Our response to the Flint water crisis

22 06 2016

An editorial by Nicholas Kristof was published in the February 13, 2016, issue of the New York Times entitled: “Are you a Toxic Waste Disposal Site?” We think Mr. Kristof makes some great points, so we’ve published the entire editorial below:

EVEN if you’re not in Flint, Mich., there are toxic chemicals in your home. For that matter, in you.

Scientists have identified more than 200 industrial chemicals — from pesticides, flame retardants, jet fuel — as well as neurotoxins like lead in the blood or breast milk – of Americans, indeed, in people all over our planet.

These have been linked to cancer, genital deformities, lower sperm count, obesity and diminished I.Q. Medical organizations from the President’s Cancer Panel to the International Federation of Gynecology and Obstetrics have demanded tougher regulations or warned people to avoid them, and the cancer panel has warned that “to a disturbing extent, babies are born ‘pre-polluted.’”

They have all been drowned out by chemical industry lobbyists.

So we have a remarkable state of affairs:

■ Politicians are (belatedly!) condemning the catastrophe of lead poisoning in Flint. But few acknowledge that lead poisoning in many places in America is even worse than in Flint. Kids are more likely to suffer lead poisoning in Pennsylvania or Illinois or even most of New York State than in Flint. More on that later.

■ Americans are panicking about the mosquito-borne Zika virus and the prospect that widespread infection may reach the United States. That’s a legitimate concern, but public health experts say that toxic substances around us seem to pose an even greater threat.

“I cannot imagine that the Zika virus will damage any more than a small fraction of the total number of children who are damaged by lead in deteriorated, poor housing in the United States,” says Dr. Philip Landrigan, a prominent pediatrician and the dean for global health at the Icahn School of Medicine at Mount Sinai. “Lead, mercury, PCBs, flame retardants and pesticides cause prenatal brain damage to tens of thousands of children in this country every year,” he noted.

Yet one measure of our broken political system is that chemical companies, by spending vast sums on lobbying— $100,000 per member of Congress last year — block serious oversight.[1] Almost none of the chemicals in products we use daily have been tested for safety.

Maybe, just maybe, the crisis in Flint can be used to galvanize a public health revolution.

In 1854, a British doctor named John Snow started such a revolution. Thousands were dying of cholera at the time, but doctors were resigned to the idea that all they could do was treat sick patients. Then Snow figured out that a water pump on Broad Street in London was the source of the cholera[2]. The water company furiously rejected that conclusion, but Snow blocked use of the water pump, and the cholera outbreak pretty much ended. This revelation led to the germ theory of disease and to investments in sanitation and clean water. Millions of lives were saved.

Now we need a similar public health revolution focusing on the early roots of many pathologies.

For example, it’s scandalous that 535,000 American children ages 1 to 5 still suffer lead poisoning, according to the Centers for Disease Control and Prevention[3]. The poisoning is mostly a result of chipped lead paint in old houses or of lead-contaminated soil being tracked into homes, although some areas like Flint also have tainted tap water. (Note:  fabrics often contain lead in the dyes used and as a catalyst in the dyeing process.)

lead paint

While the data sets are weak, many parts of America have even higher rates of child lead poisoning than Flint, where 4.9 percent of children tested have had elevated lead levels in their blood. In New York State outside New York City, it’s 6.7 percent. In Pennsylvania, 8.5 percent. In parts of Detroit, it’s 20 percent. The victims are often poor or black.[4]

Infants who absorb lead are more likely to grow up with shrunken brains and diminished I.Q.[5] They are more likely as young adults to engage in risky sexual behavior, to disrupt school and to commit violent crimes. Many researchers believe that the worldwide decline in violent crime beginning in the 1990s is partly a result of lead being taken out of gasoline in the late 1970s. The stakes are enormous, for individual opportunity and for social cohesion.

Fortunately, we have some new Dr. Snows for the 21st century.

A group of scholars, led by David L. Shern of Mental Health America, argues that the world today needs a new public health revolution focused on young children, parallel to the one mounted for sanitation after Snow’s revelations about cholera in 1854. Once again, we have information about how to prevent pathologies, not just treat them — if we will act.

The reason for a new effort is a vast amount of recent research showing that brain development at the beginning of life affects physical and mental health decades later. That means protecting the developing brain from dangerous substances and also from “toxic stress”— often a byproduct of poverty — to prevent high levels of the stress hormone cortisol, which impairs brain development.

A starting point of this public health revolution should be to protect infants and fetuses from toxic substances, which means taking on the companies that buy lawmakers to prevent regulation. Just as water companies tried to obstruct the 19th-century efforts, industry has tried to block recent progress.

Back in 1786, Benjamin Franklin commented extensively on the perils of lead poisoning, but industry ignored the dangers and marketed lead aggressively. In the 1920s, an advertisement for the National Lead Company declared, “Lead helps to guard your health,” praising the use of lead pipes for plumbing and lead paint for homes. And what the lead companies did for decades, and the tobacco companies did, too, the chemical companies do today.

lead

Lead poisoning is just “the tip of the iceberg,” says Tracey Woodruff, an environmental health specialist at the University of California at San Francisco. Flame-retardant chemicals have very similar effects, she says, and they’re in the couches we sit on.

The challenge is that the casualties aren’t obvious, as they are with cholera, but stealthy and long term. These are silent epidemics, so they don’t generate as much public alarm as they should.

“Industrial chemicals that injure the developing brain” have been linked to conditions like autism and attention deficit hyperactivity disorder, noted The Lancet Neurology, a peer-reviewed medical journal. Yet we still don’t have a clear enough sense of what is safe, because many industrial chemicals aren’t safety tested before they are put on the market. Meanwhile, Congress has dragged out efforts to strengthen the Toxic Substances Control Act and test more chemicals for safety.

The President’s Cancer Panel recommended that people eat organic if possible, filter water and avoid microwaving food in plastic containers. All good advice, but that’s like telling people to avoid cholera without providing clean water.

And that’s why we need another public health revolution in the 21st century.

[1] http://www.opensecrets.org/lobby/indusclient.php?id=N13&year=2015

[2] http://www.bbc.co.uk/history/historic_figures/snow_john.shtml

[3] http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6213a3.htm

[4] http://www.nytimes.com/2016/02/07/opinion/sunday/america-is-flint.html

[5] http://journalistsresource.org/studies/society/public-health/lead-poisoning-exposure-health-policy?utm_source=JR-email&utm_medium=email&utm_campaign=JR-email&utm_source=Journalist%27s+Resource&utm_campaign=63b82f94eb-2015_Sept_1_A_B_split3_24_2015&utm_medium=email&utm_term=0_12d86b1d6a-63b82f94eb-79637481





Do we exaggerate the dangers of conventional fabrics?

18 06 2014

We received a comment on one of our blog posts recently in which the reader chastised us for exaggerating issues which they believe are disproportionate to the facts. In their words: For instance formaldehyde… is a volatile chemical…no doubt it is used in the textile industry a great deal…but looking for this chemical in end products is an example chasing a ghost…. It has to be put in perspective. I do not know of any citation that a human developed cancer because they wore durable press finished clothing.

Please follow along as I itemize the reasons that we don’t feel the issues are exaggerated.

Textiles are full of chemicals. The chemicals found in fabrics have been deemed to be, even by conservative organizations such as the Swedish government, simply doing us no good – and even harming us in ways ranging from subtle to profound. But fabrics are just one of the many stressors that people face during the day: these stressors (i.e., chemicals of concern) are in our food, our cosmetics, our electronics, our cleaning products, in dust in our houses and pollution from automobile exhaust in our air.  This is not even close to an exhaustive list of the products containing the kinds of chemical stressors we face each day. And this is a new thing – it wasn’t until around the middle of the last century that these synthetic chemicals became so ubiquitous. Remember “better living through chemistry”? And if you don’t know the history of such events as Minamata, or about places like Dzershinsk, Russia or Hazaribagh, Bangladesh, then do some homework to get up to speed.

Add to that the fact that new research is being done which is profoundly changing our old belief systems. For example, we used to think that a little dose of a poison would do a little bit of harm, and a big dose would do a lot of harm (i.e., “the dose makes the poison”) – because water can kill you just as surely as arsenic, given sufficient quantity.   The new paradigm shows that exposure to even tiny amounts of chemicals (in the parts-per-trillion range) can have significant impacts on our health – in fact some chemcials impact the body profoundly in the parts per trillion range, but do little harm at much greater dosages. The old belief system did not address how chemicals can change the subtle organization of the brain. Now, according to Dr. Laura Vandenberg of the Tufts University Center for Regenerative and Developmental Biology [1] “we found chemicals that are working at that really low level, which can take a brain that’s in a girl animal and make it look like a brain from a boy animal, so, really subtle changes that have really important effects.”

In making a risk assessment of any chemical, we now also know that timing and order of exposure is critical – exposures can happen all at once, or one after the other, and that can make a world of difference.   And we also know another thing: mixtures of chemicals can make each other more toxic. For example: a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

And finally, the new science called “epigenetics” is finding that pollutants and chemicals might be altering the 20,000-25,000 genes we’re born with—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations. So exposure to chemicals can alter genetic expression, not only in your children, but in your children’s children – and their children too. Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical. [2]  Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[3]

So that’s the thing: we’re exposed to chemicals all day, every day – heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, Prozac (and a host of other pharmaceuticals) and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’ These exposures all add up – and the body can flush out some of these chemicals, while it cannot excrete others.  Chlorinated pesticides, such as DDT, for example, can remain in the body for 50 years.   Scientists call the chemicals in our body our “body burden”.  Everyone alive carries within their body at least 700 contaminants.[4]

This cumulative exposure could mean that at some point your body reaches a tipping point and, like falling dominoes, the stage is set for something disastrous happening to your health.

I am especially concerned because these manufactured chemicals – not just the elements which have been with us forever but those synthetic combinations  – have not been tested, so we don’t really have a clue what they’re doing to us.

But back to our main argument:

The generations born from 1970 on are the first to be raised in a truly toxified world. Probably one in three of the children you know suffers from a chronic illness – based on the finding of many studies on children’s health issues.[5]   It could be cancer, or birth defects – perhaps asthma, or a problem that affects the child’s mind and behavior, such as a learning disorder, ADHD or autism or even a peanut allergy. We do know, for example:

Childhood cancer, once a medical rarity, is the second leading cause of death (following accidents) in children aged 5 to 14 years.[6]

According to the American Academy of Allergy Asthma & Immunology, for the period 2008-2010, asthma prevalence was higher among children than adults – and asthma rates for both continue to grow. [7]

Autism rates without a doubt have increased at least 200 percent.

Miscarriages and premature births are also on the rise,

while the ratio of male to female babies dwindles and

teenage girls face endometriosis.

Dr. Warren Porter delivered a talk at the 25th National Pesticide Forum in 2007, in which he explained that a lawn chemical used across the country, 2,4-D, mecoprop and dicambra was tested to see if it would change or alter the capacity of mice to keep fetuses in utero. The test found that the lowest dosage of this chemical had the greatest effect – a common endocrine response.[8]

Illness does not necessarily show up in childhood. Environmental exposures, from conception to early life, can set a person’s  cellular code for life and can cause disease at any time, through old age. And the new science of epigenetics is showing us that these exposures can impact not only us, but our children, grandchildren and great-grandchildren.

Let’s look at the formaldehyde which our reader mentioned. Formaldehyde is one of many chemical stressors – and it is used in fabrics as finishes to prevent stains and wrinkles (for example, most cotton/poly sheet sets found in the US have a formaldehyde finish), but it’s also used as a binding agent in printing inks, for the hardening of casein fibers, as a wool protection , and for its anti-mold properties.

Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-linking with proteins, DNA and unsaturated fatty acids. These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption.[9]

Formaldehyde in clothing is not regulated in the United States, but 13 countries do have laws that regulate the amount of formaldehyde allowed in clothing.   Greenpeace tested a series of Disney clothing articles and found from 23ppm – 1,100 ppm of formaldehyde in 8 of the 16 products tested.  In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras. Then in January 2009, new blue uniforms issued to Transportation Security Administration officers, gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers – because of the formaldehyde in the uniforms.[10]

Studies have been done which link formaldehyde in indoor air as a risk factor for childhood asthma[11]. Rates of formaldehyde in indoor air have grown from 0.014 ppm in 1980 to 0.2 ppm in 2010 – and these rates are increasing.

Studies have also been found which link formaldehyde to a variety of ailments in textile workers, specifically: Besides being a well known irritant of the eyes, nose and upper and lower airways, as well as being a cause of occupational asthma[12], a number of studies have linked formaldehyde exposure with the development of lung and nasopharyngeal cancers[13] and with myeloid leukemia. [14]   A cohort study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[15] By the way, OSHA has established a Federal standard what restricts the amount of formaldehyde that a worker can be exposed to over an 8 hour workday – currently that’s 0.75 ppm.

That means if you have 0.2 ppm of formaldehyde in your indoor air, and your baby is wearing the Disney Finding Nemo t-shirt which registered as 1,100 ppm – what do you think the formaldehyde is doing to your baby?

So our argument is not that any one piece of clothing can necessarily do irreparable harm to somebody – but if that piece of clothing contains a chemical (pick any one of a number of chemicals) that is part of what scientists call our “body burden”, then it just might be the thing that pushes you over the edge. And if you can find products that do not contain the chemicals of concern, why would you not use them, given the risk of not doing so?

 

[1] Living on Earth, March 16, 2012, http://www.loe.org/shows/segments.html?programID=12-P13-00011&segmentID=1

[2] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[3]http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[4] http://www.chemicalbodyburden.org/whatisbb.htm

[5] Theofanidis, D, MSc., “Chronic Illness in Childhood: Psychosocial and Nursing Support for the Family”, Health Science Journal, http://www.hsj.gr/volume1/issue2/issue02_rev01.pdf

[6] Ward, Elizabeth, et al; Childhood and adolescent cancer statistics, 2014, CA: Cancer Journal for Clinicians, Vol 64, issue 2, pp. 83-103, March/April 2014

[7] http://www.aaaai.org/about-the-aaaai/newsroom/asthma-statistics.aspx

[8] Porter, Warren, PhD; “Facing Scientific Realities: Debunking the “Dose Makes the Poison” Myth”, National Pesticide Forum, Chicago, 2007; http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2007-08/dose-poison-debunk.pdf

[9] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[10] http://www.examiner.com/article/new-tsa-uniforms-making-workers-sick-afge-demands-replacement

[11] Rumchev, K.B., et al, “Domestic exposure to formaldehyde significantly increases the risk of asthma in young children”, Microsoft Academic Search 2002

[12] Thrasher JD etal., “Immune activation and autoantibodies in humans with long-term inhalation exposure to formaldehyde,” Archive Env. Health, 45: 217-223, 1990.

[13] Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. American Journal of Epidemiology 2004; 159(12):1117–1130

 

[14] National Cancer Institute, “Formaldehyde and Cancer Risk”, http://www.cancer.gov/cancertopics/factsheet/Risk/formaldehyde

[15] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental 
Medicine, 2004 March, 61(3): 193-200.

 

 

 





Can your fabric choices make you fat?

31 01 2013

We have all heard the stories of our “growing obesity epidemic” – especially in western nations. It’s an important national problem, and is partly responsible for our soaring health care costs. We often point to obesity as being caused by overeating, fast food, and/or sedentary lifestyles for those having a genetic predisposition to the disease. But the rates of obesity have escalated in such an exponential manner that the commonly held causes of obesity – overeating and inactivity – cannot explain the current obesity epidemic. A growing number of studies have suggested a new culprit: environmental rather than genetic causes.

Our world is different than it was 100 years ago. We have developed many synthetic organic and inorganic chemicals to make our lives easier – and used them in a fabulously wide range of products. In fact, you could say, as some do, that we’re living in a toxic soup of these chemicals. And those chemicals are changing us. Some of the chemicals changing us are called “endocrine disruptors” (which we discussed in last week’s post) since they interfere with the body’s hormone balance, which confuses the body. Initially, they caused concern because of their links to cancers and the malformation of sex organs. Those concerns continue, but the newest area of research is the impact that they have on fat storage.

It has been found that the developing organism (us!) is extremely sensitive to chemicals with estrogenic or endocrine disrupting activity and that exposure to these chemicals during critical stages of development may have permanent long-lasting consequences, some of which may not be expressed or detected until later in life.(1)

But back to obesity, which is what we’re concentrating on this week. (I know it’s difficult to stay on task, because these chemicals are synergistic, have multi-dimensional effects and often degrade into different substances altogether).

Nicholas Kristof, writing in the New York Times last weekend, talked about the results of a study which I found disturbing. Look at these two mice:

The only difference between these mice: The one at the top was exposed at birth to a tiny amount of an endocrine-disrupting chemical.  New York Times

The only difference between these mice: The one at the top was exposed at birth to a tiny amount of an endocrine-disrupting chemical. New York Times

According to Kristof, “they’re genetically the same, raised in the same lab and given the same food and chance to exercise. Yet the bottom one is svelte, while the other looks like, well, an American. The only difference is that the top one was exposed at birth to just one part per billion of an endocrine-disrupting chemical (2) . The brief exposure programmed the mouse to put on fat, and although there were no significant differences in caloric intake or expenditure, it continued to put on flab long after the chemical was gone.”

Bruce Blumberg, a developmental biologist at the University of California, Irvine, coined the term “obesogen” in a 2006 journal article to refer to chemicals that cause animals to store fat. Initially, this concept was highly controversial among obesity experts, but a growing number of peer-reviewed studies have confirmed his finding and identified some 20 substances as obesogens.

Manufacturers have already exploited obesogens by using them to fatten livestock, and by formulating pharmaceuticals to induce weight gain in grossly underweight patients. A study by Dr. Baillie-Hamilton presents the hypothesis that the current level of human exposure to these chemicals may have damaged many of the body’s natural weight-control mechanisms and that these effects, together with a wide range of additional, possibly synergistic, factors may play a significant role in the worldwide obesity epidemic.(3) And these changes continue generation after generation. It’s clear that the most important time for exposure is in utero and during childhood.(4)

The magazine Scientific American recently asked whether doctors should do more to warn pregnant women about certain chemicals.(5)  It cited a survey indicating that only 19% of doctors cautioned pregnant women about pesticides, only 8% about BPA (an endocrine disruptor in some plastics and receipts), and only 5% about phthalates (endocrine disruptors found in cosmetics and shampoos). Dr. Blumberg, the pioneer of the field, says he strongly recommends that people — especially children and women who are pregnant or may become pregnant — try to eat organic foods to reduce exposure to endocrine disruptors, and try to avoid using plastics to store food or water. “My daughter uses a stainless steel water bottle, and so do I,” he said.

Endocrine disruptors are found in fabrics – Greenpeace did a study of 141 clothing items purchased in 29 different countries from authorized retailers. Endocrine disruptors were found in 89 of the 141 articles tested. According to the report: “Overall, a variety of hazardous chemicals were detected within the broad range of high street fashion textile products analysed. These covered a diverse range of brands and countries of manufacture. These results indicate the ongoing – and in some cases widespread – use of hazardous chemicals in the manufacture of textile products openly marketed to consumers.”

It’s not clear whether most obesogens will do much to make an ordinary adult, even a pregnant woman, fatter (although one has been shown to do so). But what about our children, and their children? How does fabric processing impact my weight, or my child’s weight? Should I avoid certain processing chemicals in my own home?

The government made a tremendous impact on public health when it outlawed lead in gasoline. Now we need to make those same hard choices about doing without some of the things we’ve learned to like but which we know to be impacting our health. Support the Safe Chemicals Act and spread the word. This is too important to ignore.

[1] Newbold, R. R., Padilla-Banks, E., Snyder, R. J. and Jefferson, W. N. (2005), Developmental exposure to estrogenic compounds and obesity. Birth Defects Research Part A: Clinical and Molecular Teratology, 73: 478–480. doi: 10.1002/bdra.20147

[2] Newbold, R. R., Padilla-Banks, E., Snyder, R. J. and Jefferson, W. N. (2005), Developmental exposure to estrogenic compounds and obesity. Birth Defects Research Part A: Clinical and Molecular Teratology, 73: 478–480. doi: 10.1002/bdra.20147

[3] Baillie-Hamilton, PF, “Chemical toxins: a hypothesis to explain the global obesity epidemic”, Journal of Alternative and Complementary Medicine, April 2002,

[4] Blumberg, Bruce et al, “Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Obesogen Tributyltin in Mice”, Environmental Health Perspectives, January 15, 2013.

[5] Kay, Jane, “Should Doctors Warn Pregnant Women about Environmental Risks?”, Scientific American, December 10, 2012.





Textile chemicals – beginning with the one used the most

16 01 2013

saltLet’s begin our review of chemicals used in textile processing with the one chemical that is used most often and in far greater quantity than any other: salt. That’s right. Common table salt, the kind you probably use every day. But in the quantities used by this industry it becomes a monster – we’ll get to that in a minute.

Salt is used in the dye process. The way the dyestuff bonds to the fibers is very important – and the most permanent, colorfast dyes are the ones that are most tightly attached to the fiber molecules (called reactive dyes). Here’s how salt comes into the picture:

When fabrics made of cellulosic (i.e., cotton, linen, hemp or viscose) are dyed, they’re immersed in water which contains dyes which have been dissolved in the water. The surface of the fabric gets covered in negative ionic charges. The reactive dyes used most often to dye cellulosic fabrics also develop a negative charge, so the fibers actually repel the dye – like two magnets repelling each other. If we try to dye a cellulosic fabric without using salt, the dye molecules just roll off the surface of the fibers and the fabric does not show much color change. So these reactive dyes need the addition of salt to “push” the dyes out of solution and into the cloth by neutralizing the negative charge.

The salt acts like a glue to hold the dye molecules in place, and with the addition of alkali, a certain percentage of the dyestuff (called the “fixation rate”) will permanently grab hold of the fiber and become a part of the fiber molecule rather than remaining as an independent chemical entity. For conventional reactive dyes, the fixation rate is often less than 80%, resulting in waste of dyestuff, and also the need to remove that 20% (which is not fixed) from the fabric.(1) But this is incredibly difficult when the “unreacted” dyes are still “glued” onto the fabric by salt. So vast amounts of water are required to simply dilute the salt concentrations to a point where it no longer acts as glue.

That means the textile effluent contains both dyestuff and salt (lots of salt!) The concentrations of salt in the dye bath can be as high as 100 gm per liter. In the worst cases, equal weights of salt to fabric is used to apply reactive dye (i.e., if dyeing 10 lbs of fabric, you need 10 lbs of salt). Think of the billions of yards of fabric that’s produced each year: In Europe alone, 1 million tons of salt is discharged into waterways each year.(2) In areas where salt is discharged into the ecosystem, it takes a long, long time for affected areas to recover, especially in areas of sparse rainfall – such as Tirupur, India.

Tirupur is one of the world’s centers for clothing production , home of 765 dyeing and bleaching industries. These dyehouses had been dumping untreated effluent into the Noyyal River for years, rendering the water unsuitable or irrigation – or drinking. In 2005, the government shut down 571 dyehouses because of the effluent being discharged into the Noyyal. The mill owners said they simply couldn’t afford to put pollution measures into place. The industry is too important to India to keep the mills closed for long, so the government banned the discharge of salt and asked for an advance from the mills before allowing them to re-open. But … on February 4, 2011, the Madras high court ordered 700 dye plants to be shut down because of the damage the effluent was doing to the local environment. Sigh. (Read more about Tirupur here.)

Unfortunately, the salt in textile effluent is not made harmless by treatment plants and can pass straight through to our rivers even if it has been treated. The salt expelled into waterways (untreated) coupled with salt from roadway de-icing has led to the increase in salt in our waters in the United States – salt levels in Lake George have nearly tripled since 1980,(3) which mirrors many other parts of the U.S. Highest levels occur during the annual ice-out and snowmelt where high salt concentrations in streams flowing into Lake George have been linked to die offs of fish, and is known as “spring shock”. A study in Toronto found that half the wells tested exceeded the limit of 20mg of salt per liter of water, 20% exceeded 100mg/liter and 6% exceeded 250mg/liter. (4) It becomes a public health concern for people who drink this water, because it can exacerbate high blood pressure and hypertension in humans. This increase in our drinking water can also cause problems with water balance in the human body. Salt in water is also responsible for the release of mercury into the water system.

Recycling the salt used during the dye process is possible, and this has been used by many of the dyers in Tirupur, and elsewhere, who operate zero discharge facilities. The effluent is cleaned and then the salt is recovered using an energy intensive process to evaporate the water and leave the solid, re-useable salt. This sounds like a good idea – it reduces the pollution levels – but the carbon footprint goes through the roof, so salt recovery isn’t necessarily the best option. In fact, in some areas of the world where water is plentiful and the salt can be diluted in the rivers adequately, it may be better to simply discharge salt than to recover it.

There are some new “low salt” dyes that require only half the amount of “glue”: Ciba Specialty Chemicals, a Swiss manufacturer of textile dyes (now part of BASF) produces a dyestuff which requires less salt. As the company brochure puts it: “Textile companies using the new dyes are able to reduce their costs for salt by up to 2 percent of revenues, a significant drop in an industry with razor-thin profit margins” but these dyes are not widely used because they’re expensive – and manufacturers are following our lead in demanding ever cheaper costs. There are also new low-liquor-ratio (LLR) jet dyeing machines – but that doesn’t mean zero salt, so there is still salt infused effluent which must be treated. And these new ultra low liquor ratio machines are very expensive.

The best option is to avoid salt altogether. Though the salt itself is not expensive, using less salt delivers substantial benefits to the mill because the fabric requires less rinsing in hot water (and hence reductions in energy and water) as well as cost savings of up to 10% of the total process costs.(5) So what about using no salt at all?

There are two ways to dye fabrics without salt: “continuous dyeing” and “cold pad batch dyeing”. Continuous dyeing means that the dye is applied with alkali to activate the dye fixation; the fabric is then steamed for a few minutes to completely fix the dyestuff. Cold pad batch dyeing applies the dyestuff with alkali and the fabric is simply left at room temperature for 24 hours to fix the dye.

Both of these methods don’t use salt, so the unfixed dye chemicals are easier to remove because there is no salt acting as the “glue” – and therefore less water is used. An additional benefit is having a lower salt content in the effluent. So why don’t companies use this method? Continuous dyeing requires investment in big, expensive machines that only make environmental sense if they can be filled with large orders – because they use lots of energy even during downtime.

Cold pad batch machines are relatively inexpensive to buy and run, they are highly productive and can be used for a wide range of fabrics. Yet only 3% of knitted cotton fabric is dyed in Asia using cold pad batch machines.
Why on earth don’t these mills use cold pad batch dyeing? I would love to hear from any mill owners who might let us know more about the economics of dyeing operations.

(1) http://lifestylemonitor.cottoninc.com/Supply-Chain-Insights/Sustainable-Dyeing-Solutions-02-10/
(2) Dyeing for a change: Current Conventions and New Futures in the Textile Color Industry (2006, July) http://www.betterthinking.co.uk
(3) http://www.fundforlakegeorge.org/assets/pdf_files/Fact%20Sheet%2011%20Salt.pdf
(4) http://www.digitaltermpapers.com/a2206.htm
(5) “A Practical Guide For Responsible Sourcing”, The National Resources Defense Council (NRDC), February 2010.





Printing – part 3

19 01 2012

Yes, we’re still talking about the printing process!  As I warned you, it’s complicated.

For the past two weeks we’ve concentrated on the first two steps of the basic 5 steps in printing a fabric, which  are:

1. Preparation of the print paste.

2. Printing the fabric.

3. Drying the printed fabric.

4. Fixation of the printed dye or pigment.

5. Afterwashing.

So let’s look at the rest of the steps – drying, fixation and afterwashing.

Actually, the printing process begins even before passing  the fabric thru the printing presses, because the fabric must be conditioned.  The cloth must always to be brushed, to free it from loose nap, flocks and dust that it picks up while stored. Frequently, too, it has to be sheared by being passed over rapidly revolving knives arranged spirally round an axle, which rapidly and effectually cuts off all filaments and knots, leaving the cloth perfectly smooth and clean and in a condition fit to receive impressions of the most delicate engraving. Some figured fabrics, especially those woven in checks, stripes and crossovers, require very careful stretching and straightening on a special machine, known as a stenter, before they can be printed with certain formal styles of pattern which are intended in one way or another to correspond with the cloth pattern. Finally, all descriptions of cloth are wound round hollow wooden or iron centers into rolls of convenient size for mounting on the printing machines.

Immediately after printing, the fabric must be dried  in order to retain a sharp printed mark and to facilitate handling between printing and subsequent processing operations.

Two types of dryers are used for printed fabric, steam coil or natural gas fired dryers, through which the fabric is conveyed on belts, racks, etc., and steam cans, with which the fabric makes direct contact. Most screen printed fabrics and practically all printed knit fabrics and terry towels are dried with the first type of dryer, not to stress the fabric. Roller printed fabrics and apparel fabrics requiring soft handling are dried on steam cans, which have lower installation and operating costs and which dry the fabric more quickly than other dryers.

After printing and drying, the fabric is often cooled by blowing air over it or by passing it over a cooling cylinder to improve its storage properties prior to steaming, which is the process which fixes the color into the fabric.  Steaming may be likened to a dyeing operation.  Before steaming, the bulk of the dyestuff is held in a dried film of thickening agent.  During the steaming operation, the printed areas absorb moisture and form a very concentrated dyebath, from which dyeing of the fiber takes place.  The thickening agent prevents the dyestuff from spreading outside the area originally printed, because the printed areas act as a concentrated dyebath that exists more in the form of a gel than a solution and restricts any tendency to bleed.  Excessive moisture can cause bleeding, and insufficient moisture can prevent proper dyestuff fixation.  Steaming is generally done with atmospheric steam, although certain tyepes of dyestuffs, such as disperse dyes, can be fixed by using superheated steam or even dry heat.  In a few instances, acetic or formic acid is added to the steam to provide the acid atmosphere necessary to fix certain classes of dyes.  Temperatures in the steamer must be carefully controlled to prevent damage from overheating due to the heat swelling of the fabric, condensation of certain chemicals, or the decomposition of reducing agents.

Flash aging is a special fixation technique used for vat dyes. The dyes are printed in the insoluble oxidized state by using a thickener which is very insoluble in alkali. The dried print is run through a bath containing alkali and reducing agent, and then directly into a steamer, where reduction and color transfer take place.

After steaming, the printed fabric must not be stored for too long prior to washing because reducing agent residues may continue to decompose, leading to heat build up in the stacked material and defective dyeing or even browning of the fibers. If a delay of several hours is anticipated before the wet aftertreatment the fabric should be cooled with air (called “skying”) to oxidize at least some of the excess reducing agent.

Finally, printed goods must be washed thoroughly to remove thickening agent, chemicals, and unfixed dyestuff.  Washing of the printed material begins with a thorough rinsing in cold water.  After this, reoxidation is carried out with hydrogen peroxide in the presence of a small amount of acetic acid at 122 – 140 degrees F. A soap treatment with sodium carbonate at the boiling point should be begun only after this process is complete. This washing must be carefully done to prevent staining of the uncolored portions of the fabric.  Drying of the washed goods is the final operation of printing. 

And there you have it – a beautifully printed fabric that you can proudly display. Bet you know the subject of the next post – the environmental consequences of all this. Stay tuned.





Do we need a national plastics control law?

20 10 2010

John Wargo wears at least three hats:  he is a professor of environmental policy, risk analysis, and political science at the Yale School of Forestry & Environmental Studies, he chairs the Environmental Studies Major at Yale College, and is an advisor to the U.S. Centers for Disease Control and Prevention.  He published this opinion on plastics in the United States last year – and I couldn’t have said it better myself:

Since 1950, plastics have quickly and quietly entered the lives and bodies of most people and ecosystems on the planet. In the United States alone, more than 100 billion pounds of resins are formed each year into food and beverage packaging, electronics, building products, furnishings, vehicles, toys, and medical devices. In 2007, the average American purchased more than 220 pounds of plastic, creating nearly $400 billion in sales.

It is now impossible to avoid exposure to plastics. They surround and pervade our homes, bodies, foods, and water supplies, from the plastic diapers and polyester pajamas worn by our children as well as our own sheets, clothing and upholstery,  to the cars we drive and the frying pans in which we cook our food.

The ubiquitous nature of plastics is a significant factor in an unexpected side effect of 20th century prosperity — a change in the chemistry of the human body. Today, most individuals carry in their bodies a mixture of metals, pesticides, solvents, fire retardants, waterproofing agents, and by-products of fuel combustion, according to studies of human tissues conducted across the U.S. by the Centers for Disease Control and Prevention. Children often carry higher concentrations than adults, with the amounts also varying according to gender and ethnicity. Many of these substances are recognized by the governments of the United States and the European Union to be carcinogens, neurotoxins, reproductive and developmental toxins, or endocrine disruptors that mimic or block human hormones.

Significantly, these chemicals were once thought to be safe at doses now known to be hazardous; as with other substances, the perception of danger grew as governments tested chemicals more thoroughly. Such is the case with Bisphenol-A (BPA), the primary component of hard and clear polycarbonate plastics, which people are exposed to daily through water bottles, baby bottles, and the linings of canned foods.

Given the proven health threat posed by some plastics, the scatter shot and weak regulation of the plastics industry, and the enormous environmental costs of plastics — the plastics industry accounts for 5 percent of the nation’s consumption of petroleum and natural gas, and more than 1 trillion pounds of plastic wastes now sit in U.S. garbage dumps — the time has come to pass a comprehensive national plastics control law.

One might assume the United States already has such a law. Indeed, Congress adopted the Toxic Substances Control Act (TSCA) in 1976 intending to manage chemicals such as those polymers used to form plastics. Yet TSCA was and is fundamentally flawed for several reasons that have long been obvious. Nearly 80,000 chemicals are now traded in global markets, and Congress exempted nearly 60,000 of them from TSCA testing requirements. Among 20,000 new compounds introduced since the law’s passage, the U.S. Environmental Protection Agency (EPA) has issued permits for all except five, but has required intensive reviews for only 200. This means that nearly all chemicals in commerce have been poorly tested to determine their environmental behavior or effects on human health. The statute’s ineffectiveness has been recognized for decades, yet Congress, the EPA, and manufacturers all share blame for the failure to do anything about it.

In contrast, the European Union in 2007 adopted a new directive known as “REACH” that requires the testing of both older and newly introduced chemicals. Importantly the new regulations create a burden on manufacturers to prove safety; under TSCA the burden rests on EPA to prove danger, and the agency has never taken up the challenge. Unless the U.S. chooses to adopt similar restrictions, U.S. chemical manufacturers will face barriers to their untested exports intended for European markets. Thus the chemical industry itself recognizes the need to harmonize U.S. and EU chemical safety law.

The most promising proposal for reform in the U.S. is the “Kid-Safe Chemical Act,” a bill first introduced in 2008 that would require industry to show that chemicals are safe for children before they are added to consumer products. Such a law is needed because there is little doubt that the growing burden of synthetic chemicals has been accompanied by an increase in the prevalence of many illnesses during the past half-century. These include respiratory diseases (such as childhood asthma), neurological impairments, declining sperm counts, fertility failure, immune dysfunction, breast and prostate cancers, and developmental disorders among the young. Some of these illnesses are now known to be caused or exacerbated by exposure to commercial chemicals and pollutants.

Few people realize how pervasive plastics have become. Most homes constructed since 1985 are wrapped in plastic film such as Tyvek, and many exterior shells are made from polyvinyl chloride (PVC) siding. Some modern buildings receive water and transport wastes via PVC pipes. Wooden floors are coated with polyurethane finishes and polyvinyl chloride tiles.

Foods and beverages are normally packaged in plastic, including milk bottles made from high-density polyethylene. Most families have at least one “non-stick” pan, often made from Teflon, a soft polymer that can scratch and hitchhike on foods to the dinner table. Between 1997 and 2005, annual sales of small bottles of water — those holding less than one liter — increased from 4 billion to nearly 30 billion bottles.

The billions of video games, computers, MP3 players, cameras, and cell phones purchased each year in the United States use a wide variety of plastic resins. And the almost 7.5 million new vehicles sold in the United States each year contain 2.5 billion pounds of plastic components, which have little hope of being recycled, especially if made from polyvinyl chloride or polycarbonate.  The American Plastics Council now estimates that only about 5 percent of all plastics manufactured are recycled; 95 billion pounds are discarded on average yearly.

The chemical contents of plastics have always been a mystery to consumers. Under federal law, ingredients need not be labeled, and most manufacturers are unwilling or unable to disclose these contents or their sources. Indeed, often the only clue consumers have to the chemical identity of the plastics they use is the voluntary resin code designed to identify products that should and should not be recycled — but it offers little usable information.

The true costs of plastics — including the energy required to manufacture them, the environmental contamination caused by their disposal, their health impacts, and the recycling and eventual disposal costs — are not reflected in product prices.  Adding to the environmental toll, most plastic is produced from natural gas and petroleum products, exacerbating global warming.

Plastics and Human Health

The controversy over BPA — the primary component of hard and clear plastics — and its potential role in human hormone disruption provides the most recent example of the need for a national plastics control law.

Normal growth and development among fetuses, infants, children, and adolescents is regulated in the body by a diverse set of hormones that promote or inhibit cell division. More than a thousand chemicals are now suspected of affecting normal human hormonal activity. These include many pharmaceuticals, pesticides, plasticizers, solvents, metals, and flame retardants.

Scientists’ growing interest in hormone disruption coincided with a consensus within the National Academy of Sciences that children are often at greater risk of health effects than adults because of their rapidly growing but immature organ systems, hormone pathways, and metabolic systems. And many forms of human illness associated with abnormal hormonal activity have become more commonplace during the past several decades, including infertility, breast and prostate cancer, and various neurological problems.

BPA illustrates well the endocrine disruption problem. Each year several billion pounds of BPA are produced in the United States. The Centers for Disease Control and Prevention has found, in results consistent with those found in other countries, that 95 percent of human urine samples tested have measurable BPA levels. BPA has also been detected in human serum, breast milk, and maternal and fetal plasma. BPA travels easily across the placenta, and levels in many pregnant women and their fetuses were similar to those found in animal studies to be toxic to the reproductive organs of the animals’ male and female offspring.

Government scientists believe that the primary source of human BPA exposure is foods, especially those that are canned, as BPA-based epoxy resins can migrate from the resins into the foods. In 1997, the FDA found that BPA migrated from polycarbonate water containers — such as the five-gallon water jugs found in offices — into water at room temperature and that concentrations increased over time. Another study reported that boiling water in polycarbonate bottles increased the rate of migration by up to 55-fold, suggesting that it would be wise to avoid filling polycarbonate baby bottles with boiling water to make infant formula from powders.

Scientists have reported BPA detected in nonstick-coated cookware, PVC stretch film used for food packaging, recycled paperboard food boxes, and clothing treated with fire retardants.

Since 1995 numerous scientists have reported that BPA caused health effects in animals that were similar to diseases becoming more prevalent in humans, abnormal penile or urethra development in males, obesity and type 2 diabetes, and immune system disorders. BPA can bind with estrogen receptors in cell membranes following part-per-trillion doses — exposures nearly 1,000 times lower than the EPA’s recommended acceptable limit.

In 2007, the National Institutes of Health convened a panel of 38 scientists to review the state of research on BPA-induced health effects. The panel, selected for its independence from the plastics industry, issued a strong warning about the chemical’s hazards:

“There is chronic, low level exposure of virtually everyone in developed countries to BPA… The wide range of adverse effects of low doses of BPA in laboratory animals exposed both during development and in adulthood is a great cause for concern with regard to the potential for similar adverse effects in humans.”

The American Chemistry Council, which advocates for the plastics industry, has criticized most scientific research that has reported an association between BPA and adverse health effects. The council’s complaints have included claims that sample sizes are too small, that animals are poor models for understanding hazards to humans, that doses administered in animal studies are normally far higher than those experienced by humans, that the mechanism of chemical action is poorly understood, and that health effects among those exposed are not necessarily “adverse.”

Research on plastics, however, now comprises a large and robust literature reporting adverse health effects in laboratory animals and wildlife at even low doses. Claims of associations between BPA and hormonal activity in humans are strengthened by consensus that everyone is routinely exposed and by the rising incidence of many human diseases similar to those induced in animals dosed with the chemical. Two competing narratives — one forwarded by independent scientists and the other promoted by industry representatives — have delayed government action to protect the health of citizens through bans or restrictions.

Action Needed

How has the plastics industry escaped serious regulation by the federal government, especially since other federally regulated sectors that create environmental or health risks such as pharmaceuticals, pesticides, motor vehicles, and tobacco have their own statutes? In the case of plastics, Congress instead has been content with limited federal regulatory responsibility, now fractured among at least four agencies: the EPA, the Food and Drug Administration, the Consumer Product Safety Commission, and the Occupational Safety and Health Administration. None of these agencies has demanded pre-market testing of plastic ingredients, none has required ingredient labeling or warnings on plastic products, and none has limited production, environmental release, or human exposure. As a result, the entire U.S. population continues to be exposed to hormonally active chemicals from plastics without their knowledge or consent.

What should be done? The Kids Safe Chemical Act represents a comprehensive solution that would apply to all commercial chemicals including plastic ingredients. Yet the nation’s chemical companies, with their enormous political power, are not likely to agree to assume the testing costs, nor are they likely to accept a health protective standard. Rather than pass another weak statute, Congress should consider a stronger alternative.

The nation needs a comprehensive plastics control law, just as we have national laws to control firms that produce other risky products, such as pesticides. Key elements of a national plastics policy should include:

  • tough  government regulations that demand pre-market testing and prohibit chemicals that do not quickly degrade into harmless compounds. Exempting previously permitted ingredients from this evaluation makes little sense, as older chemicals have often been proven more dangerous than newer ones.
  • The chemical industry itself needs to replace persistent and hazardous chemicals with those that are proven to be safe.  Plastics ingredients found to pose a significant threat to the environment or human health should be quickly phased out of production. Congress chose this approach to manage pesticide hazards, and it has proven to be reasonably effective since the passage of the Food Quality Protection Act in 1996.
  • Federal redemption fees for products containing plastics should be set at levels tied to chemical persistence, toxicity, and production volume. These fees should be high enough that consumers have a strong incentive to recycle.
  • We need mandatory labeling of plastic ingredients, in order to allow consumers to make responsible choices in the marketplace.
  • Finally, manufacturers should take responsibility for cleaning up environmental contamination from the more than one trillion pounds of plastic wastes they have produced over the past 50 years.




The President’s Cancer Panel and fabric choices

6 10 2010

Ever wonder why you buy those organic foods that cost more?  It’s always a bit of sticker shock when you see the organic and conventional side by side.   The organic strawberries may taste better, but this economy means we have to pinch every penny.  As my husband says, an apple is an apple, so why pay more for one when you can get the other cheaper?  It’s not going to do anything to me – at least not today.

Turns out you might want to re-think those – and lots of other –  choices you make every day.  The President’s Cancer Panel issued a 240-page report in May, 2010, called “Reducing Environmental Cancer Risk: What We Can Do Now” This year’s report is the first time the panel has emphasized the environmental causes of cancer. It warns of “grievous harm” from chemicals and other hazards, and “a growing body of evidence linking environmental exposures to cancer.” Children are especially vulnerable.

The report is based on testimony from a series of meetings held between September 08 and January 09 which  included 45 invited experts from academia, government, industry, the environmental and cancer advocacy communities, and the public. The report urged President Obama to “use the power of your office to remove the carcinogens and other toxins from our food, water, and air that needlessly increase health care costs, cripple our nation’s productivity, and devastate American lives.”  Because industrial chemicals are so ubiquitous and exposure to these potential environmental carcinogens so widespread, “the Panel was particularly concerned to find that the true burden of environmentally induced cancers has been grossly underestimated,”

The report said previous estimates that environmental pollutants and occupational exposures cause 6% of all cancers are low and “woefully out of date.”  In fact, the National Institutes of Health estimates that environmental factors contribute to 75-80% of all cancers: from tobacco smoke, ultraviolet light, radiation, obesity and certain viruses and sexually-transmitted diseases – in addition to environmental carcinogens. One excerpt reads, “With nearly 80,000 chemicals on the market. … many of which are used by millions of Americans in their daily lives and are. … largely unregulated, exposure to potential environmental carcinogens is widespread.”

The President’s Panel report clearly states that much work has to be done to better characterize environmental determinants of cancer—including better research methods, standardized measurements, and more realistic models that can help estimate the cumulative risks associated with multiple environmental toxins.  But scientists have been scrambling for decades for scarce funding  – and the work was given a low priority.  The fundamental problem is that research into environmental causes of cancer has little potential for yielding profits—at least in the short-term. In fact, it is more likely to cost industry through stronger regulation and removal of products from the market, litigation and the added expense of developing new products based on “green chemistry.” So it’s not a stretch to understand why the government and the pharmaceutical industry would rather spend billions of dollars promoting screening and developing profitable new cancer drugs.  Peter Montague, a long-time environmental advocate puts it this way: “To be blunt about it, there’s no money in prevention, and once you’ve got cancer you’ll pay anything to try to stay alive.”

Environmental toxins are rarely considered in health policy initiatives (except for tobacco and sunlight), despite the findings that people who live in polluted areas and work with toxic substances (most often the poor and minorities) have higher rates of cancer incidence.  The Cancer Panel  pointed out  “Cancer Alley“, the stretch along the Mississippi between Baton Rouge and New Orleans, as an example.  Louisiana ranked second in the nation for on-site toxic releases, and many studies exist which demonstrate the cancer rate is above the average for the rest of the United States.  In one small Louisiana town in Cancer Alley, 3 cases of rhabdomyosarcoma were reported in a 14 month period.  Rhabdomyosarcoma is an extremely rare and devastating childhood cancer, with a national average of one child in a million.  Five years ago a group of residents of Mossville, Louisiana, filed a human rights complaint against the US government, alleging it was not protecting their right to live in a healthy environment.  The Inter-American Commission on Human Rights agreed this year to hear their complaint.

In a consensus statement,  the Collaborative on Health and the Environment, an international partnership of some 3,000 individuals and organizations, says that the net result of this inadequate funding is a body of research that is in danger of being irrelevant:

“The methods that have been used to attribute cancer risk to environmental exposures are outdated and flawed, and should no longer be used to determine policy or set research priorities.”

So it’s not just organic foods that we should be concerned about, but the whole phalanx of products which are made using harmful chemistry, and the manufacturers that don’t capture emissions or treat their waste products, thereby polluting our entire ecosystem.  That’s why O Ecotextiles has made a commitment to sell only fabrics which are safe for both you and the Earth.

I found it interesting that there is a new branch of science that is also studying how these environmental factors can influence us.  Called epigenetics, it is the study of changes in gene activity that don’t involve changes to the genetic code but still get passed down to at least one successive generation.   These patterns of gene expression are governed by the cellular material — the epigenome — that sits on top of the genome, just outside it (hence the prefix epi-, which means above). It is these epigenetic “marks” that tell your genes to switch on or off, to speak loudly or whisper. It is through epigenetic marks that environmental factors like diet, stress and prenatal nutrition can make an imprint on genes that is passed from one generation to the next.

One could think of the genome as a book of blueprints,  laying out a number of options in the form of genes. The epigenome is like the contractor who goes through the book, deciding which options to include in a house. Two different contractors can build radically different houses from the same book of blueprints, in the same way that two organisms with identical DNA can look very different.

This field of study, some believe, might hold the key to understanding how environmental toxins cause serious, and often life-threatening diseases, such as obesity, diabetes and cancer.  For quite some time scientists have been trying to determine how exposure to environmental toxins can result in serious disease years or even decades later. Epigenetics may provide the mechanism. An exposure to an environmental toxin at one point in a person’s life (and most critically during gestation) can trigger the epigenome to turn on or turn off a key gene. Years later, because of that epigenetic change, a disease may appear.

“We can no longer argue whether genes or environment has a greater impact on our health and development, because both are inextricably linked,” said Randy Jirtle,  Ph.D., a genetics researcher in Duke’s Department of Radiation Oncology. “Each nutrient, each interaction, each experience can manifest itself through biochemical changes that ultimately dictate gene expression, whether at birth or 40 years down the road.”

Exposures to pesticides, toxins and synthetic compounds can give rise to a host of diseases – such as cancer and asthma — whose prevalence has soared in recent decades, says H. Kim Lyerly, M.D., director of the Duke Comprehensive Cancer Center.  Pesticides encountered in utero might be dormant in the fetus, only to cause cancer ten, 20 or 50 years later, he said.

Even the lowest detectable limits of a chemical can have dire effects on a living organism, added William Schlesinger, Ph.D., Dean of the Nicholas School of the Environment and Earth Sciences at Duke. Atrizine is a prime example. Less than one part per billion of this widely used corn herbicide de-masculinizes developing frogs or causes dual male-female genitalia. Yet often the Environmental Protection Agency’s instrumentation doesn’t record such minute levels of chemical exposure, he said.

What does the Cancer Panel suggest we do in the meantime?  Here is their list, with a few of additions of our own:

  • Remove your shoes before entering your home to avoid tracking in toxic chemicals such as pesticides.
  • Filter tap water.
  • Use stainless steel, glass or BPA-free plastic water bottles.
  • Microwave in ceramic or glass instead of plastic containers.
  • Become aware of what you’re eating:  minimize consumption of food grown with pesticides, and meat raised with antibiotics and growth hormone.
  • Minimize consumption of processed, charred or well-done meats, which contain carcinogenic heterocyclic amines and polyaromatic hydrocarbons.
  • Reduce radiation from X-rays and other medical sources.
  • Be aware of the products you use, especially those that come in contact with your skin, such as:  lotions, cosmetics, wipes, sheets, clothing, hair dyes.  Check ingredient labels, look for third party certifications where appropriate.
  • And finally:  use sunscreen, stop smoking and lose weight if necessary.




Is it sustainable just because we’re told it is?

22 09 2010

I just tried to find out more about Project UDesign,   a competition sponsored by the Savannah College of Art and Design (SCAD), Cargill, Toray Industries and Century Furniture.  The goal is to produce a chair that is both “sustainable and sellable.”  It is targeted to be the next “ eco friendly wing chair” on the market, with the goal of educating the industry and consumers on the topic of sustainable furniture design.[1] Century Furniture has pledged to put the winning chair into production.

Since criteria for the chair design is limited to the use of Cargill’s BiOH® polyols soy foam and Toray’s EcoDesign™ Ultrasuede® upholstery fabric we would like to help Project UDesign reach their goal of educating us on sustainable furniture design by explaining why we think these two products cannot be considered a sustainable choice .  In fact, by sponsoring this competition and limiting the student’s choices to Cargill’s BiOH® polyols (“soy”)  foams and Toray’s EcoDesign™ Ultrasuede® fabrics, it sends absolutely the wrong message to the students and the public about what constitutes an “eco friendly” choice.

So, let’s take a look at these two products to find out why I’m in such a dither:

Beginning with soy foam:   the claim that soy foam is a green product is based on two claims:

  1. that it’s made from soybeans, a renewable resource
  2. that it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based, contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that soy accounts for  only 10% of the foam’s total volume. Why?  Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in 40/60 ratios (40% is the high end for BiOH® polyols used, it can be as low as 5%), “20% soy based” translates to 20% of the polyol portion, or 20% of the 40% of polyols used to make the foam. In this example the product remains 90% polyurethane foam  ‘based’ on fossil fuels, 10% ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.  In the graphic below, “B-Component” represents the polyol portion of polyurethane, and the “A-Component” represents the isocyanate portion of the polyurethane:

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.   But because the soy based polyols represent only about 10% of the final foam product, the true energy reduction is only about 4.6% rather than 23%, which is what Cargill leads you to believe in their LCA, which can be read here.   But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet, so this couldn’t be what is fueling my outrage.

The real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a   ” greenhouse gas-spewing petroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock of Upholstery Arts.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops (GMO), appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon” ) on what they consider to be a driving force behind  Amazon rain forest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly” (a white paper by Upholstery Arts),  another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer-causing toluene diisocyanate (TDI). So it remains ‘business as usual’ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH® polyols are not more biodegradable than traditional petroleum-based cushioning”.[2] Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy-derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

As Len Laycock says, “While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale.  As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”

If you’re still with us, lets turn our attention to Toray’s Ultrasuede, and their green claims.

Toray’s green claim for Ultrasuede is that it is based on new and innovative recycling technology, using their postindustrial polyester scraps, which cuts both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters.

If that is the only advance in terms of environmental stewardship, it falls far short of being considered an enlightened choice, as I’ll list below.

If we  look at the two claims made by the company:

  1. Re: energy reduction:  If we take Toray’s claim that it takes just 25 MJ of energy[3] to produce 1 KG of Ultrasuede – that’s still far more energy than is needed to produce 1 KG of organic hemp or linen (10 MJ), or cotton (12 MJ) – with none of the benefits provided by organic agriculture.
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide, acetaldehyde and 1,4-dioxane (also potentially carcinogenic).

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with its EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  6. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
      1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
      2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
      3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
      4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise unsaleable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is disingenuous. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:  plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7]

We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

[1] Cargill press release, July 20, 2010  http://www.cargill.com/news-center/news-releases/2010/NA3031350.jsp

[2] http://www.bioh.com/bioh_faqs.html

[3] If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ (data from “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute) , and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede®

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill





Breast cancer and acrylic fibers

16 09 2010

Just in case you missed the recent report which was published in Occupational and Environmental Medicine [1], a Canadian study found that women who work with some common synthetic materials could treble their risk of developing breast cancer after menopause.  The data included  women working in textile factories which produce acrylic fabrics   –  those women have seven times the risk of developing breast cancer than the normal population, while those working with nylon fibers had double the risk.

I found it interesting that the researchers justified their findings because “synthetic fibers are typically treated with several chemicals, such as flame retardants from the organophosphate family, delustering agents, and dyes, some of which have estrogenic properties and may be carcinogenic.”

These are the same organophosphate flame retardants and dyes that are used across the textile spectrum, and which are found in most textiles that we surround ourselves with each day.

But also let’s look at the fibers themselves.  The key ingredient of acrylic fiber is acrylonitrile, (also called vinyl cyanide). It is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system.  According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  So could the acrylic fibers in our acrylic fabrics be a contributing factor to these results?

Acrylic fibers are just not terrific to live with anyway.  Acrylic manufacturing involves highly toxic substances which require careful storage, handling, and disposal. The polymerization process can result in an explosion if not monitored properly. It also produces toxic fumes. Recent legislation requires that the polymerization process be carried out in a closed environment and that the fumes be cleaned, captured, or otherwise neutralized before discharge to the atmosphere.(2)

Acrylic is not easily recycled nor is it readily biodegradable. Some acrylic plastics are highly flammable and must be protected from sources of combustion.

What about nylon?  Well, in a nutshell, the production of nylon includes the precursors benzene (a known human carcinogen) and hydrogen cyanide gas (extremely poisonous); the manufacturing process releases VOCs, nitrogen oxides and ammonia.  And finally there is the addition of those organophosphate flame retardants and dyes.

Of course, there are the usual caveats about the study, and those commenting on it said further studies were needed since chance or undetected bias could have played a role in the findings. In addition, according to Reuters, “the scientists said more detailed studies focusing on certain chemicals were now needed to try to establish what role chemical exposure plays in the development of breast cancer.”  So this is yet another area in which more research needs to be done.  No surprise there.

But in the meantime, did you know that many popular fabrics are made of acrylic fibers?   One of the most popular is Sunbrella outdoor fabrics.     Sunbrella fabrics have been certified by GreenGuard Children and Schools because the chemicals used in acrylic production are bound in the polymer – in other words, they do not evaporate.   So Sunbrella fabrics do not contribute to poor air quality, (you won’t be breathing them in), but there is no guarantee that you won’t absorb them through your skin.  And you would be supporting the production of more acrylic, the production of which is not a pretty thing.

And what about backings on fabrics?  Many are made of acrylic.  Turn those fabric samples over and see if there is a plastic film on the back – it’s often made of acrylic.  Upholsterers like fabrics to be backed because it makes the process much easier and stabilizes the fibers.

So I don’t know about you, but I think I’ll avoid those synthetics for now – at least until we know where we stand.


[1] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817  (abstract: http://oem.bmj.com/content/67/4/263.abstract)  SEE ALSO:  http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

(2)  http://www.madehow.com/Volume-2/Acrylic-Plastic.html





Is Ultrasuede® a “green” fabric?

8 09 2010

In 1970, Toray Industries colleagues Dr. Toyohiko Hikota and Dr. Miyoshi Okamoto created the world’s first micro fiber as well as the process to combine those fibers with a polyurethane foam into a non-woven structure – which the company trademarked as Ultrasuede®.

In April 2009,  Toray announced “a new  environmentally responsible line of products which are based on innovative recycling technology”, called EcoDesign™.    An EcoDesign™ product, according to the company press release, “captures industrial materials, such as scrap polyester films, from the Toray manufacturing processes and recycles them for use in building high-quality fibers and textiles.”

One of the first EcoDesign™ products to be introduced by Toray is a variety of their Ultrasuede®  fabrics.

So I thought we’d take a look at Ultrasuede® to see what we thought of their green claims.

The overriding reason Toray’s EcoDesign™ products are supposed to be environmentally “friendly” is because recycling postindustrial polyesters reduces both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters, according to Des McLaughlin, executive director of Toray Ultrasuede (America).   (Conventional recycling of polyesters generally state energy savings of between 33% – 53%.)

If that is the only advance in terms of environmental stewardship, we feel it falls far short of being considered an enlightened choice.  If we just look at the two claims made by the company:

  1. Re: energy reduction:  If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ[1], and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede® –  still far more energy than is needed to produce 1 KG of organic hemp (2 MJ), linen (10 MJ), or cotton (12 MJ).
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[2] acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[3]

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with it’s EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  1. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
    1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
    2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
    3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
    4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise un-useable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is  premature. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:     indeed plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7] We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

We’ve said it before and we’ll say it again:  The trend to eco consciousness in textiles represents major progress in reclaiming our stewardship of the earth, and in preventing preventable human misery.  You have the power to stem the toxic stream caused by the production of fabric. If you search for and buy an eco-textile, you are encouraging a shift to production methods that have the currently achievable minimum detrimental effects for either the planet or for your health. You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles do exist and they give you a greener, healthier, fair-trade alternative.

What will an eco-textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.


[1]“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute

[2] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[3] Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill