Toxic lies

14 07 2015

Julie Gunlock wrote a blog post entitled “The ‘toxic’ lies behind Jessica Alba’s booming baby business” (to read the post, click  here ) We’re not necessarily fond of Jessica Alba nor her Honest Company, but the statements made by Julie Gunlock need to be addressed. She contends that the Honest Company’s main commodity is fear and the “false promise that their products are safer than others.”

I will not comment on her admonitions about how The Honest Company’s products are full of chemicals (as this should be obvious), or that Alba had recognized that “many people  –  particularly women (sic) – have been convinced that common chemicals are a bogeyman that lurks, waiting to harm them” – since everything is made of chemicals, some bad for us, some that are not.  We aren’t part of the “man made is absolutely bad, natural is absolutely good” camp.

What I will address is her claim that chemicals used in products are “there for a reason” and they’re completely safe because “chemicals are regulated under nearly a dozen federal agencies and regulations.”   She states:   “ chemicals in products … are used in trace amounts, often improve the safety of those products and have undergone hundreds of safety tests.”

As she herself says, nothing could be further from the truth.

First, let’s address her contention that “chemicals in products…are used in trace amounts.”

 The idea that chemicals won’t harm us because the amounts used are so tiny is not new; it’s been used by industry for many years. However, new research is being done which is profoundly changing our old belief systems. For example, we used to think that a little dose of a poison would do a little bit of harm, and a big dose would do a lot of harm (i.e., “the dose makes the poison”) – because water, as Julie Gunlock herself reminds us, can kill you just as surely as arsenic, given sufficient quantity.   The new paradigm shows that exposure to even tiny amounts of chemicals (in the parts-per-trillion range) can have significant impacts on our health – in fact some chemicals impact the body profoundly in the parts per trillion range, but do little harm at much greater dosages. The old belief system did not address how chemicals can change the subtle organization of the brain. Now, according to Dr. Laura Vandenberg of the Tufts University Center for Regenerative and Developmental Biology[1] “we found chemicals that are working at that really low level, which can take a brain that’s in a girl animal and make it look like a brain from a boy animal, so, really subtle changes that have really important effects.”

In making a risk assessment of any chemical, we now also know that timing and order of exposure is critical – exposures can happen all at once, or one after the other, and that can make a world of difference.   And we also know another thing: mixtures of chemicals can make each other more toxic. For example: a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

And finally, the new science called “epigenetics” is finding that pollutants and chemicals might be altering the 20,000-25,000 genes we’re born with—not by mutating or killing them, but by sending subtle signals that silence them or switch them on or off at the wrong times.  This can set the stage for diseases, which can be passed down for generations. So exposure to chemicals can alter genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[2]  Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and diabetes. Other studies are being published which corroborate these findings.[3]

So that’s the thing: we’re exposed to chemicals all day, every day – heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, Prozac (and a host of other pharmaceuticals) and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’ These exposures all add up – and the body can flush out some of these chemicals, while it cannot excrete others.  Chlorinated pesticides, such as DDT, for example, can remain in the body for 50 years.   Scientists call the chemicals in our body our “body burden”.  Everyone alive carries within their body at least 700 contaminants.[4]

This cumulative exposure could mean that at some point your body reaches a tipping point and, like falling dominoes, the stage is set for something disastrous happening to your health.

The generations born from 1970 on are the first to be raised in a truly toxified world. Probably one in three of the children you know suffers from a chronic illness – based on the finding of many studies on children’s health issues.[5]   It could be cancer, or birth defects – perhaps asthma, or a problem that affects the child’s mind and behavior, such as a learning disorder, ADHD or autism or even a peanut allergy. We do know, for example:

  • Childhood cancer, once a medical rarity, is the second leading cause of death (following accidents) in children aged 5 to 14 years.[6]
  • According to the American Academy of Allergy Asthma & Immunology, for the period 2008-2010, asthma prevalence was higher among children than adults – and asthma rates for both continue to grow. [7]
  • Autism rates without a doubt have increased at least 200 percent.
  • Miscarriages and premature births are also on the rise,
  • while the ratio of male to female babies dwindles and
  • teenage girls face endometriosis.

Dr. Warren Porter delivered a talk at the 25th National Pesticide Forum in 2007, in which he explained that a lawn chemical used across the country, 2,4-D, mecoprop and dicambra was tested to see if it would change or alter the capacity of mice to keep fetuses in utero. The test found that the lowest dosage of this chemical had the greatest effect – a common endocrine response.[8]

Illness does not necessarily show up in childhood. Environmental exposures, from conception to early life, can set a person’s  cellular code for life and can cause disease at any time, through old age. And the new science of epigenetics is showing us that these exposures can impact not only us, but our children, grandchildren and great-grandchildren.

I think that pretty much demolishes the argument that chemicals in “trace amounts” don’t do us any harm.

Second, what about her contention that “chemicals are regulated under nearly a dozen federal agencies and regulations … which have undergone hundreds of safety tests.”

 The chief legal authority for regulating chemicals in the United States is the 1976 Toxic Substances Control Act (TSCA).[9]

It is widely agreed that the TSCA is not doing the job of protecting us, and that the United States is in need of profound change in this area. Currently, legislation entitled the 2013 Chemical Safety Improvement Act, introduced by a bipartisan group of 26 senators, is designed to improve the outdated TSCA but it is still in committee.  The chemicals market values function, price and performance over safety, which poses a barrier to the scientific and commercial success of green chemistry in the United States and could ultimately hinder the U.S. chemical industry’s competitiveness in the global marketplace as green technologies accelerate under the European Union’s requirements.

We assume the TSCA is testing and regulating chemicals used in the industry[10]. It is not:

  • Of the more than 60,000 chemicals  in use prior to 1976, most were “grandfathered in”; only 263 were tested for safety and only 5 were restricted.  Today over 80,000 chemicals are routinely used in industry, and the number which have been tested for safety has not materially changed since 1976.  So we cannot know the risks of exposing ourselves to certain chemicals.  The default position is that no information about a chemical = no action.
  • The chemical spill which occurred in West Virginia in 2014 was of “crude MCHM”, or 4-methylcyclohexanemethanol, one of the chemicals that was grandfathered into the Toxic Substances Control Act of 1976.   That means that nobody knows for sure what that chemical can do to us.
    • Carcinogenic effects? No information available.
    • Mutagenic effects? No information available.
    • Developmental toxicity? No information available.

Lack of information is the reason the local and federal authorities were so unsure of how to advise the local population about their drinking  water supplies.  (And by the way, in January, 2014,  a federal lawsuit was filed in Charleston, WV, which claims that the manufacturer of MCHM hid “highly toxic and carcinogenic properties” of components of MCHM, hexane and methanol, both of which have been tested and found to cause diseases such as cancer.)

We assume that the TSCA requires manufacturers to demonstrate that their chemicals are safe before they go into use. It does not:

  • The EPA requires a “Premanufacture Notification” of a new chemical, and no data of any kind is required[11].   The EPA receives between 40-50 each week and 8 out of 10 are approved, with or without test data, with no restrictions on their proposed use. As 3M puts it on their PMN forms posted on EPA’s web site, “You are not required to submit the listed test data if you do not have it.”
  • The TSCA says the government has to prove actual harm caused by the chemical in question before any controls can be put in place.  The catch-22 is that chemical companies don’t have to develop toxicity data or submit it to the EPA for an existing product unless the agency finds out that it will pose a risk to humans or the environment – which is difficult to do if there is no data in the first place.  Lack of evidence of harm is taken as evidence of no harm.

We assume that manufacturers must list all ingredients in a product, so if we have an allergy or reaction to certain chemicals we can check to see if the product is free of those chemicals. It does not:

  • The TSCA allows chemical manufacturers to keep ingredients in some products secret.   Nearly 20% of the 80,000 chemicals in use today are considered “trade secrets”.  This makes it impossible for consumers to find out what’s actually in a product.  And there is no time limit on the period in which a chemical can be considered a trade secret.

These limitations all help to perpetuate the chemical industry’s failure to innovate toward safer chemical and product design.  It’s one of the reasons the USA is one of the few nations in the world in which asbestos is not banned.

Finally, and because I just couldn’t resist: her example of using what she concedes are “toxic fragrances” to cover up that “other toxic stink – the one coming out of your baby” speaks for itself.

In conclusion, I don’t think that we’re being alarmist in trying to find better alternatives for products we use every day.  Nor are the promises of companies like Alba’s false.

 

[1] Living on Earth, March 16, 2012, http://www.loe.org/shows/segments.html?programID=12-P13-00011&segmentID=1

[2] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[3]http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[4] http://www.chemicalbodyburden.org/whatisbb.htm

[5] Theofanidis, D, MSc., “Chronic Illness in Childhood: Psychosocial and Nursing Support for the Family”, Health Science Journal, http://www.hsj.gr/volume1/issue2/issue02_rev01.pdf

[6] Ward, Elizabeth, et al; Childhood and adolescent cancer statistics, 2014, CA: Cancer Journal for Clinicians, Vol 64, issue 2, pp. 83-103, March/April 2014

[7] http://www.aaaai.org/about-the-aaaai/newsroom/asthma-statistics.aspx

[8] Porter, Warren, PhD; “Facing Scientific Realities: Debunking the “Dose Makes the Poison” Myth”, National Pesticide Forum, Chicago, 2007; http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2007-08/dose-poison-debunk.pdf

[9] The “regulations” mentioned, all of which fall under the TSCA, might include:

  • the Environmental Protection Agency’s Chemical Action Plans for certain chemicals – to date, 10 chemicals have Chemical Action Plans in place. These plans attempt to outline the risks each chemical may present and identify the specific steps the agency is taking to address the concerns.
  • Confidential Business Information (CBI) – designed to protect intellectual property and confidential business information.
  • Chemical Data Reporting (CDR) Rule: use and exposure information to help the EPA screen and prioritize chemicals for additional review.
  • Chemical Prioritization: Which allows the EPA to identify which chemicals in commerce warrant additional review.
  • Risk Assessment: Under TSCA, EPA assesses chemicals using conservative assumptions about the possible hazards a chemical may pose.

[10] http://www.chemicalindustryarchives.org/factfiction/testing.asp

[11] Ibid.

Advertisements




What kind of filling for your sofa cushions?

12 05 2015

 

One thing that most people care about is how the cushions feel to them – do you like to sink down into the cushions or you like a denser, more supportive cushion? Either way, the cushions are important.

Before plastics, our grandparents filled cushions with feathers, horsehair, wool or cotton batting – even straw (one of the earliest stuffing materials). This stuff often shifted, meaning that you’d have to plump up the feathers, horsehair or batting to make the sofa look, and feel, good.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 55 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP and it behaved!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is: start with good foam and you won’t be sorry.”

Polyurethane foam for cushions are generally measured by two values:

  1. The density or weight per cubic foot. The higher the number, the more it weighs.   Foam that has a density of 1.8, for example, contains 1.8 lbs. of foam per cubic foot and foam that has a density of 2.5 would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  2. The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35.

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block 33%.

After choosing which foam to use, it is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually:

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is considered the ‘workhorse’ of flexible foam production.
  • Both methyloxirane and TDI have been formally identified as carcinogens by the State of California
  • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
  • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.  However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2] The fact that California has amended the old law that required fire retardants in polyurethane foam doesn’t affect the fact that in a fire, the toxic gasses released by the foam (such as hydrogen cyanide) would incapacitate the occupants of a house in just a few minutes.

The newest entry in the green sweepstakes is what’s called a bio-based foam made from soybeans. This “soy foam” is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe. To begin, let’s look at why they claim soy foam is green:

  • it’s made from soybeans, a renewable  resource
  • it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’. It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”. Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain; the EPA finds nervous system effects such as depression, loss of concentration and a potential for cancer(4).  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

 

[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

(4) Technical Fact Sheet on: Styrene; Environmental Protection Agency; http://www.epa.gov/ogwdw/pdfs/factsheets/voc/tech/styrene.pdf

 

 





Another concern for vigilant parents

19 11 2014

We live in an environment that is full of chemicals – some which are bad for us and yet are completely natural.   We don’t subscribe to the notion that man-made is absolutely bad and natural is absolutely good – botulism is completely natural and can kill you just as dead. But sometimes we adopt products for our use in ways that can hurt us, because we don’t pay attention to the chemicals that are contained in that product nor of how we use the product. Recently, the crushed up tires that are appearing in playgrounds and as the playfield surface of schools around the country have become an object of concern, so let’s take a look at those.

Discarded rubber tires are the bane of waste management – according to the EPA, we generate 290 million scrap tires each year.[1] Obviously finding a market for these slow-to-decompose materials is desirable, and many innovative uses have been developed, including using ground up tires on playground and sports field surfaces. According to the Synthetic Turf Council, this “crumb rubber has been installed in approximately 11,000 U.S. fields, tracks and playgrounds in the United States.[2] And the California Office of Environmental Health says that recycled rubber tires have become one of the top choice materials for surfacing children’s playgrounds.[3]

Crumb rubber is a black, pellet-like substance the size of a cracker crumb. Run your hand through the field, and you’ll pick up black dust, similar to the consistency of pencil graphite. It’s easy to spread, and can easily get into your mouth, shoes, clothing and nostrils. Routes of exposure, especially in the case of infants, can include dermal absorption, inhalation, and even ingestion directly from the material.

Here’s a story about crumb rubber from NBC news:

Various studies have identified the chemicals found in tires, which are made of 40-60% rubber polymers, carbon black (20-35%), silicas, process and extender oils (up to 28%), vulcanization chemicals and chemical anti-degradents, and plasticizers and softeners. It is well known that rubber tire debris contains toxic compounds such as highly aromatic oils and other reactive additives.[1]

The EPA has identified a number of compounds which may be found in tires, though they’re quick to point out that not all are contained in every tire:[2]

  • heavy metals ( cadmium, chromium, iron, lead, magnesium, manganese, molybdenum, selenium, sulfur, and zinc, which can be as much as 2% of tire mass) – most of which have documented health consequences including damage to the central nervous system.
  • Plasticizers (such as phthalates)- phthalates act as estrogens once absorbed by the body. They are considered endocrine disrupting chemicals (EDC’s); conditions associated with EDC’s include infertility; breast, prostate and ovarian cancers; asthma; and allergies.[3]
  • Styrene butadiene – associated with risk of leukemia[4]; known to be genotoxic[5]
  • Benzene – known to be a human carcinogen; also impacts the nervous and immune systems[6]
  • Chloroethane, which causes cancer in mice, is also a neurotoxin[7]
  • Halogenated flame retardants – need we reiterate how these impact human health?
  • Methyl ethyl ketone and methyl isobutyl ketone – there is no evidence of carcinogenicy or mutagenicy but studies show impairment of central nervous system; both are on the Hazardous Substances List by OSHA.[8]
  • Naphthalene – a group C carcinogen (possible human carcinogen); also causes neurological damage.[9]

Another concern is the smell that wafts up from the playing field – like old tires – coupled with the fact that the fields often are 10 – 15 degrees warmer than the ambient temperature, and many of the compounds evaporate at temperatures as low as 77 degrees F. Compounds found to be present in the air in a study done by the Connecticut Agricultural Experiment Station include: [10]

  • Benzothiazole: A skin and eye irritation, harmful if swallowed. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Butylated hydroxyanisole: A recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immunotoxicant, neurotoxicant, skin and sense-organ toxicant. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • n-hexadecane: A severe irritant based on human and animal studies. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • 4-(t-octyl) phenol: Corrosive and destructive to mucous membranes. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Polycyclic aromatic hydrocarbons (PAHs): heavy occupational exposure leads to risk of lung, skin or bladder cancers; genotoxic, leading to malignancies and heritable genetic damage in humans. [11] In 2010, the EPA concluded that in the case of PAHs, “breathing PAHs and skin contact seem to be associated with cancer in humans.”[12] The total concentration of PAHs in crumb rubber exceedes the Norwegian Pollution Control Authority’s normative values for most sensitive land use.[13]

A 2012 study analyzing rubber mulch taken from children’s playgrounds in Spain found harmful chemicals present in all, frequently at high levels.[14] Twenty-one samples were collected from 9 playgrounds in urban locations and screened for various pollutants. The results showed that all samples contained at least one hazardous chemical, with most containing multiple PAHs found at high concentrations. The authors concluded that the use of rubber recycled tires on playgrounds “should be restricted or even prohibited in some cases.”[15]

Many, if not most, of the compounds present in tire crumbs and shreds have been incompletely tested for human health effects, so there is no data available to evaluate the chemicals (as evidenced by the four compounds above).

Artificial turf and rubber crumb manufacturers point to the fact that no research has linked cancer to artificial turf – yet most studies add the caveat that more research should be conducted.

According to Dr. Joel Forman, associate professor of pediatrics and preventive medicine at New York’s Mt. Sinai Hospital, in all these studies, data gaps make it difficult to draw firm conclusions. As he says, “None of [the studies] are long term, they rarely involve very young children and they only look for concentrations of chemicals and compare it to some sort of standard for what’s considered acceptable,” said Dr. Forman. “That doesn’t really take into account subclinical effects, long-term effects, the developing brain and developing kids.” Forman said that it is known that some of the compounds found in tires, “even in chronic lower exposures” can be associated with subtle neurodevelopmental issues in children.

“If you never study anything,” said Dr. Forman, “you can always say, ‘Well there’s no evidence that shows you have a problem,’ but that’s because you haven’t looked. To look is hard.”

Another notable critic of the stuff is Dr. Phillip Landrigan of the Mount Sinai School of Medicine, who submitted a letter to the New York City Planning Department last year expressing concerns over the carcinogens in tire crumbs.

He wrote that the principal chemical components of crumb rubber are Styrene and Butadiene — Styrene is neurotoxic, and Butadiene is a proven human carcinogen that has been shown to cause leukemia and lymphoma.

“There is a potential for all of these toxins to be inhaled, absorbed through the skin and even swallowed by children who play on synthetic turf fields,” Dr. Landrigan wrote. “Only a few studies have been done to evaluate this type of exposure risk.”

So if it walks like a duck, quacks like a duck and looks like a duck…

And as if to add insult to injury, wood chips were found to do a better job of protecting children from head trauma![16]

Remember that children are much more likely to be harmed by exposure to chemicals in their environment than adults because they’re smaller (therefore exposure is greater) and their bodies are still developing. So what’s a concerned parent to do?

  • First – ignore the tire crumb playgrounds and find a good old wood chip or grass site.
  • Teach your children the importance of frequent hand washing as many chemicals enter bodies via the mouth.
  • And persuade local officials to use wood chips rather than recycled rubber.

 

[1] Llompart, Maria et al, “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”, Chemosphere, Vol. 90, issue 2, January 2013, pages 423-431

[2] http://www.epa.gov/nerl/features/tire_crumbs.html

[3] http://www.everydayexposures.com/toxins/phthalates

[4] Santos-Burgoa, Carlos; “Lymphohematopoietic Cancer in Styrene-Butadiene Polymerization Workers”, American Journal of Epidemiology, Volume 136, issue 7, pp. 843-854.

[5] Norppa, H and Sorsa, M; “Genetic toxicity of 1,3-butadiene and styrene”, IARC Scientific Publications, 1993 (127): 185-193.

[6] http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=14

[7] US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Chloroethane”, December 1998 http://www.atsdr.cdc.gov/toxprofiles/tp105.pdf

[8] http://nj.gov/health/eoh/rtkweb/documents/fs/1258.pdf; and http://nj.gov/health/eoh/rtkweb/documents/fs/1268.pdf

[9] http://www.epa.gov/ttnatw01/hlthef/naphthal.html

[10]Mattina, MaryJane et al; “Examination of Crumb Rubber Produced From Recycled Tires”, The Connecticut Agricultural Experiment Station, 2007, http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/examinationofcrumbrubberac005.pdf

[11] http://www.atsdr.cdc.gov/csem/csem.asp?csem=13

[12] US Environmental Protection Agency (EPA). Polycyclic Aromatic Hydrocarbons (PAHs)-Fact Sheet. January 2008. http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/pahs.pdf

[13] Llompart M, Sanchez-Prado L, Lamas JP, Garcia-Jares C, et al. “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”. Chemosphere. 2012; Article In Press. http://dx.doi.org/10.1016/j.chemosphere.2012.07.053

[14]Ibid.

[15] Ibid.

[16] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track PrRememoducts. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

[1] http://www.epa.gov/osw/conserve/materials/tires/basic.htm

[2] http://www.nbcnews.com/news/investigations/how-safe-artificial-turf-your-child-plays-n220166

[3] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products. January 2007. http://www.calrecycle.ca.gov/publications/Documents/Tires%5C62206013.pdf

 

 





What will nanotechnology mean to you?

2 04 2014

A hot topic in the media right now is the toxicity of chemical flame retardants that are in our furniture and are migrating out into our environment.  Tests have shown that Americans carry much higher levels of these chemicals in their bodies than anyone else in the world, with children in California containing some of the highest levels ever tested.   According to Ronald Hites of Indiana University, these concentrations have been “exponentially increasing, with a doubling time of 4 to 5 years.”[1]  These toxic chemicals are present in nearly every home – packed into couches, chairs and many baby products including (but not limited to) mattresses, nursing pillows, carriers and changing table pads (scary!).  Recent studies have found that most couches in America have over 1 pound of the toxic chemical Chlorinated Tris inside them[2], even though it was banned in children’s pajamas over cancer concerns over a generation ago.[3]

Why the concern?  Fire retardant chemicals, called PBDE’s (polybrominated diphenyl ethers) have been linked to cancer, reproductive problems and impaired fetal brain development, as well as decreased fertility.  And even though they’ve been banned in the U.S. and European Union, they persist in the environment and accumulate in your body – and they’re still being used today.

So its probably no surprise that there is a mad scramble on to produce a fire retardant that does not impact our health or the environment.   The current front runners, touted as being “exceptionally” effective yet safer and more environmentally friendly than the current fire retardants, use nanotechnology – specifically “nanocoatings” and “nanocomposites”[4] .  These composites and coatings are based on what are called “multiwalled carbon nanotubes” or MWCNTs.

Based on a final report published by the U.S. EPA in September 2013 about the assessment of the risks of using these  MWCNTs, the EPA found that there will be releases of these MWCNTs into the environment throughout the life cycle of textiles – to our air and water during production,  in the form of abraded particles of the textiles falling into the dust in our homes, and in the disposal of furniture in municipal landfills or incineration facilities.[5]

While it is reasonable to propose that substituting nanomaterials for polybrominated diphenyl ether (PBDEs)  or chlorinated triss  and calling it “sustainable”, the fact is that no quantitative study has ever been done to support this assertion . [6]

Please don’t misunderstand me – I am all for finding safer alternatives to the current crop of chemical fire retardants (assuming I buy into the argument that we actually need them).  However, I don’t want us to jump from the frying pan into the fire by rushing to use a technology which is still controversial.  But the race is on:  the US patent office published some 4000 patents under “977 – nanotechnology” in 2012, a new record.

patents nanotech

Here’s an interesting video which helps to explain how nano works – and why we will need extensive study to absorb the many implications of this emerging science.

Consider these science fiction type scenarios of how nano can be used to profoundly change our lives:

  • “nanomedicine” offers the promise of diagnosis and treatment of a disease – before you even have the symptoms.  Or it promises to rebuild neurons for people with Alzheimers or Parkinson’s disease – and stem cells for whatever ails you!   Bone regeneration.  [7]
  • Surfaces can be modified to be scratchproof, unwettable, clean or sterile, depending on the application.[8]
  • Quantum computing.
  • Solar cells capturing the sun’s visible spectrum – as well as infrared photons –  doubling the solar energy available to us.  How about zero net carbon emissions.
  • Nanoscale bits of metals can detoxify hazardous wastes.
  • Clothing that recharges your cell phone as you stroll, or an implant that measures blood pressure powered by your own heartbeat.

And yet.  The unknowns are great, and as Eric Drexler has said, the story involves a tangle of science and fiction linked with money, press coverage, Washington politics and sheer confusion.  Scientists and governments agree that the application of nanotechnology to commerce poses important potential risks to human health and the environment, and those risks are unknown. Examples of high level respected reports that express this concern include:

  • Swiss Federation (Precautionary Matrix 2008)[9]
  • Commission on Environmental Pollution (UK 2008)[10];
  • German Governmental Science Commission (“SRU”)[11];
  • Public testimony sought by USA National Institute for Occupational Safety and Health (NIOSH, Feb 2011)[12] ;
  • OECD working group (since 2007)[13];
  • World Trade Organization (WTO)[14]
  • as well as several industrial groups and various non-governmental organizations.

Nanotechnology is already transforming many products – water treatment, pesticides, food packaging and cosmetics to name a few – so the cat is already out of the bag.  Consider this small example of the nano particle  argument:  When ingested the nanoparticles pass into the blood and lymph system, circulate throughout the body and reach potentially sensitive sites such as the spleen, brain, liver and heart.[15]   The ability of nanoparticles to cross the blood brain barrier makes them extremely useful as a way to deliver drugs directly to the brain.  On the other hand, these nanoparticles may be toxic to the brain.  We simply don’t know enough about the size and surface charge of nanoparticles to draw conclusions.[16]  In textiles, silver nano particles are used as antibacterial/antifungal agents to prevent odors.

But there are almost no publications on the effects of engineered nanoparticles on animals and plants in the environment.

So it’s still not clear what nanoscience will grow up to be – if it doesn’t kill us, it might just save us.


[2] Stapleton HM, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol 43(19):7490–7495. (2009); http://dx.doi.org/10.1021/es9014019.

[3] Callahan, P and Hawthorne, M; “Chemicals in the Crib”, Chicago Tribune, December 28, 2012, http://articles.chicagotribune.com/2012-12-28/news/ct-met-flames-test-mattress-20121228_1_tdcpp-heather-stapleton-chlorinated-tris

[5] Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report), Environmental Protection Agency, http://cfpub.epa.gov/ncea/nano/recordisplay.cfm?deid=253010

[6] Gilman,  Jeffrey W., “Sustainable Flame Retardant Nanocomposites”; National Institute of Standards and Technology

[7] Hunziker, Patrick,  “Nanomedicine: The Use of Nano-Scale Science for the Benefit of the Patient” European Foundation for Clinical Nanomedicine (CLINAM) Basel, Switzerland 2010.

[9] Swiss National Science Foundation, Opportunities and Risks of Nanomaterials Implementation Plan of the National Research Programme NRP 64 Berne, 6 October 2009; see also Swiss Precautionary Matrix, and documents explaining and justifying its use, available in English from the Federal Office of Public Health.

[10] Chairman: Sir John Lawton CBE, FRS Royal Commission on Environmental Pollution, Twenty-seventh report: Novel Materials in the Environment: The case of nanotechnology. Presented to Parliament by Command of Her Majesty November 2008.

[11] SRU, German Advisory Council on Environment, Special Report “Precautionary strategies for managing nanomaterials” Sept 2011. The German Advisory Council on the Environment (SRU) is empowered by the German government to make “recommendations for a responsible and precautionary development of this new technology”.

[12] See: Legal basis and justification: Niosh recommendations preventing risk from carbon nanotubes and nanofibers ”post-hearing comments Niosh current intelligence bulletin: occupational exposure to carbon nanotubes and nanofibers Docket NO. NIOSH-161 Revised 18 February 2011; Testimony on behalf of ISRA (International Safety Resources Association) Before NIOSH, USA. Comments prepared by Ilise L Feitshans JD and ScM, Geneva, Switzerland. Testimony presented by Jay Feitshans, Science Policy Analyst; ISRA Draft Document for Public Review and Comment NIOSH Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers, Docket Number NIOSH-161-A.

[13] The OECD Working Party for Manufactured Nanomaterials (WPMN) “OECD Emission Assessment for Identification of Sources of release of Airborne Manufactured Nanomaterials in the Workplace: Compilation of Existing Guidance”, ENV/JM/MONO (2009)16, http://www.oecd.org/dataoecd/15/60/43289645.pdf. “OECD Preliminary Analysis of Exposure Measurement and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials” OECD ENV/JM/MONO(2009)6, 2009. http://www.oecd.org/dataoecd/36/36/42594202.pdf.
“OECD Comparison of Guidance on selection of skin protective equipment and respirators for use in the workplace: manufactured nanomaterials”, OECD ENV/JM/MONO(2009) 17, 2009. www.oecd.org/dataoecd/15/56/43289781.pdf.

[14] WHO Guidelines on “Protecting Workers from Potential Risks of Manufactured Nanomaterials” (WHO/NANOH), (Background paper) 2011

[15] Dixon, D., “Toxic nanoparticles might be entering human food supply, MU study finds”, August 22, 2013, http://munews.missouri.edu/news-releases/2013/0822-toxic-nanoparticles-might-be-entering-human-food-supply-mu-study-finds/

[16] Scientific Committee on Emerging and Newly Identified health Risks (SCENIHR), The European Commission, 2006

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html





Endocrine disruptors – in fabric?

11 04 2013

jeansThis post was published about two years ago, but it’s time to re-run it, because Greenpeace has published its expose of the endocrine disruptors (APEOs and NPEOs) they found in garments produced by major fashion brands (like Levis, Zara, Calvin Klein and others). Click here to read their report.
Many chemicals used in textile processing – and elsewhere in consumer products – have been identified as “endocrine disruptors”. I never paid too much attention to “endocrine disruptors” because it didn’t sound too dire to me – I preferred to worry about something like “carcinogens” because I knew those caused cancer. I knew that endocrine disruptors had something to do with hormones, but I didn’t think that interfering with acne or my teenager’s surliness was much of a concern. Boy was I wrong.
What is an “endocrine disruptor”?
The Environmental Protection Agency defines an endocrine disruptor as an external agent that interferes in some way with the role of natural hormones in the body. (Hmm. Still doesn’t sound too bad.)
The endocrine system includes the glands (e.g., thyroid, pituitary gland, pancreas, ovaries, or testes) and their secretions (i.e., hormones), that are released directly into the body’s circulatory system. The endocrine system controls blood sugar levels, blood pressure, metabolic rates, growth, development, aging, and reproduction. “Endocrine disruptor” is a much broader concept than the terms reproductive toxin, carcinogen, neurotoxin, or teratogen. Scientists use one or more of these terms to describe the types of effects these chemicals have on us.
How do they work? This is from The Society of Environmental Toxicology and Chemistry (SETAC):

Humans and wildlife must regulate how their bodies function to remain healthy in an ever-changing environment. They do this through a complicated exchange between their nervous and endocrine systems. The endocrine systems in humans and wildlife are similar in that they are made up of internal glands that manufacture and secrete hormones. Hormones are chemical messengers that move internally, start or stop various functions, and are important in determining sleep/wake cycles, stimulating or stopping growth, or regulating blood pressure. Some of the most familiar hormones in humans or wildlife are those that help determine male and female gender, as well as control the onset of puberty, maturation, and reproduction. An endocrine disruptor interferes with, or has adverse effects on, the production, distribution, or function of these same hormones. Clearly, interference with or damage of hormones could have major impacts on the health and reproductive system of humans and wildlife, although not all of the changes would necessarily be detrimental.

But why the fuss over endocrine disruptors — and why now? After all, scientists had known for over fifty years that DDT can affect the testes and secondary sex characteristics of young roosters[1]. And for almost as long, it has been well known that daughters born to women who took the drug diethylstilbestrol (DES), a synthetic estrogen, early in their pregnancies had a greatly increased risk of vaginal cancer. [2]
And it has been known for over 25 years that occupational exposures to pesticides could “diminish or destroy the fertility of workers.”[3]

It wasn’t until Theo Colborn, a rancher and mother of four who went back to school at age 51 to get her PhD in zoology, got a job at the Conservation Foundation and began to put the pieces together that the big picture emerged. Theo’s job was to review other scientists’ data, and she noticed that biologists investigating the effects of presumably carcinogenic chemicals on predators in and around the Great Lakes were reporting odd phenomena:

  • Whole communities of minks were failing to reproduce;
  • startling numbers of herring gulls were being born dead, their eyes missing, their bills misshapen;
  •  and the testicles of young male gulls were exhibiting female characteristics.

Often, the offspring of creatures exposed to chemicals were worse off than the animals themselves. Colborn concluded that nearly all the symptoms could be traced to things going wrong in the endocrine system.
In 1991, Colborn called together a conference, whose participants included biologists, endocrinologists and toxicologists as well as psychiatrists and lawyers, at the Wingspread Conference Center in Racine, Wisconsin. They produced what become known as the “Wingspread Statement,” the core document of the endocrine-disruption hypothesis, in which these researchers concluded that observed increases in deformities, evidence of declining human fertility and alleged increases in rates of breast, testicular and prostate cancers, as well as endometriosis are the result of “a large number of man-made chemicals that have been released into the environment”.[4]
Endocrine disruption—the mimicking or blocking or suppression of hormones by industrial or natural chemicals— appeared to be affecting adult reproductive systems and child development in ways that far surpassed cancer, the outcome most commonly looked for by researchers at the time. Potential problems included infertility, genital abnormalities, asthma, autoimmune dysfunction, even neurological disorders involving attention or cognition. In one early study that Colborn reviewed, for instance, the Environmental Protection Agency (EPA) commissioned psychologists to study children whose mothers ate fish out of the Great Lakes. The researchers found that the children “were born sooner, weighed less, and had smaller heads” than those whose mothers hadn’t eaten the fish. Moreover, the more endocrine-disrupting chemicals that were found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2.[5]
The endocrine disruptor hypothesis first came to widespread congressional attention in 1996, with the publication of the book Our Stolen Future – by Theo Colborn, Dianne Dumanoski and John Peterson Myers.[6]
In the years since the Wingspread conference, many of its fears and predictions have been fleshed out by new technologies that give a far more precise picture of the damage that these chemicals can wreak on the human body – and especially on developing fetuses, which are exquisitely sensitive to both the natural hormone signals used to guide its development, and the unexpected chemical signals that reach it from the environment.[7]
Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even tiny doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development.
The endocrine disruption hypothesis has also unleashed a revolution in toxicity theory. The traditional belief that “the dose makes the poison” (the belief that as the dose increases, so does the effect; as the dose decreases, so does its impact) has proven inadequate in explaining the complex workings of the endocrine system, which involves a myriad of chemical messengers and feedback loops.
Experimental data now shows conclusively that some endocrine-disrupting contaminants can cause adverse effects at low levels that are different from those caused by high level exposures. For example, when rats are exposed in the womb to 100 parts per billion of DES, they become scrawny as adults. Yet exposure of just 1 part per billion causes grotesque obesity.[8] Old school toxicology has always assumed that high dose experiments can be used to predict low-dose results. With ‘dose makes the poison’ thinking, traditional toxicologists didn’t pursue the possibility that there might be effects at levels far beneath those used in standard experiments. No health standards incorporated the possibility.
Jerry Heindel, who heads a branch of the National Institute of Environmental Health Science (NIEHS) that funds studies of endocrine disruptors, said that a fetus might respond to a chemical at “one hundred-fold less concentration or more, yet when you take that chemical away, the body is nonetheless altered for life”. Infants may seem fine at birth, but might carry within them a trigger only revealed later in life, often in puberty, when endocrine systems go into hyperdrive. This increases the adolescent’s or adult’s chances of falling ill, getting fat, or becoming infertile – as is the case with DES, where exposure during fetal development doesn’t show up until maturity.
And not just the child’s life, but her children’s lives too. “Inside the fetus are germ cells that are developing that are going to be the sperm and oocytes for the next generation, so you’re actually exposing the mother, the baby, and the baby’s kids, possibly,” says Heindel.[9]
So it’s also the timing that contributes to the poison.
According to Our Stolen Future, “the weight of the evidence says we have a problem. Human impacts beyond isolated cases are already demonstrable. They involve impairments to reproduction, alterations in behavior, diminishment of intellectual capacity, and erosion in the ability to resist disease. The simple truth is that the way we allow chemicals to be used in society today means we are performing a vast experiment, not in the lab, but in the real world, not just on wildlife but on people.”
Now that I know what “endocrine disruptor” means, I’m not dismissing them any more as mere irritants.
________________________________________
[1] Burlington, F. & V.F. Lindeman, 1950. “Effect of DDT on testes and secondary sex
characteristics of white leghorn cockerels”. Proc. Society for Experimental Biology
and Medicine 74: 48–51.
[2] Herbst, A., H. Ulfelder, and D. Poskanzer. “Adenocarcinoma of the vagina: Association of maternal stilbestrol therapy with tumor appearance in young women,” New England Journal of Medicine, v. 284, (1971) p. 878-881.
[3] Moline, J.M., A.L. Golden, N. Bar-Chama, et al. 2000. “Exposure to hazardous substances
and male reproductive health: a research framework”. Environ. Health Perspect.
108: 1–20.
[4] Shulevitz,Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.
[5] Ibid.
[6] Colborn, Theo, Dianne Dumanoski, and John Peterson Myers. Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York: Penguin. (1996) 316 p.
[7] http://www.ourstolenfuture.org/Basics/keypoints.htm
[8] http://www.ourstolenfuture.org/NewScience/lowdose/2007/2007-0525nmdrc.html#lightbulb
[9] Shulevitz,Judith, op. cit.





Copper in the textile industry

14 03 2013

copperWe did a post on copper over two years ago. Here’s the post if you missed it then, because the information is still valid:

Copper is an essential trace element that is vital to life. The human body normally contains copper at a level of about 1.4 to 2.1 mg for each kg of body weight; and since the body can’t synthesize copper, the human diet must supply regular amounts for absorption. The World Health Organization (WHO) suggests that 10-12 mg/day may be the upper safe limit consumption.hhh

The fact that copper is essential to life is well known, but it’s also a toxic metal, and that toxicity, except for the genetic overload diseases, Wilson’s disease and hemochromatosis, is not so well known. Humans can become copper-toxic or copper-deficient, often because of “copper imbalance” (which can include arthritis, fatigue, insomnia, migraine headaches, depression, panic attacks, and attention deficit disorder) .

Copper has been used for centuries for disinfection, and has been important around the world in technology, medicine and culture.

Is copper in the environment a health risk?

The answer to this question is complex. Copper is a necessary nutrient and is naturally occurring in the environment in rocks, soil, air, and water. We come into contact with copper from these sources every day but the quantity is usually tiny. Some of that copper, particularly in water, may be absorbed and used by the body. But much of the copper we come into contact with is tightly bound to other compounds rendering it neither useful nor toxic. It is important to remember that the toxicity of a substance is based on how much an organism is exposed to and the duration and route of exposure. Copper is bioaccumulative – there are many studies of copper biosorption by soils, plants and animals. But copper in the environment, (such as that in agricultural runoff, in air and soil near copper processing facilities such as smelters and at hazardous waste sites) binds easily to compounds in soil and water, reducing its bioavailability to humans. On the other hand, many children are born with excessive tissue copper (reason unknown), and one of the ways we are told to balance a copper imbalance is to reduce your exposure to sources of copper! (see http://www.healingedge.net/store/article_copper_toxicity.html)

There are no studies on what this increased copper is doing to the environment. Copper is listed as an EPA Priority pollutant, a CA Air Toxic contaminant, and an EPA Hazardous air pollutant (see http://wsppn.org/PBT/nolan.cfm#What%20are%20PBTs?); it is also a Type II Moderate Hazard by the WHO Acute Hazard Ranking . There is NO DATA on its carcinogenity, whether it is a developmental or reproductive toxin or endocrine disruptor or whether it contaminates groundwater.

Today, because of its long use as a disinfectant and because it’s required for good health, many claims are being made about using copper in various products – including fabric. Copper-impregnated fibers have been introduced, which enables the production of anti-bacterial and self-sterilizing fabrics. These copper infused fabrics are marketed to be used in hospital settings to reduce infections, as an aid to help those suffering from asthma and allergies provoked by dust mites, and in socks to prevent athlete’s foot.

These copper impregnated fabrics are said to be safe, pointing to the low sensitivity of human tissue to copper, and because the copper is in a non-soluble form. Yet, that copper is safe because it is in a non soluble form was disproven by at least one study which tried to determine whether total copper or soluble copper was associated with gastrointestinal symptoms. It was found that both copper sulfate (a soluable compound) and copper oxide (insoluable) had comparable effects on these symptoms. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240446/)

And then there’s this: “…(copper) toxicity is so general in the population that it is a looming public health problem in diseases of aging and in the aging process itself. Diseases of aging such as Alzheimer’s disease, other neurodegenerative diseases, arteriosclerosis, diabetes mellitus, and others may all be contributed to by excess copper (and iron). A very disturbing study has found that in the general population those in the highest fifth of copper intake, if they are also eating a relatively high fat diet, lose cognition at over three times the normal rate”.[1]

Sometimes safety is cited because of the widespread use by women of copper intrauterine devices (IUDs). But the copper IUD was developed only in 1970; that timeline would put those first users only in their 60s today. How can we know that the copper has not influenced any health problems these 60 somethings may now have? In addition, about 12% of women have the copper IUD removed because of increased menstrual bleeding or cramping.[2] There are also cases of increased menstrual cramping, acne, depression and other symptoms attributed to the copper IUD.[3] The fact that we keep ignoring is that the body, like our ecosystem, is a highly complex, interconnected system. It is extremely hard to single out any one element as contributing to a series of causes and effects.

Although copper does have documented antimicrobial properties, it is a broad spectrum antimicrobial – meaning that it kills the good guys as well as the bad. Many studies show that this is not necessarily the best approach to infection control. Kaiser Permanente issued a December 2006 memo with this bottom line: “Review of current scientific literature reveals no evidence that environmental surface finishes or fabrics containing antimicrobials assist in preventing infections.” In fact, their policy now is to prohibit any fabrics with antimicrobial finishes in their hospitals.

Copper impregnated fabrics are legally sold in the USA, because the EPA has not issued any regulations regarding use. The reality is they don’t have any data on which to base an exclusion of use. In the US we must prove toxicity before the EPA even begins to regulate chemicals – look at the case of lead. Other organizations have evaluated copper (including the EPA, see above).

So really the question is: what possible benefit do you hope to achieve by using a product with this antimicrobial finish? Although copper isn’t one of the most alarming chemicals used in textile processing, it seems to me the benefits just aren’t that compelling. I wouldn’t risk altering my DNA or subjecting myself to copper imbalance symptoms just to eliminate stains or odors.

——————————————————————————–
[1] Brewer, George J., “Risks of Copper and Iron Toxicity during Aging in Humans”, Chemical Research in Toxicology, 2010, 23 (2), pp. 319 – 326.
[2] Zieman M, et al. (2007). Managing Contraception for Your Pocket. Tiger, GA: Bridging the Gap Foundation.
[3] http://www.aphroditewomenshealth.com/forums/ubbthreads.php?ubb=showflat&Number=314954





Bisphenol A – in fabrics?

14 02 2013

From: Center for Health Environment & Justice

From: Center for Health Environment & Justice

If you’ve bought baby bottles or water bottles recently, I’m sure you’ve seen a prominent “BPA Free” sign on the container.

BPA stands for Bisphenol A, a chemical often used to make clear, polycarbonate plastics (like water and baby bottles and also eyeglass lenses, medical devices, CDs and DVDs, cell phones and computers). And though it has been formally declared a hazard to human health in Canada and banned in baby bottles in both Canada as well as the EU, U.S. watchdog agencies have wildly differing views of BPA: The National Toxicology Program (NTP) reported “some concern” that BPA harms the brain and reproductive system, especially in babies and fetuses. The FDA declared that “at current levels of exposure” BPA is safe.

But consider this: Of the more than 100 independently funded experiments on BPA, about 90% have found evidence of adverse health effects at levels similar to human exposure. On the other hand, every single industry-funded study ever conducted — 14 in all — has found no such effects. David Case made the argument in the February 1, 2009 issue of Fast Company that this is a story about protecting a multibillion-dollar market from regulation.

But that’s beside the point which is: nobody disputes the fact that people are constantly exposed to BPAs and babies are most at risk. It’s also undisputed that BPA mimics the female sex hormone estrogen, and that some synthetic estrogens can cause infertility and cancer.

From David Case: “What is in dispute is whether the tiny doses of BPA we’re exposed to are enough to trigger such hormonal effects. For decades, the assumption was that they didn’t. This was based on traditional toxicology, which holds that “the dose makes the poison.” In other words, a threshold exists below which a compound is harmless. This makes intuitive sense. Consider alcohol: The more you drink, the drunker you get; but if you drink just a little — below the threshold — you may not feel anything. In the 1970s and 1980s, government scientists used standard toxicology to test BPA. They concluded that, at doses far higher than those found in humans, it may cause organ failure, leukemia, and severe weight loss. Yet as BPA products have made their way into every part of our lives, biologists have discovered evidence that very low doses may have a completely different set of effects — on the endocrine system, which influences human development, metabolism, and behavior.” Studies showed that exposure levels 25,000 times lower than the EPA’s toxic threshold produced developmental disorders in the offspring of pregnant mice.

If you’d like to read more about this click here.

Bisphenol A is now deeply imbedded in an extraordinary range of products in our modern consumer society – so many, in fact that it’s pretty much upiquitous. This is cause for grave concern, because it is extremely potent in disrupting fetal development. BPA contamination is also widespread in the environment. For example, BPA can be measured in rivers and estuaries at concentrations that range from under 5 to over 1900 nanograms/liter.(1)

What this all means is that most of us live our lives in close proximity to bisphenol A.
Because it’s used to make plastic hard, I never thought it would have a place in the textile industry. So it was with some concern that I came across articles which explain the use of bisphenol A in the manufacturing of synthetic fibers.

Producing synthetic fibers and yarns is almost impossible without applying a processing aid to the fibers during the extrusion and spinning processes. The fibers and yarns are frequently in contact with hot surfaces, or they pass through hot ovens. In order to withstand these extreme conditions, the yarns and fibers have processing aids or finishes applied. This applied processing aid or ‘finish’, in addition to helping the yarns withstand extreme temperatures, also reduces static electricity, fiber-fiber and metal-fiber friction, provides integrity to the filaments, and altogether eases the manufacturing processes.

But because modern manufacturing equipment runs at higher speeds and subsequently at higher temperatures, the finish degrades in the high temperatures – yielding lower quality fibers – and generates unwanted decomposition products. These byproducts can be in the form of:

  1.  Toxic and nontoxic gases which have environmental and safety issues;
  2.  Liquids, which leave a sticky residue on the yarns,
  3.  Or they may form a solid varnish on hot surfaces that is very difficult to remove; the presence of the varnish interferes with continuous, efficient production leading to economic losses due to equipment shutdown and product failure.

To overcome the problems caused by the degradation of finishes, several additives are introduced to prevent or delay the reactions of oxidation and degradation. Several classes of antioxidants are typically used as these additives in these finishes.

In a study sponsored by the National Textile Center, a research consortium of eight universities, three North Carolina State University professors investigated the thermal stability of textiles, specifically with respect to the antioxidants used in the finishes. They investigated four different antioxidants – one of which is based on Bisphenol A. (2)

So I got interested, and began a bit of poking around for other mentions of Bisphenol A in the textile industry. I found two scientific references to use of Bisphenol A in the production of polyester fabrics. Both reported similar use of Bisphenol A as is found in this quote, which states: “ a woven polyester fabric was … finished with an aqueous compound containing 5% polyethylene glycol bisphenol A ether diacrylate for 30 min at 60° to give a hygroscopic, antistatic fabric with good washfastness.” (3)

I found that Bisphenol A is used in the production of flame retardants, and as an intermediate in the manufacture of polymers, fungicides, antioxidants (mentioned above), and dyes. Because it is often used as an intermediate it’s hard to pin down, and manufacturers keep their ingredients trade secrets so we often will not know – unless somebody funds a study which is published.

I have not seen any studies which report finding Bisphenol A in a finished fabric, so this may be a tempest in a teacup. But isn’t it worth noting that this chemical, which has been found in the blood of 95% of all Americans, and which some say may be the “new lead”, can exist in products in which we previously never would have thought to look?

(1) http://www.ourstolenfuture.org/newscience/oncompounds/bisphenola/bpauses.htm
(2) Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”, http://www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf
(3) http://www.lookchem.com/cas-644/64401-02-1.html?countryid=0