Bioplastics

9 04 2012

The first plastic garbage bag was invented by Harry Waslyk in 1950.

1950!  Mr. Waslyk could not have predicted how much havoc his plastic child would wreck in a mere 62 years.[1]

We’ve all seen the pictures of birds stomachs filled with plastic detritus and read about the Great Pacific Gyre, but I just read a new twist to that story:    the Emirates News Agency reported that decomposed remains of camels in the desert region of the United Arab Emirates revealed that 50% of the camels died from swallowing and choking on plastic bags.  “Rocks of calcified plastic weighing up to 60 kilograms are found in camel stomachs every day,” said Dr. Ulrich Wernery, Scientific Director, Central Veterinary Research Laboratory in Dubai, whose clinic conducts hundreds of post-mortems on camels, gazelles, sheep and cows in the UAE.  He adds that one in two camels die from plastic.[2]

Plastic has become so ubiquitous, in fact, that plastics are among the debris orbiting our planet. Unfortunately, our wildlife and domestic animals are paying the price now; I think we ourselves will see changes in future generations.

It’s no wonder we’re scrambling to find alternatives to plastic, and one hot topic in the research area is that of bioplastics.

Bioplastics are made (usually) from plant materials.  Enzymes are used to break starch in the plant into glucose, which is fermented and made into lactic acid.  This lactic acid is polymerized and converted into a plastic called polylactic acid (PLA), which can be used in the manufacture of products  ( PLA is about 20% more expensive than petroleum-based plastic)  or into a plastic  called polyhydroxyalkanoate, or PHA (PHA biodegrades more easily but is more than double the price of regular plastic).

The bioplastic market is expanding rapidly and by 2030, according to some estimates, could account for 10% of the total plastics market.   In the world of fabrics and furnishings, the new biotech products which are being heavily promoted are Ingeo and Sorona, both PLA based fibers with a growing share of the fabric market; and soy-based foam for upholstery.    Toray Industries has announced that they will have the first functional performance nylon and polyester textiles based on biomass ready for the 2013/14 season.  They are 100% bio-based fabrics [3] based on the castor plant, which is very robust, growing in dry farming areas and requiring significantly fewer pesticides and herbicides than other crops.

So it’s no wonder that there has been much discussion about bioplastics, and about whether there are ecological advantages to using biomass instead of oil.

The arguments in favor of bioplastics are:

  • They are good for the environment because there is no harm done to the earth when recovering fossil fuels. Also, in this process there are very few greenhouse gas and harmful carbon emissions. Regular plastics need oil for their manufacturing, which pollutes the environment.
  • They require less energy to produce than petroleum-based plastics.
  • They are recyclable.
  • They are non toxic.
  • They reduce dependence on foreign oil.
  • They are made from renewable resources.

These arguments sound pretty good – until you begin to dig  and find out that once again, nothing is ever as simple as it seems.

Regarding the first two arguments (they are good for the environment because they produce significantly fewer CO2 emissions and less energy) –  there have not been many studies which support  this argument until recently.  Recently,  several  studies have been published which seems to support that  this is indeed the case:

  1. Ramani Narayan of Michigan State University found that “the results for the use of fossil energy resources and GHG emissions are more favorable for most bio based polymers than for oil based. As an exception, landfilling of biodegradable polymers can result in methane emissions (unless landfill gas is captured) which may make the system unattractive in terms of reducing greenhouse gas emissions.”[4]
  2. University of Pittsburgh researchers did an LCA on the environmental impacts of both petroleum and bio derived plastics, assessing them using metrics which included  economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. They found that  biopolymers are the more eco-friendly material in terms of energy use and emissions created.  However, they also concluded that traditional plastics can actually be less environmentally taxing to produce when taking into account such things as acidification, carcinogens, ecotoxicity, eutrophication, global warming, smog, fossil fuel depletion, and ozone depletion.[5]
  3. A study done by the nova-Institut GmbH on behalf of Proganic GmbH & Co.[6]showed unambiguously positive eco advantages (in terms of energy use and CO2 emissions) for bio based polymers PLA and PHA/PHB over petrochemical based plastics.  According to the report, “the emission of greenhouse gases and also the use of fossil raw materials are definitely diminished. Therefore the substitution of petrochemical plastics with bio-based plastics yields positive impacts in the categories of climate change and depletion of fossil resources.”  The results include:
    1. Greenhouse gas emissions of bio-based plastics amount to less than 3 KG of CO2 equivalents per KG of plastic, less than that of petrochemical based plastics which produce an average of 6 KG of CO2 equivalents per KG of plastic..
    2. the production of bio-based polymers, in comparison to all petrochemical plastics examined, leads to savings in fossil resources. The biggest savings potential can be found in comparison with polycarbonate (PC). The average savings potential in the production of PLA amounts to 56 ± 13 megajoules per kilogram of plastics here.
    3. The production of bio-based polymers in comparison with the production of petrochemical plastics in most cases also leads to greenhouse gas emission savings. The biggest greenhouse gas emission savings can be found again when comparing bio-based polymers to polycarbonate (PC). For PLA, the average savings potential in this case amounts to 4.7 ± 1.5 kilograms of CO2 equivalents per kilogram of plastics. For PHA, the average savings potential in this case amounts to 5.8 ± 2.7 kilograms of CO2 equivalents per kilogram of plastics. In comparison with PET and Polystyrene (PS), considerable savings potentials ranging between 2.5 and 4.2 kilograms of CO2 equivalents per kilogram of plastics are to be found in the production of bio-based polymers. The lowest savings potential are to be found when comparing bio-based polymers with polypropylene (PP).

So I will accept the arguments that biobased plastics produce fewer  greenhouse gases and harmful carbon emissions and require less energy to produce than petroleum-based plastics .  They also certainly reduce our dependence on foreign oil.

But are they better for the environment?  Are they recyclable or biodegradeable?  Are they safe?  Are plastics producers aware of the impact of promoting bioplastics as a replacement for plastics? We think that  bioplastics are useful for certain purposes, such as medical sutures or strewing foil for mulching in agriculture – but as a replacement for all plastics?

Next week we’ll take a look at the arguments against bioplastics.


[1] Laylin, Tafline, “Half of UAE’s Falaj Mualla Camels Choked on Plastic Bags”, Green Prophet blog, June 11, 2010.

http://www.greenprophet.com/2010/06/camels-choke-on-plastic/

[2] Ibid.

[4] Narayan, Ramani, “Review and Analysis of Bio-based Product LCA’s”, Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824

[5] Tabone, Michaelangelo D., et al; “Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers”, Enviornmental Science and Technology, September 2, 2010.

Advertisements




Biopolymers and polylactic acid (PLA) – or rather, Ingeo

27 04 2011

Synthetic polymers have experienced almost exponential growth since 1950, and today about 5% of world oil production is used for that purpose.  In fact, we will need 25% or more of the current oil production for making polymers by the end of this century.

Some synthetic polymers are used to make fibers, and they have been around for a while:  rayon was discovered in 1924 and nylon in 1939.  But synthetic use really began to take off only since about 1953,  when polyester was discovered.  Qualities like durability and water resistance make synthetics highly desirable in many applications.  Today synthetics account for about half of all fiber usage.

This, despite the fact that synthetics are made from fossil fuel, and the contaminants from the manufacturing leach into our waterways and pollute the atmosphere, and the fact that they are not biodegradable and therefore don’t break down in landfills.  So recently there has been a spotlight on bio-plastics.

Bio plastics, or biopolymers –  in other words, synthetic plastics produced from biological sources –  are derived from cellulose. Cellulose is abundant – it’s said to make up half of all the organic carbon on the planet.   The most often-used biopolymers  include:

  • natural rubber (in use since the mid-1700s),
  • cellulosics (invented in the late-1800s),
  • and nylon 11 (polyamide – or PA 11) and 6–10 (polyamide 6/10) (mid-1900s).

A recent addition to the list is polylactic acid (PLA).  PLA is made from corn starch (in the United States), tapioca products (roots, chips or starch, mostly in Asia) or sugar cane (the rest of the world).[1]  You’ve probably heard about polylactic acid (PLA),  because Cargill, one of the largest agricultural firms on Earth, has invested heavily in it.  Cargill’s wholly owned subsidiary, NatureWorks, is the primary producer of PLA in the United States.  The brand name for NatureWorks PLA is Ingeo, which is made into a whole array of products, including fabrics.

The producers of PLA have touted the eco friendliness of PLA based on:

  1. the fact that it is made from annually renewable resources ,
  2.  that it will biodegrade in the environment all the way to carbon dioxide and water  –  at least in principle, and
  3. they also cite PLA’s lower carbon footprint.

Let’s take a look at these three claims.

Plant based biopolymers do come from renewable resources, but the feedstock used presents some interesting problems.  In the United States, corn is used to make the PLA. In the US, corn-based biopolymer producers have to compete with ethanol producers of government mandated gasoline blends, raising the cost and limiting availability for both. This problem will become worse in the future as the law requires a doubling of the percentage of ethanol used in motor fuel. Nearly a third of the US corn crop previously used for food was used to replace 5% of gasoline consumption in 2008.[2]

In a world where many people are starving, many say that it seems almost criminal to grow food crops, such as corn, to turn it into cloth. Agricultural lands are often cleared to make way for the growing of crops for the production of polymers. This leads to a continuous shrinking of the food producing lands of the world.  Lester Brown, president of the Earth Policy Institute, says, “already we’re converting 12% of the US grain harvest to ethanol (anticipated to rise to 23% by 2014). How much corn do we want to convert to nonfood uses?”[3]

In addition, most of the corn used by NatureWorks to make PLA is genetically modified, which raises serious ethical issues.

Other critics point to the steep environmental toll of industrially grown corn. The cultivation of corn uses more nitrogen fertilizer, more herbicides and more insecticides than any other U.S. crop; those practices contribute to soil erosion and water pollution when nitrogen runs off fields into streams and rivers.

PLA is said to decompose into carbon dioxide and water in a “controlled composting environment” in 90 days or less.  What’s that?  Not exactly your backyard compost heap!  It’s an industrial facility where microbes work at 140 degrees or more for 10 consecutive days.  In reality very few consumers have access to the sort of composting facilities needed to degrade PLA.  NatureWorks has identified 113 nationwide – some handle industrial food-processing waste or yard trimmings, others are college or prison operations .  Moreover, PLA in quantity can interfere with municipal compost operations because it breaks down into lactic acid, which makes the compost wetter and more acidic.

It looks like most PLA will end up in landfills, where there is no evidence it will break down any faster than PET.  Glenn Johnston, manager of global regulatory affairs for NatureWorks, says that a PLA container dumped into a landfill will last as long as a PET bottle.[4]

In fact, manufacturers have changed their stance: PLA is now defined as “compostable” instead of biodegradable, meaning more heat and moisture is needed to degrade PLA than is found in your typical backyard compost bin.

So far, biopolymer producers have had problems demonstrating that their materials have smaller carbon footprints than fossil fuel-derived polymers.   The energy inefficiencies of planting, growing, and transporting biological feedstocks mean more total energy is likely consumed to produce a unit of biopolymer than to make a unit of an oil or gas-based polymer.

However, Ramani Narayan of Michigan State University  found that “the results for the use of fossil energy resources and GHG emissions are more favorable for most bio based polymers than for oil based. As an exception, landfilling of biodegradable polymers can result in methane emissions (unless landfill gas is captured) which may make the system unattractive in terms of reducing greenhouse gas emissions.”[5]

Dr. Narayan recommended that, relative to their conventional counterparts, green polymers  should:

  • save at least 20 MJ (non-renewable) energy per kg of polymer,
  • avoid at least 1 kg CO2 per kg polymer and
  • reduce most other environmental impacts by at least 20%.

From this point of view, he says,  green plastics  can be defined in a broad and target-oriented manner.

But  carbon footprints may be an irrelevant measurement, because it has been established that plants grow more quickly and are more drought and heat resistant in a CO2 enriched atmosphere. Many studies have shown that worldwide food production has risen, possibly by as much as 40%, due to the increase in atmospheric CO2 levels. Therefore, it is both ironic  and a significant potential problem for biopolymer production if the increased CO2 emissions from human activity were rolled back, causing worldwide plant growth to decline.  This in turn would greatly increase the  competition for biological sources of food and fuel –  with biopolymers coming in last place.[6]

A further problem with biopolymers (except for future PE/PP made from sugar cane) is that  they require additional sorting at commercial recycling centers to avoid contaminating other material streams, and, although segregated collection helps, it is complex and increases costs.

In the final analysis, newer biopolymers don’t yet perform as well as oil based polymers, especially in terms of lower heat and moisture resistance, so the user might feel green but gets results that are less sustainable and more limited in use.  PLA remains a boutique polymer, and some see the best value proposition for biopolymers to be where their use is based on their unique properties, such as in medical and dental implants, sutures, timed released chemotherapy, etc. , because  PLA will slowly come apart in the body over time, so it can serve as a kind of scaffold for bone or tissue regrowth or for metered drug release.  But this is a small and specialized market.

But still, the potential and need for plastic alternatives has become acute:  The SPI Bioplastic Council anticipates that the biopolymer market will exceed $1 billion by 2012 – today it is half that.   Bioplastic remains “a sector that is not yet mature but will be growing fast in the coming years,” says Frederic Scheer , CEO of Cereplast and the so-called ‘Godfather of Bioplastics.’  It has not matured because of high production costs and the restricted capacity of biomass-based polymers.

But  according to The ETC Group, there are already concerted efforts, using biotechnology,  to shift global industrial production from a dependence on fossil fuels to biomass – not only for plastics but also for power, chemicals, and more.  It sounds good – until you read their report, which I’ll cover next week.


[2] Jones, Roger, “Economics, Sustainability, and the Public Perception of Biopolymers”, Society of Plastics Engineers, http://www.4spepro.org/pdf/000060/000060.pdf

[3] Royte, Elizabeth, “Corn Plastic to the Rescue”, Smithsonian,  August 2006

[4] Ibid.

[5] Narayan, Ramani, “Review and Analysis of Bio-based Product LCA’s”, Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824

[6] D. B. Lobell and C. B. Field, Global scale climate-crop yield relationships and the impacts

of recent warming, Env. Res. Letters 2, pp. 1–7, 2007  AND

L. H. Ziska and J. A. Bunce, Predicting the impact of changing CO2 on crop yields:

some thoughts on food, New Phytologist 175, pp. 607–618, 2007.





Is it sustainable just because we’re told it is?

22 09 2010

I just tried to find out more about Project UDesign,   a competition sponsored by the Savannah College of Art and Design (SCAD), Cargill, Toray Industries and Century Furniture.  The goal is to produce a chair that is both “sustainable and sellable.”  It is targeted to be the next “ eco friendly wing chair” on the market, with the goal of educating the industry and consumers on the topic of sustainable furniture design.[1] Century Furniture has pledged to put the winning chair into production.

Since criteria for the chair design is limited to the use of Cargill’s BiOH® polyols soy foam and Toray’s EcoDesign™ Ultrasuede® upholstery fabric we would like to help Project UDesign reach their goal of educating us on sustainable furniture design by explaining why we think these two products cannot be considered a sustainable choice .  In fact, by sponsoring this competition and limiting the student’s choices to Cargill’s BiOH® polyols (“soy”)  foams and Toray’s EcoDesign™ Ultrasuede® fabrics, it sends absolutely the wrong message to the students and the public about what constitutes an “eco friendly” choice.

So, let’s take a look at these two products to find out why I’m in such a dither:

Beginning with soy foam:   the claim that soy foam is a green product is based on two claims:

  1. that it’s made from soybeans, a renewable resource
  2. that it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based, contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that soy accounts for  only 10% of the foam’s total volume. Why?  Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in 40/60 ratios (40% is the high end for BiOH® polyols used, it can be as low as 5%), “20% soy based” translates to 20% of the polyol portion, or 20% of the 40% of polyols used to make the foam. In this example the product remains 90% polyurethane foam  ‘based’ on fossil fuels, 10% ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.  In the graphic below, “B-Component” represents the polyol portion of polyurethane, and the “A-Component” represents the isocyanate portion of the polyurethane:

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.   But because the soy based polyols represent only about 10% of the final foam product, the true energy reduction is only about 4.6% rather than 23%, which is what Cargill leads you to believe in their LCA, which can be read here.   But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet, so this couldn’t be what is fueling my outrage.

The real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a   ” greenhouse gas-spewing petroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock of Upholstery Arts.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops (GMO), appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon” ) on what they consider to be a driving force behind  Amazon rain forest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly” (a white paper by Upholstery Arts),  another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer-causing toluene diisocyanate (TDI). So it remains ‘business as usual’ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH® polyols are not more biodegradable than traditional petroleum-based cushioning”.[2] Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy-derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

As Len Laycock says, “While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale.  As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”

If you’re still with us, lets turn our attention to Toray’s Ultrasuede, and their green claims.

Toray’s green claim for Ultrasuede is that it is based on new and innovative recycling technology, using their postindustrial polyester scraps, which cuts both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters.

If that is the only advance in terms of environmental stewardship, it falls far short of being considered an enlightened choice, as I’ll list below.

If we  look at the two claims made by the company:

  1. Re: energy reduction:  If we take Toray’s claim that it takes just 25 MJ of energy[3] to produce 1 KG of Ultrasuede – that’s still far more energy than is needed to produce 1 KG of organic hemp or linen (10 MJ), or cotton (12 MJ) – with none of the benefits provided by organic agriculture.
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide, acetaldehyde and 1,4-dioxane (also potentially carcinogenic).

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with its EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  6. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
      1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
      2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
      3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
      4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise unsaleable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is disingenuous. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:  plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7]

We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

[1] Cargill press release, July 20, 2010  http://www.cargill.com/news-center/news-releases/2010/NA3031350.jsp

[2] http://www.bioh.com/bioh_faqs.html

[3] If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ (data from “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute) , and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede®

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill