50-56.
  • Raises important political questions about land grabbing: 86% of global biomass is located in the tropics and subtropics, a simple fact driving an industrial grab that threatens to accelerate the pace of forest destruction and land acquisition in the South in order to feed the economies of the North. See pages 15-18.
  • Tallies the investments, subsidies and financial promises being made for the biomass economy. Predictions for the market value of biomass-based goods and services total over five hundred billion dollars by 2020, with the biggest turnover expected in biofuels and biomass electricity. See pages 13-14.
  • Challenges common myths of industrial biomass use, including the claims that switching to biomass is carbon-neutral, renewable and green. In fact, burning biomass can even produce more CO2 per energy unit than burning coal. See pages 19-20.
  • Details how a key error in the UN climate convention is driving destructive policies. By considering biomass energy as ‘carbon neutral,’ the UN has enabled destructive national renewables policies, carbon trading, and technology transfer activities. This report also examines the new REDD+ provisions in the context of the biomass economy. See pages 20- 24.
  • Sets out why we cannot afford any increase in the amount of biomass taken from already overstressed ecosystems. Indeed, industrial civilization may already be taking too much biomass from the systems we depend upon. See pages 24- 26.
  • Explores the new suite of technological strategies being proposed by biomass advocates to boost global stocks of biomass, including the genetic engineering of crops, trees and algae. Meanwhile, the geoengineering agenda is increasingly converging on biomass. See pages 27-30.
  • Exposes the switch to algae, purported to be the next ‘clean green’ feedstock and argues the case against industrial algal production. See pages 47-50.

So here I was thinking that bio polymers would be the wave of the future.   Now I don’t know what to think!  Looks like I’m in for a lot of reading.  If any of you have insights into these issues, I’d love to hear them.

Biopolymers and polylactic acid (PLA) – or rather, Ingeo

27 04 2011

Synthetic polymers have experienced almost exponential growth since 1950, and today about 5% of world oil production is used for that purpose.  In fact, we will need 25% or more of the current oil production for making polymers by the end of this century.

Some synthetic polymers are used to make fibers, and they have been around for a while:  rayon was discovered in 1924 and nylon in 1939.  But synthetic use really began to take off only since about 1953,  when polyester was discovered.  Qualities like durability and water resistance make synthetics highly desirable in many applications.  Today synthetics account for about half of all fiber usage.

This, despite the fact that synthetics are made from fossil fuel, and the contaminants from the manufacturing leach into our waterways and pollute the atmosphere, and the fact that they are not biodegradable and therefore don’t break down in landfills.  So recently there has been a spotlight on bio-plastics.

Bio plastics, or biopolymers –  in other words, synthetic plastics produced from biological sources –  are derived from cellulose. Cellulose is abundant – it’s said to make up half of all the organic carbon on the planet.   The most often-used biopolymers  include:

  • natural rubber (in use since the mid-1700s),
  • cellulosics (invented in the late-1800s),
  • and nylon 11 (polyamide – or PA 11) and 6–10 (polyamide 6/10) (mid-1900s).

A recent addition to the list is polylactic acid (PLA).  PLA is made from corn starch (in the United States), tapioca products (roots, chips or starch, mostly in Asia) or sugar cane (the rest of the world).[1]  You’ve probably heard about polylactic acid (PLA),  because Cargill, one of the largest agricultural firms on Earth, has invested heavily in it.  Cargill’s wholly owned subsidiary, NatureWorks, is the primary producer of PLA in the United States.  The brand name for NatureWorks PLA is Ingeo, which is made into a whole array of products, including fabrics.

The producers of PLA have touted the eco friendliness of PLA based on:

  1. the fact that it is made from annually renewable resources ,
  2.  that it will biodegrade in the environment all the way to carbon dioxide and water  –  at least in principle, and
  3. they also cite PLA’s lower carbon footprint.

Let’s take a look at these three claims.

Plant based biopolymers do come from renewable resources, but the feedstock used presents some interesting problems.  In the United States, corn is used to make the PLA. In the US, corn-based biopolymer producers have to compete with ethanol producers of government mandated gasoline blends, raising the cost and limiting availability for both. This problem will become worse in the future as the law requires a doubling of the percentage of ethanol used in motor fuel. Nearly a third of the US corn crop previously used for food was used to replace 5% of gasoline consumption in 2008.[2]

In a world where many people are starving, many say that it seems almost criminal to grow food crops, such as corn, to turn it into cloth. Agricultural lands are often cleared to make way for the growing of crops for the production of polymers. This leads to a continuous shrinking of the food producing lands of the world.  Lester Brown, president of the Earth Policy Institute, says, “already we’re converting 12% of the US grain harvest to ethanol (anticipated to rise to 23% by 2014). How much corn do we want to convert to nonfood uses?”[3]

In addition, most of the corn used by NatureWorks to make PLA is genetically modified, which raises serious ethical issues.

Other critics point to the steep environmental toll of industrially grown corn. The cultivation of corn uses more nitrogen fertilizer, more herbicides and more insecticides than any other U.S. crop; those practices contribute to soil erosion and water pollution when nitrogen runs off fields into streams and rivers.

PLA is said to decompose into carbon dioxide and water in a “controlled composting environment” in 90 days or less.  What’s that?  Not exactly your backyard compost heap!  It’s an industrial facility where microbes work at 140 degrees or more for 10 consecutive days.  In reality very few consumers have access to the sort of composting facilities needed to degrade PLA.  NatureWorks has identified 113 nationwide – some handle industrial food-processing waste or yard trimmings, others are college or prison operations .  Moreover, PLA in quantity can interfere with municipal compost operations because it breaks down into lactic acid, which makes the compost wetter and more acidic.

It looks like most PLA will end up in landfills, where there is no evidence it will break down any faster than PET.  Glenn Johnston, manager of global regulatory affairs for NatureWorks, says that a PLA container dumped into a landfill will last as long as a PET bottle.[4]

In fact, manufacturers have changed their stance: PLA is now defined as “compostable” instead of biodegradable, meaning more heat and moisture is needed to degrade PLA than is found in your typical backyard compost bin.

So far, biopolymer producers have had problems demonstrating that their materials have smaller carbon footprints than fossil fuel-derived polymers.   The energy inefficiencies of planting, growing, and transporting biological feedstocks mean more total energy is likely consumed to produce a unit of biopolymer than to make a unit of an oil or gas-based polymer.

However, Ramani Narayan of Michigan State University  found that “the results for the use of fossil energy resources and GHG emissions are more favorable for most bio based polymers than for oil based. As an exception, landfilling of biodegradable polymers can result in methane emissions (unless landfill gas is captured) which may make the system unattractive in terms of reducing greenhouse gas emissions.”[5]

Dr. Narayan recommended that, relative to their conventional counterparts, green polymers  should:

  • save at least 20 MJ (non-renewable) energy per kg of polymer,
  • avoid at least 1 kg CO2 per kg polymer and
  • reduce most other environmental impacts by at least 20%.

From this point of view, he says,  green plastics  can be defined in a broad and target-oriented manner.

But  carbon footprints may be an irrelevant measurement, because it has been established that plants grow more quickly and are more drought and heat resistant in a CO2 enriched atmosphere. Many studies have shown that worldwide food production has risen, possibly by as much as 40%, due to the increase in atmospheric CO2 levels. Therefore, it is both ironic  and a significant potential problem for biopolymer production if the increased CO2 emissions from human activity were rolled back, causing worldwide plant growth to decline.  This in turn would greatly increase the  competition for biological sources of food and fuel –  with biopolymers coming in last place.[6]

A further problem with biopolymers (except for future PE/PP made from sugar cane) is that  they require additional sorting at commercial recycling centers to avoid contaminating other material streams, and, although segregated collection helps, it is complex and increases costs.

In the final analysis, newer biopolymers don’t yet perform as well as oil based polymers, especially in terms of lower heat and moisture resistance, so the user might feel green but gets results that are less sustainable and more limited in use.  PLA remains a boutique polymer, and some see the best value proposition for biopolymers to be where their use is based on their unique properties, such as in medical and dental implants, sutures, timed released chemotherapy, etc. , because  PLA will slowly come apart in the body over time, so it can serve as a kind of scaffold for bone or tissue regrowth or for metered drug release.  But this is a small and specialized market.

But still, the potential and need for plastic alternatives has become acute:  The SPI Bioplastic Council anticipates that the biopolymer market will exceed $1 billion by 2012 – today it is half that.   Bioplastic remains “a sector that is not yet mature but will be growing fast in the coming years,” says Frederic Scheer , CEO of Cereplast and the so-called ‘Godfather of Bioplastics.’  It has not matured because of high production costs and the restricted capacity of biomass-based polymers.

But  according to The ETC Group, there are already concerted efforts, using biotechnology,  to shift global industrial production from a dependence on fossil fuels to biomass – not only for plastics but also for power, chemicals, and more.  It sounds good – until you read their report, which I’ll cover next week.

[2] Jones, Roger, “Economics, Sustainability, and the Public Perception of Biopolymers”, Society of Plastics Engineers,

[3] Royte, Elizabeth, “Corn Plastic to the Rescue”, Smithsonian,  August 2006

[4] Ibid.

[5] Narayan, Ramani, “Review and Analysis of Bio-based Product LCA’s”, Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824

[6] D. B. Lobell and C. B. Field, Global scale climate-crop yield relationships and the impacts

of recent warming, Env. Res. Letters 2, pp. 1–7, 2007  AND

L. H. Ziska and J. A. Bunce, Predicting the impact of changing CO2 on crop yields:

some thoughts on food, New Phytologist 175, pp. 607–618, 2007.

What about soil resistant finishes like Scotchgard, GoreTex, NanoTex and GreenShield – are they safe?

10 02 2010

Last week I promised to take a look at soil and stain repellant finishes to see how each is applied and/or formulated.  Some of these trademarked finishes claim impeccable green credentials, so it’s important that we are able to evaluate their claims – or at least know the jargon!  The chemistry here, as I said in last week’s post, is dense.  The important thing to remember about all these finishes is that they all depend on flurocarbon based chemistry to be effective.

The oldest water repellant finishes for fabrics were simply coatings of paraffin or wax – and they generally washed out eventually.  Perfluorochemicals (PFC’s) are the only chemicals capable of repelling water, oil and other liquids that cause stains. Fabrics finished with PFCs have nonstick properties; this family of chemicals is used in almost all the stain repellant finishes on the market today.  Other materials can be made to perform some of these functions but suffer when subjected to oil and are considerably less durable.

The earliest type of stain resistant finish (using these PFCs)  prevented the soil from penetrating the fiber by coating  the fiber. For use on a textile, the chemicals are joined onto binders (polyurethane or acrylic) that acts as a glue to stick them to the surface of the fabric.  Gore Tex is one of these early coatings – a thin film was laminated onto the fabric; another, manufactured by 3M Corporation for nearly 50 years,  is Scotchgard.   Scotchgard was so popular and became so ubiquitous that “Scotchgard” entered the language as a verb.  

The chemical originally used to make Scotchgard and Gore Tex breaks down into perfluorooctane sulfonate, or PFOS, a man-made substance that is part of the family of perfluorochemicals.   PFOS and PFOA have chains of eight carbon atoms; the group of materials related to PFOA and PFOS is called C8 –  this is often referred to as “C8 chemistry”.

An aside on C8 chemistry:

If you recall from last week’s post, the PFC family consists of molecules having a carbon backbone, fully surrounded by fluorine.  Various “cousins” have carbon backbones of different lengths:  PFOS or C8, for example,  has 8 carbon atoms, C7 has 7, and so on.  There is controversy today  about  the so-called  “bad” fluorocarbons (C8 ) and the “good” ones (C6) which I’ll address below.

C8  –  (the backbone  is made of a chain of 8 carbon atoms):  two methods are used to produce two slightly different products:

1)     electrofluorination:  uses electrolysis to replace hydrogen atoms in a molecule by fluorine atoms to create the 8 unit chain containing just carbon and fluorine.  A small amount of PFOS (perfluorooctane sulphonate) is created during this process.

2)     Telomerisation:  chemical equivalent of making a daisy chain: produces mini polymers by joining single units together in chains.  The usual aim is to produce chains that are an average of 8 units long, but the process is not perfect and a range of chain length will result – ranging from 4 units to 14 units in length. So you can have a C4, C6, C12, etc. In this method a small amount of byproduct called PFOA (perfluorooctanoic acid) is produced.

C6 – this chemistry produces a by-product called PFHA (perfluorohexanoic acid), which  is supposed to be 40 times less bioaccumulative than PFOA.  But it’s also less effective, so more of the chemical has to be used to achieve the same result.  Manufacturers are trying to find smaller and smaller perfluorocarbon segments in their products, and even C4 has been used.  The smaller the fluorocarbon, the more rapidly it breaks down in the environment.  Unfortunatley, the desired textile performance goes down as the size of the perfluorocarbon goes down. “C6 is closest chemically to C8, but it contains no PFOA. It breaks down in the environment – a positive trait – but it doesn’t stick as well to outerwear and it doesn’t repel water and oil as well as C8, which means it falls short of meeting a vague industry standard, as well as individual company standards for durability and repellency.”[1]

Back to Scotchgard:

Scientists noticed that PFOS (the C8 fluorocarbon) began showing up everywhere: in polar bears, dolphins, baby eagles, tap water and human blood. So did its C8 cousin PFOA.   These two man-made perfluorochemicals (PFOS and PFOA) don’t decompose in nature. They kill laboratory rats at higher doses, and there are potential links to tissue problems, developmental delays and some forms of cancer.  Below are tables of results which the U.S. Environmental Protection Agency released from data collected by 3M and DuPont; some humans have more PFOA in their blood than the estimated levels in animals in this study.  For a complete review of this study, see the Environmental Working Group’s website,

PFOA and PFOS, according to the U.S. EPA:

  • Are very persistent in the environment.
  • Are found at very low levels both in the environment and in the blood of the U.S. population.
  • Remain in people for a very long time.
  • Cause developmental and other adverse effects in laboratory animals.

Eventually 3M discontinued Scotchgard production.  Yet accounts differ as to whether 3M voluntarily phased out the problematic C8 chemistry or was pressured into it by the EPA after the company shared its data in late 1999.  Either way, the phase-out was begun in December 2000, although 3M still makes small amounts of PFOA for its own use in Germany. 3M, which still monitors chemical plants in Cottage Grove, Decatur, and Antwerp, Belgium, insists there are no risks for employees who handled or were exposed to the chemicals.  Minnesota Public Radio published a timeline for milestones in 3M’s Scotchgard, which can be accessed here.

The phase-out went unnoticed by most consumers as 3M rapidly substituted another, less-effective spray for consumers, and began looking for a reformulated Scotchgard for carpet mills, apparel and upholstery manufacturers.   For its substitute, 3M settled on perfluorobutane sulfonate, or PFBS, a four-carbon cousin of the chemical in the old Scotchgard, as the building block for Scotchgard’s new generation. This new C4-based Scotchgard is completely safe, 3M says. The company adds that it has worked closely with the EPA and has performed more than 40 studies, which are confidential. Neither 3M nor the EPA will release them.

According to 3M, the results show that under federal EPA guidelines, PFBS isn’t toxic and doesn’t accumulate the way the old chemical did. It does persist in the environment, but 3M concluded that isn’t a problem if it isn’t accumulating or toxic. PFBS can enter the bloodstream of people and animals but “it’s eliminated very quickly” and does no harm at typical very low levels, said Michael Santoro, 3M’s director of Environmental Health, Safety & Regulatory Affairs. 3M limits sales to applications where emissions are low.

3M says convincing consumers Scotchgard is safe is not its No. 1 challenge; rather it’s simply getting the new, new Scotchgard out. The brand, 3M maintains, is untarnished. “This issue of safety, oddly enough, never registered on the customers’ radar screen,” said Michael Harnetty, vice president of 3M’s protective-materials division.

Scotchgard remains a powerful brand:  “We still get really good requests like, ‘Will you Scotchgard this fabric with Teflon?’ ” said Robert Beaty, V.P. of Sales for The Synthetic Group, a large finishing house.[2]

Another early soil resistant finish is Teflon, which was produced by DuPont.  Teflon is based on C8 chemistry, and PFOA is a byproduct of the manufacturing of fluorotelomers used in the Teflon chemistry.

There has been a lot of information on 3M, DuPont and these two products, Scotchgard and Teflon, on the web.  The Environmental Working Group has detailed descriptions of what these chemicals do to us, as well as the information on the many suits, countersuits, and research studies.  The companies say their new reformulated products are entirely safe – and other groups such as the Environmental Working Group, question this assumption.

By the way, both DuPont and 3M advertise their products as being “water based” – and they are, but that’s not the point and doesn’t address the critical issues.  In TerraChoice’s “Seven Sins of Greenwashing” this would be considered Sin #5: the sin of irrelevance, which is:  “An environmental claim that may be truthful but is unimportant or unhelpful for consumers seeking environmentally preferable products. ‘CFC-free’ is a common example, since it is a frequent claim despite the fact that CFCs are banned by law.”

In January 2006, the U.S. Environmental Protection Agency (EPA) approached the eight largest fluorocarbon producers and requested their participation in the 2010/15 PFOA Stewardship Program, and their commitment to reduce PFOA and related chemicals globally in both facility emissions and product content 95 percent by 2010, and 100 percent by 2015.

The fluoropolymer manufacturers are improving their processes and reducing their waste in order to reduce the amount of PFOA materials used. The amount  of PFOA in finishing formulations is greatly diminished and continues to go down, but even parts per trillion are detectable. Finishing formulators continue to evaluate new materials which can eliminate PFOA while maintaining performance but a solution is still over the horizon.  One critical piece in this puzzel is that PFOA is also produced indirectly through the gradual breakdown of fluorotelomers – so a stain resistant finish may be formulated with no detectable amounts of PFOA yet STILL produce PFOA when the chemicals begin to decompose.

Recently a new dimension was added to stain resistant formulations, and that is the use of nanotechnology.

Nanotechnology is defined as the precise manipulation of individual atoms and molecules to create layered structures. In the world of nanoscience, ordinary materials display unique properties at the nanoscale.  The basic premise is that properties can dramatically change when a substance’s size is reduced to the nanometer range. For example, ceramics which are normally brittle can be deformable when their size is reduced. In bulk form, gold is inert, however, once broken down into small clusters of atoms it becomes highly reactive.

Like any new technology, nanomaterials carry with them potential both for good and for harm. The most salient worries concern not apocalyptic visions,  but rather the more prosaic and likely possibility that some of these novel materials may turn out to be hazardous to our health or the environment.  As John D. Young and Jan Martel report in “The Rise and Fall of Nanobacteria,” even naturally occurring nanoparticulates can have an deleterious effect on the human body. If natural nanoparticulates can harm us, we would be wise to carefully consider the possible actions of engineered nanomaterials.  The size of nanoparticles also means that they can more readily escape into the environment and infiltrate deep into internal organs such as the lungs and liver. Adding to the concern, each nanomaterial is unique. Although researchers have conducted a number of studies on the health risks of individual materials, this scattershot approach cannot provide a comprehensive picture of the hazards—quantitative data on what materials, in what concentrations, affect the body over what timescales.

As a result of these concerns, in September, 2009,  the U.S. EPA  announced a study of the health and environmental effects of nanomaterials – a step many had been advocating for years.  And this isn’t happening any too soon:  more than 1,000 consumer products containing nanomaterials are available in the U.S. and more are added every day.

And nanotechnology has been used for textiles in many ways: at the fiber as well as the fabric level, providing an extraordinary array of nano-enabled textile products (most commonly nanofibers, nanocomposite fibers and nanocoated fibers)  – as well as in soil and stain resistance.

For scientists who were trying to apply nanotechnology to textile soil and stain repellency, they turned, as is often the case in science, to nature:  Studying the surface of lotus leaves, which have an incredible ability to repel water, scientists noticed that the surface of the lotus leaf appears smooth but is actually rough and naturally dirt and water repellent. The rough surface reduces the ability of water to spread out. Tiny crevices in the leaf’s surface trap air, preventing the water droplets from adhering to the service. As droplets roll off the surface they pick up particles of dirt lying in their path. Using this same concept, scientists developed a nanotechnology based finish that forms a similar structure on the fibers surface. Fabrics can be cleaned by simply rinsing with water.

Nano-Tex ( was the first commercially available nanoparticle based soil repellant fabric finish.  It debuted in December of 2000.  Another nanotech based soil repellant is GreenShield ( which debuted in 2007. Both these finishes, although they use nanotechnology, also base their product on fluorocarbon chemistry.  Nano-Tex’s website does not give much information about their formulation – basically they only say that it’s a new technology that “fundamentally transforms each fiber through nanotechnology”.  You won’t get much more in the way of technical specifications out of Nano-Tex.   GreenShield is much more forthcoming with information about their process.

In the GreenShield finishes, the basic nanoparticle is amorphous silica, an inert material that has a well-established use in applications involving direct human consumption, and is generally recognized as safe and approved by the Food and Drug Administration (FDA) and Environmental Protection Agency for such applications.  The use of silica enables GreenShield to reduce the amount of flurocarbons by a factor of 8 or more from all other finishes and it reduces overall chemical load by a factor of three – making GreenShield the finish which uses the least amount of these flurocarbons.

The GreenShield finish gets mixed environmental ratings, however.   Victor Innovatix’s Eco Intelligent Polyester fabrics with GreenShield earned a Silver rating in the Cradle to Cradle program. However, the same textile without the GreenShield finish (or any finish) earned a higher Gold rating, reflecting the risk of toxicity introduced to the product by GreenShield. Information on product availability is at

[1]PFOA Puzzle – Textile Insights —

[2] Bjorhus, Jennifer, “Scotchgard is Attractive Again”, St. Paul Pioneer Press, May 27, 2003