Prosperity without growth

27 10 2009

Have you ever heard of the Easterlin Paradox?  It is a theory developed in 1974, which goes something like this:  Money makes you happier until you reach about an average income.  After that, money’s affect on happiness is greatly reduced.  But there are those who argue that “happiness” is a very imprecise science, so maybe  Senator Bobby Kennedy (who might have known what he was talking about) might have gotten closer to the problem:  “Gross Domestic Product measures everything…except that which makes life worthwhile.”

The government of Bhutan has been following a policy of Gross National Happiness since 1972, and French President Nicolas Sarkozy recently announced that happiness levels would be taken into account when measuring the country’s economic performance.  Whether this happiness component is taken into consideration or not, there seems to be a paradigm shift from neoclassical to ecological economics now underway.  Is it possible that  there is a direct correlation between economics, ecology and happiness?

This new shift is  typified by Tim Jackson and his new book, Prosperity Without Growth, which is a completely revised and updated version of the Sustainable Development Commission report of the same name.  Tim Jackson is a Professor of Sustainable Development in the Centre for Environmental Strategy (CES) at the University of Surrey.  Since January 2003, Tim has been employed at CES under a research fellowship on the ‘social psychology’ of consumer behavior.   In the last twelve years he has pioneered the development of an ‘adjusted’ measure of economic growth – a ‘green GDP’ – for the UK. He is also an advisor to the UK government as a Commissioner on the Sustainable Development Commission and  is an Associate of the New Economics Foundation.  In other words, no lightweight.

Tim  wrote an article last summer which appeared in Adbusters  (and if you don’t know about Adbusters please check them out – they are working to change the “ way information flows, the way corporations wield power, and the way meaning is produced in our society”.  It’s entitled “Thinking the Unthinkable”,  based on Prosperity without Growth;  it explores the point at which economic growth becomes uneconomic growth.  The conclusions are disturbing.   Charles Siegel of The Sierra Club says it should be  required reading for everyone working to avoid ecological collapse (click here to read the review) . The article from Adbusters is reproduced below; the entire book will be available November 2 through Earthscan (www.earthscan.co.uk/pwg) or you can read the original report online at http://www.sd-commission.org.uk/publications.php?id=914:

prosperity-without-growth

Every society clings to a myth by which it lives. Ours is the myth of economic growth. For the last five decades the pursuit of growth has been the single most important policy goal across the world. The global economy is almost five times the size it was half a century ago. If it continues to grow at the same rate, the economy will be 80 times that size by the year 2100.

This extraordinary ramping up of global economic activity has no historical precedent. It’s totally at odds with our scientific knowledge of the finite resource base and the fragile ecology we depend on for survival. And it has already been accompanied by the degradation of an estimated 60% of the world’s ecosystems.

For the most part, we avoid the stark reality of these numbers. The default assumption is that – financial crises aside – growth will continue indefinitely. Not just for the poorest countries where a better quality of life is undeniably needed, but even for the richest nations where the cornucopia of material wealth adds little to happiness and is beginning to threaten the foundations of our well-being.

The reasons for this collective blindness are easy enough to find. The modern economy is structurally reliant on economic growth for its stability. When growth falters – as it has done recently – politicians panic. Businesses struggle to survive. People lose their jobs and sometimes their homes. A spiral of recession looms. Questioning growth is deemed to be the act of lunatics, idealists and revolutionaries.

But question it we must. The myth of growth has failed us. It has failed the two billion people who still live on less than $2 a day. It has failed the fragile ecological systems we depend on for survival. It has failed spectacularly, in its own terms, to provide economic stability and secure people’s livelihoods.

Today we find ourselves faced with the imminent end of the era of cheap oil; the prospect (beyond the recent bubble) of steadily rising commodity prices; the degradation of forests, lakes and soils; conflicts over land use, water quality and fishing rights; and the momentous challenge of stabilizing concentrations of carbon in the global atmosphere. And we face these tasks with an economy that is fundamentally broken, in desperate need of renewal.

In these circumstances, a return to business as usual is not an option. Prosperity for the few founded on ecological destruction and persistent social injustice is no foundation for a civilized society. Economic recovery is vital. Protecting people’s jobs – and creating new ones – is absolutely essential. But we also stand in urgent need of a renewed sense of shared prosperity. A commitment to fairness and flourishing in a finite world.

Delivering these goals may seem an unfamiliar or even incongruous task for policy in the modern age. The role of government has been framed so narrowly by material aims and hollowed out by a misguided vision of unbounded consumer freedoms. The concept of governance itself stands in urgent need of renewal.

But the current economic crisis presents us with a unique opportunity to invest in change. To sweep away the short-term thinking that has plagued society for decades. To replace it with policy capable of addressing the enormous challenge of delivering a lasting prosperity.

For at the end of the day, prosperity goes beyond material pleasures. It transcends material concerns. It resides in the quality of our lives and in the health and happiness of our families. It is present in the strength of our relationships and our trust in the community. It is evidenced by our satisfaction at work and our sense of shared meaning and purpose. It hangs on our potential to participate fully in the life of society.

Prosperity consists in our ability to flourish as human beings – within the ecological limits of a finite planet. The challenge for our society is to create the conditions under which this is possible. It is the most urgent task of our times.

Advertisements




Elephants Among Us

29 06 2009

 

Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[1]

The textile industry is huge, and it is a huge producer of greenhouse gasses.  Today’s textile industry is one of the largest sources of greenhouse gasses (GHG’s) on Earth, due to its huge size.[2] In 2008,  annual global textile production was estimated at  60 billion kilograms (KG) of fabric.  The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of electricity  or 132 million metric tons of coal and
  • between 6 – 9 trillion liters of water[3]

Fabrics are the elephant in the room.  They’re all around us  but no one is thinking about them.  We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous:  sheets, blankets, sofas, curtains, and of course clothing.  Textiles, including clothing,  accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [4] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[5]

Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.

How do you evaluate the carbon footprint in any fabric?  Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric.  To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

(1)  Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn.  The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.

(2) Next, add the energy used to weave those yarns into fabric.  Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton, nylon or polyester.[6]

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

For synthetics, a crucial fact is that the fibers are made from fossil fuels.   Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:

crop cultivation

fiber production

TOTAL

polyester USA

0.00

9.52

9.52

cotton, conventional, USA

4.20

1.70

5.89

hemp, conventional

1.90

2.15

4.10

cotton, organic, India

2.00

1.80

3.75

cotton, organic, USA

0.90

1.45

2.35

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester [7] and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [8] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[9] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

Embodied Energy used in production of various fibers:

energy use in MJ per KG of fiber:
flax fibre (MAT)

10

cotton

55

wool

63

Viscose

100

Polypropylene

115

Polyester

125

acrylic

175

Nylon

250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional  benefits:

  1. being able to be degraded by micro-organisms and composted (improving soil structure); in this way the fixed CO2 in the fiber will be released and the cycle closed.   Synthetics do not decompose: in landfills they release heavy metals and other additives into soil and groundwater.  Recycling requires costly separation, while incineration produces pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[10] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned fishing nets in the world’s oceans.
  2. sequestering carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.  Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[11]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:  uses less energy for production, emits fewer greenhouse gases and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques (2009) found that 43% less GHG are emitted per unit area under organic agriculture than under conventional agriculture.[12] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[13] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton.   So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time.   Best of all is an organic natural fiber.

 

And next let’s look at #2, the energy needed to weave those yarns into fabric.

There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type..[14] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:   thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [15] This translates into huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

 

But there is an additional dimension to consider during processing:  environmental pollution.  Conventional textile processing is highly polluting:

  • Up to 2000 chemicals are used in textile processing, many of them known to be harmful to human (and animal) health.   Some of these chemicals evaporate, some are dissolved in treatment water which is discharged to our environment, and some are residual in the fabric, to be brought into our homes (where, with use, tiny bits abrade and you ingest or otherwise breathe them in).  A whole list of the most commonly used chemicals in fabric production are linked to human health problems that vary from annoying to profound.
  • The application of these chemicals uses copious amounts of water. In fact, the textile industry is the #1 industrial polluter of fresh water on the planet.[16] These wastewaters are discharged (largely untreated) into our groundwater with a high pH and temperature as well as chemical load.

Concerns in the United States continue to mount about the safety of textiles and apparel products used by U.S. consumers.  Philadelphia University has formed a new Institute for Textile and Apparel Product Safety, where they are busy analyzing clothing and textiles for a variety of toxins.  Currently, there are few regulatory standards for clothing and textiles in the United States.  Many European countries,  as well as Japan and Australia, have much stricter restrictions on the use of chemicals in textiles and apparel than does the United States, and these world regulations will certainly impact world production.

There is a bright spot in all of this:  an alternative to conventional textile processing does exist.  The new Global Organic Textile Standard (GOTS) is a  tool for an international common understanding of environmentally friendly production systems and social accountability in the textile sector; it covers the production, processing, manufacturing, packaging, labeling, exportation, importation and distribution of all natural fibers; that means, specifically, for example:  use of certified organic fibers, prohibition of all GMOs and their derivatives; and prohibition of a long list of synthetic chemicals (for example: formaldehyde and aromatic solvents are prohibited; dyestuffs must meet strict requirements (such as threshold limits for heavy metals, no  AZO colorants or aromatic amines) and PVC cannot be used for packaging).

A fabric which is produced to the GOTS standards is more than just the fabric:

It’s a promise to keep our air and water pure and our soils renewed; it’s a fabric which will not cause harm to you or your descendants.  Even though a synthetic fiber cannot be certified to  GOTS, the synthetic mill could adopt the same production standards and apply them.   So for step #2, the weaving of the fiber into a fabric, the best choice is to buy a GOTS certified fabric or to apply as nearly as possible the GOTS parameters.

At this point in time, given the technology we have now, an organic fiber fabric, processed to GOTS standards, is (without a doubt) the safest, most responsible choice possible in terms of both stewardship of the earth, preserving health and limiting toxicity load to humans and animals, and reducing carbon footprint – and emphasizing rudimentary social justice issues such as no child labor.

And that would be the end of our argument, if it were not for this sad fact:  there are no natural fiber fabrics made in the United States which are certified to the Global Organic Textile Standard (GOTS).  The industry has, we feel, been flat footed in applying these new GOTS standards.  With the specter of the collapse of the U.S. auto industry looming large, it seems that the U.S. textile industry would do well to heed what seems to be the global tide of public opinion that better production methods, certified by third parties, are the way to market fabrics in the 21st Century.


[1] Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

[2] Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html

[3] Rupp, Jurg, “Ecology and Economy in Textile Finishing”,  Textile World,  Nov/Dec 2008

[4] Rose, Coral, “CO2 Comes Out of the Closet”,  GreenBiz.com, September 24, 2007

[5] U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.

[6] Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint.  The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings.  We do not take this component into consideration because

  • it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
  • is biodegradeable detergent used?
  • Is the washing machine used a new low water machine?  Is the water treated by a municipal facility?
  • Synthetics begin to smell if not treated with antimicrobials, raising the energy score.

Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome.  Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.

[7] Ibid.

[8] “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

[9] Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13

[10] “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html

[11] Ibid.

[12] Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

[13] International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL);    Organic Farming and Climate Change; Geneva: ITC, 2007.

[14] 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

[15] “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296

[16] Cooper, Peter, “Clearer Communication,” Ecotextile News, May 2007.





What is the energy profile of the textile industry?

16 06 2009

carbon_footprint

If you’ve been following along you’ll know we haven’t even reached the point where we begin weaving – everything up till now dealt only with producing the raw materials (the fiber) and spinning into yarn!

So, the yarns are at the mill.  And that’s the kicker: we’ve been talking about how much energy it takes to produce the various fibers – and it varies dramatically – but there is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[1] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:

  • thermal energy required per meter of cloth is 4,500-5,500 Kcal and
  • electrical energy required per meter of cloth is 0.45-0.55 kwh. [2]

This translates into huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

So let’s go with the energy used to produce one KG of fabric (which is 92 MJ per KG as the New Zeland Merino Wool LCA study found).   Keeping  the energy needed for production as a  constant the synthetic fabrics still top the list:

Embodied Energy in production of various fibers + processing:
energy use in MJ per KG of fiber: energy use in MJ per KG of fabric TOTAL energy use in MJ per KG of fabric to produce fiber + weave into cloth
flax 10 92 102
Cotton, convt’l. 55 92 147
wool 63 92 155
Viscose 100 92 192
Polypropylene 115 92 207
Polyester 125 92 217
acrylic 175 92 267
Nylon 250 92 342

 

That means that it takes 3,886 MJ of energy to produce 25 yards of nylon fabric, which is  about enough to cover one average sofa.  That compares to 1,158 MJ if the fiber you used was flax (linen).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(4)

Textile_total_energy_input

In addition to the energy requirements for textile production,  there is an additional dimension to consider during processing:  environmental pollution.  Conventional textile processing is highly polluting:

  • Up to 2000 chemicals are used in textile processing, many of them known to be harmful to human (and animal) health.   Some of these chemicals evaporate, some are dissolved in treatment water which is discharged to our environment, and some are residual in the fabric, to be brought into our homes (where, with use, tiny bits abrade and you ingest or otherwise breathe them in).  A whole list of the most commonly used chemicals in fabric production are linked to human health problems that vary from annoying to profound.  And new research is linking many diseases and disorders to exposure to chemicals.  Through the new science of environmental health science, we are learning that exposure to toxic chemicals (at levels once thought to have been safe) is increasing the  chronic disease burden for millions of us.  For more information about this disturbing concept,  check out the National Institute of Environmental Health Sciences, part of the National Institutes of Health.
  • The application of these chemicals uses lots  of water. In fact, the textile industry is the #1 industrial polluter of fresh water on the planet.[3] These wastewaters are discharged (largely untreated) into our groundwater with a high pH and temperature as well as chemical load.  I wrote about a documentary which catalogues the ravages brought on by water pollution and how it impacts those downstream, called (interestingly enough), DOWNSTREAM.

We are all downstream.


[1] 24thsession of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

[2] “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296

[3] Cooper, Peter, “Clearer Communication,” Ecotextile News, May 2007.

(4)  from Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

Embodied Energy in production of various fibers + processing:
beach image energy use in MJ per KG of fiber: energy use in MJ per KG of fabric TOTAL energy use in MJ per KG of fabric to produce fiber + weave into cloth
flax 10 92 102
Cotton, convt’l. 55 92 147
wool 63 92 155
Viscose 100 92 192
Polypropylene 115 92 207
Polyester 125 92 217
acrylic 175 92 267
Nylon 250 92 342




What about using organic fabrics in the carbon footprint calculation?

9 06 2009

I’m so glad you asked!

From the previous post I hope I made it clear that natural fibers (whether organic or conventionally produced) have a lighter footprint than do synthetics – both in terms of emissions of greenhouse gasses and in terms of energy needed to manufacture the fibers.  And natural fibers have the added benefits of being able to be degraded by microorganisims and composted,  and  also of sequestering carbon.  According to the United Nations, they’re also a responsible choice, because by buying natural fibers you’re supporting the economies of many developing countries and supporting the livelihoods of many low-wage and subsistence workers.  The United Nations has declared 2009 the Year of Natural Fibers and they have a great website if you’re looking for more information:  http://www.naturalfibres2009.org/en/index.html

Substituting ORGANIC fibers for conventionally grown natural fibers is not just a little better but lots better in all respects:  uses less energy for production, emits fewer greenhouse gases, and supports organic farming (which has myriad environmental, social and health benefits).  A study published by Innovations Agronomiques  (http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009) found that fully 43% less greenhouse gasses are emitted per unit under organic agriculture than under conventional agriculture.  A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.  Further, it was found in controlled long term trials that organic farming adds between 100-400KG of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint calculation, it reduces total greenhouse gasses even further. The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Slide1

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims (GMOs) which is not only an improvement in human health and agrobiodiversity but also for the associated off farm biotic communities
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
  • ensures sustained biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. (http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

So just how much CO2 can organic farming take out of the air each year?  According to data from the Rodale Institute Farming Systems Trial (FST) :

  • If only 10,000 medium sized farms in the US converted to organic production, they would store so much carbon in the soil it would be equivalent to taking 1,174,400 cars off the road.
  • If we converted the U.S.’s 160 million acres of corn and soybeans to organic, we could sequester enough carbon to satisfy 73% of the Koyoto targets for CO2 reduction in the U.S.
  • Converting U.S. agriculture to organic would actually  wipe out the 1.5 trillion pounds of CO2 emitted annually and give us a net increase in soil carbon of 734 billion pounds.

carbon sequestratioon image 1

Paul Hepperly says that organic farming is a no brainer:  “Organic farming is not a technological fix, not an untried experiment that could have its own unforeseen consequences.” Instead, it may well be one of the most powerful tools we have in our fight against global warming that brings with it a wealth of other environmental benefits.





carbon footprints…

2 06 2009

Please be aware that our suggestions are just starting points for you to consider when looking at a fabric, because actually calculating a carbon footprint is very complex and time consuming.  Peter Tydemers, who is an ecological economist at Dalhousie University in Nova Scotia, has warned that many of the energy calculators we see should be taken with a pinch of salt – because every detail of where and how something is produced can change and therefore affect the outcome. For example, simply changing an animals feed can have an influence on its CO2 footprint. “It’s all very fluid”, he says, “There’s a tremendous hunger for these sorts of numbers and this has created the assumption that any existing figures are robust. They’re not.” We suggest that you examine carefully any studies to see the variables and the assumptions  made.  Something else to determine is who funded the study!  I was really perplexed to see a web site which had “data” on the energy used to create various fibers; the conclusions being drawn were just a bit outside the limits of any studies I had seen earlier.  But when I saw the industry group that funded the study it all became clear.

That being said, to begin to evaluate the carbon footprint of any fabric the first thing you have to do is  figure out what the fabric is made of  – the fiber.    The fiber tells you a lot about the energy needed to make the yarns, and then the fabric.  The energy needed to produce different fibers varies a lot.

To make it easy to compare the fibers, I”ll divide them into two types: “natural” (from plants, animals and – less commonly – minerals), and “synthetic” (man made)

For synthetics, it’s important to remember that most synthetic fibers  started as fossil fuel, an inherently non renewable resource.  Very high amounts of energy are needed to both extract the oil from the ground as well as to produce the polymers (as it is done under high temperatures).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun fiber:

crop cultivation

fiber production

TOTAL

polyester USA

0.00

9.52

9.52

cotton, conventional, USA

4.20

1.70

5.89

hemp, conventional

1.90

2.15

4.10

cotton, organic, India

2.00

1.80

3.75

cotton, organic, USA

0.90

1.45

2.35

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of Nitrous Oxide,  N2O, which is 300 times more damaging than CO2.[1] In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[2] A study done for the New Zealand Merino Wool Association shows how much more total energy is required for the production of  synthetics than any natural fibers:

Energy used in production of various fibers:

energy use in MJ perKG of fiber:
flax fibre (MAT)

10

cotton

55

wool

63

Viscose

100

Polypropylene

115

Polyester

125

acrylic

175

Nylon

250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have the benefit of

  1. being able to be degraded by micro-organisms and composted; in this way the fixed CO2 in the fiber will be released and the cycle closed.  Synthetics do not decompose.
  2. sequestering carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.

As I said, looking at the production of the fiber is just the first part of the equation.  It is clear that, in terms of energy use and CO2 emissions, synthetics are  significantly higher in both cases than any natural fiber.  How the fibers are grown or managed also makes a huge contribution to energy use, and as you might have suspected, organic methods improve these results even more and widen the gap between synthetic and natural fibers.  That’s next week’s topic.


[1] “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

(2) Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13





All oil is not created equal.

27 04 2009

I just watched Downstream – and had my eyes opened about an industrial project which is considered to be the most ecologically destructive project on Earth: the Alberta tar sands. Downstream is a new documentary by Academy Award nominee Lesley Iwerks, which you too can watch at http://www.babelgum.com/downstream . But I warn you, it’s unsettling to say the least – I can’t seem to sit still now that I know this is going on!

Turns out that not all oil is created equal – in terms of how much energy and water it takes to get the oil out of the ground. Oil recovered from the tar sands is at the “extra dirty” end of the spectrum, meaning it takes more energy and water to recover oil from the dirt than other kinds of oil. (See the Environmental Defense report on the tar sands, http://www.environmentaldefence.ca/reports/tarsands.htm )

Consider this equation — the production of one barrel of tar sands oil:

Requires between 2 and 4.5 barrels of water and two tons of tar sands (scraped from below the surface of the boreal forest),

And it creates two barrels of toxic waste.

The processing of this tar sands oil also requires immense amounts of natural gas. Daily, tar sands producers burn 600 million cubic feet of natural gas to produce tar sands oil, enough natural gas to heat 3 million homes.

Production is licensed to use more water than Alberta’s two major cities — Calgary and Edmonton — combined.

That water is held in ponds laced with chemical sludge. And now the tailings pond for Syncrude (one of the corporations) is the largest dam project on Earth and can be seen from space by a naked eye. These ponds are so toxic that propane cannons are used to keep ducks from landing.

One barrel of tar sands oil produces three times the greenhouse gas emissions than does a barrel of conventional oil. The project is presently producing the most greenhouse gases in Canada, the equivalent to the emissions of the Czech Republic, while destroying the boreal forest, part of the world’s most important storehouse of climate regulating carbon and oxygen.

And here’s the kicker: Alberta’s Energy Resources Conservation Board (ERCB) has released a report predicting that the province will go from 1.32 million barrels of raw bitumen per day in 2007 to 3.2 million barrels per day in 2017 (and who knows, if oil prices stay high, they could ramp it up even more quickly).

Today, a set of corporations is offereing money to various Native American tribes in exchange for a 20-year lease of tribal lands: The proposed Enbridge Alberta Clipper pipeline is one of the most controversial in history, with immense environmental and economic impacts. The proposed pipeline starts in the tar sands of Alberta, Canada and will end in Superior, Wisconsin.

To secure more markets, Enbridge is seeking expansion of this project by initially transporting 450,000 barrels per day (bpd), with ultimate capacity of up to 800,000 bpd available. See the commentary by Nellis Kennedy and Winona LaDuke at http://www.bemidjipioneer.com/articles/index.cfm?id=23115&section=Opinion

Leigh Anne





Uplifting Climate Solutions

22 03 2009

Ghandi said that we should be the change we want to see in the world.  Some of the things I’ve read recently makes me think that that the youth of today seems to be really taking up that challenge – new research by the EnviroMedia Social Marketing indicates young Americans, an estimated audience of 76 million people,  “will power the new green economy and are the key to future economic growth.”

More than any other age group,  they say, 18- to 34-year-olds believe global warming is caused by human activities. Additionally, the research indicates Americans who believe in this connection are almost twice as likely to buy more green products in this economy than Americans who believe it occurs naturally.   And the same study says that 82% of Americans indicate  they’re  still  buying green products despite changes in the economy.

But what I got really excited about was to read about the Indian Climate Solutions Project.   This group believes that there are many homemade solutions being tried all around India – the missing link is communication so we can all learn from each other and not have to reinvent the wheel.   As they say:

In India, a nation of creativity, diversity and dynamism, inspirational climate solutions already exist in pockets, demonstrating significant co-benefits for the economic, social and environmental welfare of the country. They are however poorly documented, analysed and communicated in general. To avoid a replication of efforts, and to convince governments, businesses and communities to take action, these success stories need to be shared widely. India is a nation open to new ideas, with a strong intelligence, deep spirituality and profound respect for the natural world. As such, we, the Indian youth, believe that India can take a leadership role on climate change, for its own welfare and security as well as for that of the world as a whole.”

Create Communicate Celebrate

Search for Solutions Create Create

The India Climate Solution Project recently completed an epic five week electric car journey across India, aimed at launching a movement for climate action across India, reached its final destination, New Delhi, on February 4, 2009, though the work is continuing to document and spread solutions and a message of hope and change. The Indian Youth Climate Network team reached Delhi having covered 3500 ’low-carbon’ kilometers in three solar-powered Revas and a fleet of alternative vehicles.

The trip, which has passed through 15 major Indian cities, was undertaken in a caravan of alternatively fuelled vehicles including three market ready solar-integrated Reva electric cars, a plant oil powered truck, a van running on spent vegetable oil, and a car with solar panels on the roof to power the team’s equipment.

The team has documented ground breaking climate solutions, across every sector and many states, which they plan to share and scale up to be the start of a solutions-oriented movement for transformative change. The team has charged at petrol pumps during diesel strikes, visited tribal girls’ hostels where the kitchen runs on solar energy, worked with villagers making compost and biogas, found effective waste management strategies in Mumbai, and made dozens of short films about these solutions along the way.

From  90 year old women who have never left their village to international school children in Mumbai and Hyderabad and from respected NGOs to CEOs spreading their Indian innovations all over the world, the team has met with dozens of climate leaders who have shared their climate solutions!  (See more about the solutions they found along the way on their web site, http://www.indiaclimatesolutions.com.).