Hemp vs. Linen

31 08 2016

We are often asked for 100% hemp fabric in lieu of linen fabrics. We offer hemp and adore it, but it may not be the best eco choice.

Make no mistake – we love hemp, we sell hemp fabrics and we think the re-introduction of hemp as a crop would be a boon for American farmers and consumers.

But hemp that is used to produce hemp fabric via conventional methods – as opposed to GOTS methods – is a far inferior choice to any Global Organic Textile Standard (GOTS) or Oeko-Tex certified fabric. So the overriding difference is not between hemp and any other fiber, but between a certified fabric versus one that is not certified, because certification assures us that the fabric is free of any chemicals that can change your DNA, give you cancer or other dred diseases which can affect you in ways ranging from subtle to profound. The choice of GOTS also assures us that the mill which produced the fabric has water treatment in place, so these chemicals don’t pollute our groundwater – and that the mill pays fair wages to their workers who toil in safe conditions!

Now let’s look at some of the differences between hemp and linen:

First, do not be confused by the difference between the fiber and the cloth woven from that fiber – because the spinning of the yarn and the weaving of the cloth introduces many variables that have nothing to do with the fibers. Both hemp and flax (from which linen is derived) are made from fibers found in the stems of plants, and both are very laborious to produce. The strength and quality of both fibers are highly dependent on seed variety, the conditions during growth, time of harvest and manner of retting and other post-harvest handling.

Retting (or, really, rotting) is the microbial decomposition of the pectins which bind the fibers to the woody inner core of the plant stem. The old system of water or snow retting has given way to chemical retting, which in turn often shortens – which means weakens – the fibers. These short fibers are said to have been “cottonized” since cotton fibers are only about 1.5 inches long.

It’s important to note that there is very little to distinguish flax fibers from hemp fibers – they both have similar properties. Hemp’s fibers so closely resemble flax that a high-power microscope is needed to tell the difference. Without microscopic or chemical examination, the fibers can only be distinguished by the direction in which they twist upon wetting: hemp will rotate counterclockwise; flax, clockwise.

In general, hemp fiber bundles are longer than those of flax.   So the first point of differentiation is this: the length of the fibers. Long fibers translate into inherently more resilient and therefore durable yarns. Hemp fibers vary from 4 to about 7 feet in length, while linen is generally 1.5 to 3 feet in length. Other differences:

  • The color of flax fibers is described as yellowish-buff to gray, and hemp as yellowish-gray to dark brown.
  • Hemp is highly resistant to rotting, mildew, mold and salt water. Linen on the other hand is non-allergenic and insect-repellent.
  • Hemp is the most highly resistant natural fiber to ultraviolet light, so it won’t fade or disintegrate in sunlight. Linen too has excellent resistance to UV rays.
  • Hemp’s elastic recovery is very poor and less than linen; it stretches less than any other natural fiber.

The biggest difference between hemp and linen might be in the agricultural arena.

Hemp grows well without the use of chemicals because it has few serious pest problems, although the degree of immunity to attacking organisms has been greatly exaggerated.  Several insects and fungi specialize exclusively in hemp!  But despite this, the use of pesticides and fungicides are usually unnecessary to get a good yield. Hemp has a fiber yield that averages between 485 – 809 lbs., compared to flax, which averages just 323 – 465 lbs. on the same amount of land.   This yield translates into a high biomass, which can be converted into fuel in the form of clean-burning alcohol.

Farmers claim that hemp is a great rotation crop – it was sometimes grown the year prior to a flax crop because it left the land free of weeds and in good condition.   Hemp, it was said, is good for the soil, aerating and building topsoil. Hemp’s long taproot descends for three feet or more, and these roots anchor and protect the soil from runoff. Moreover, hemp does not exhaust the soil. Additionally, hemp can be grown for many seasons successively without impacting the soil negatively. In fact, this is done sometimes to improve soil tilth and clean the land of weeds.

The price of hemp in the market is far higher than for linen, despite hemp’s yields.   We have no idea why this is so. And finding organic hemp is becoming almost impossible, because hemp is usually grown by subsistence farmers who are loath to pay certification fees.

Yarns, made from the fibers, are graded from ‘A’, the best quality, to below ‘D’.   The number of twists per unit length is often (but not always) an indication of a stronger yarn.   In addition, the yarns can be single or plied – a plied yarn is combined with more than one strand of yarn. Next, the cloth can be woven from grade ‘A’ yarns with a double twist per unit length and double ply into a fabric where the yarns are tightly woven together into cloth. Or not.

But in general, there are many similarities between cloth made from hemp and cloth made from linen:

  • Both linen and hemp become soft and supple through handling, gaining elegance and creating a fluid drape.
  • Both hemp and linen are strong fibers – though most sources say hemp is stronger (by up to 8 times stronger) than linen (even though the real winner is spider silk!), but this point becomes moot due to the variables involved in spinning the fiber into yarn and then weaving into fabric.   The lifespan of hemp is the longest of all the natural fibers.
  • Both hemp and linen wrinkle easily.
  • Both hemp and linen absorb moisture. Hemp’s moisture retention is a bit more (12%) than linen’s (10 – 12%)
  • Both hemp and linen breathe – they release moisture back into the atmosphere and do not retain water.
  • Both hemp and linen are natural insulators: both have hollow fibers which means they’re cool in summer and warm in winter.
  • Both hemp and linen have anti-bacterial properties.
  • Both hemp and linen benefit from washing, becoming softer and more lustrous with each wash.
  • Both hemp and linen are resistant to moths and other insects.
  • Both hemp and linen absorb dyestuffs readily.
  • Both hemp and linen biodegrade.

The overriding difference is not between hemp and linen, but between a hemp OR linen fabric that has GOTS or Oeko-Tex certification and one that does not. That means that a conventional hemp fabric, which enjoys all the benefits of hemp’s attributes, also introduces unwanted chemicals into your life: such as formaldehyde, phthalates, heavy metals, endocrine disruptors and perhaps soil or fire retardants. The certified fabric is the better choice. If the choice is between a conventional hemp fabric and a certified linen fabric, we wouldn’t hesitate a second to choose the linen over the hemp, especially because hemp and linen are such close cousins.

 

 

 

 

 

 

 

Advertisements




Textile certifications

14 03 2016

Don’t forget to take a look at our new retail website (Two Sisters Ecotextiles) and let us know what you think.  We’re still working out some kinks so your input is really appreciated.

In the textile industry, there are two third party certifications which are transparent and to which we certify our fabrics: the Global Organic Textile Standard (GOTS) and Oeko-Tex. Another logo you see on our site is the GreenSpec logo. To be listed by GreenSpec means that the products are best of class as determined by Environmental Building News.

What does it mean for a fabric to be GOTS certified?

 The Global Organic Textile Standard, GOTS, was published in 2006. It was brought about through the combined efforts of organic trade associations of the United States, Great Britain, Japan, and Germany. GOTS aims to define a universal standard for organic fabrics—from harvesting the raw materials, through environmentally and socially responsible manufacturing, to labeling—in order to provide credible assurance to consumers. Standards apply to fiber products, yarns, fabrics and clothes and cover the production, processing, manufacturing, packaging, labeling, exportation, importation and distribution of all natural fiber products.   GOTS provides a continuous quality control and certification system from field to shelf.  A GOTS certified fabric is therefore much more than just a textile which is made from organic fibers.

gots-logo-middle-thumb-495x506    To be GOTS certified:

  • a fabric must be made of from 70% (for label grade “made with organic”)  to 95% (for label grade “organic”) organic fiber – so 5%  or 30% of the fabric can be either:
    • regenerated fibers from certified organic raw materials, sustainable forestry management (FSC / PEFC) or recycled.
    • certified recycled synthetic fibers (recycled polyester, polyamide, polypropylene or polyurethane)
    • Our GOTS fabrics are all 100% organic fiber.
  • As the GOTS website explains, “As it is to date technically nearly impossible to produce any textiles in an industrial way without the use of chemical inputs, the approach is to define criteria for low impact and low residual natural and synthetic chemical inputs.   So in addition to requiring that   all inputs have to meet basic requirements on toxicity and biodegradability. GOTS also  prohibits entire classes of chemicals.  Why is this important?  Because rather than calling out specific prohibited chemicals.  What that means is that instead of prohibiting, for example lead and cadmium (and therefore allowing other heavy metals by default), GOTS prohibits ALL heavy metals.
  • Wastewater treatment must be in place before discharge to surface waters. This pertains to pH and temperature, as well as to biological and chemical residues in the water.
  • Labor practices are interpreted in accordance with the International Labor Organization (ILO – no forced, bonded, or slave labor; workers have the right to join or form trade unions and to bargain collectively; working conditions are safe and hygienic; there must be no new recruitment of child labor (and for those companies where children are found to be working, provisions must be made to enable him to attend and remain in quality education until no longer a child);  wages paid must meet, at a minimum, national legal standards or industry benchmarks, whichever is higher; working hours are not excessive and inhumane treatment is prohibited. These requirements are incredibly important as it is still the 19th century at many fabric spinners, mills and dye houses in the world.
  • Environmentally sound packaging requirements must be in place; PVC in packaging is prohibited; paper must be post-consumer recycled or certified according to FSC or PEFC.
  • GOTS has a dual system of quality assurance consisting of on-side annual inspection (including possible unannounced inspections based on risk assessment of the operations) and residue testing.

Our opinion is  that the GOTS standard is the most comprehensive and rigorous certification regarding textiles. It’s also quite hard to obtain!

GOTS, however, does not directly address the carbon footprint of an organization or its production practices, but we feel a GOTS certified fabric is the best choice in terms of carbon footprint, by far.  (Please note: the choice of a fabric made of organically raised natural fibers has been shown to have a much lower carbon impact than any fabric made of synthetic fibers including the much touted recycled polyester.  We touched on that in our some of our blog posts; click here and here to read them.

Fabric made from organic fibers which have been processed conventionally can be – and almost always are – full of residual toxic chemicals – and its production may have released literally tons of chemicals into the environment; its carbon footprint stinks and worker safety is suspect. Think of the organic applesauce analogy we use: if you start with organic apples, then cook them with preservatives, emulsifiers, Red Dye #2, and stabilizers, the final product cannot be called “organic”.   Same is true with fabrics.

Fabric made with “organic fiber” but processed conventionally

GOTS compliant fabric

 

Uses organic fibers only

 

YES

YES

Free of any known chemicals that can harm you or the ecosystem

NO

YES

Water is treated before release

NO

YES

Workers paid fair wages; working conditions hygenic

NO

YES

To read more about GOTS, go to: http://www.global-standard.org

What does it mean for a fabric to be Oeko-Tex certified?       OT3The goal of Oeko-Tex fabric safety standard is to ensure that fabrics pose no risk to human health.

The Oeko-Tex Standard, in use since 1992, prohibits the same long list of chemicals that GOTS prohibits; but Oeko-Tex addresses nothing else about the production steps. For example, wastewater treatment is not required, nor are workers rights addressed.   It is NOT an organic certification and products bearing this mark are not necessarily made from organically grown fibers – or from natural fibers at all. Plastic yarn (polyester, nylon, acrylic) is permitted. Oeko-Tex is only concerned with the safety of the use of the final product.

The Oeko-Tex 100 certification does emphasize thorough testing for a lengthy list of chemicals which are known or suspected to harm health, including lead, antimony, arsenic, phthalates, pesticides, and chlorinated phenols. The official table of limits for tested chemicals may be found on the Oeko-Tex website (click here).  Specifically banned are:

  • Azo dyes
  • All flame retardants
  • Carcinogenic and allergy-inducing dyes
  • Pesticides
  • Chlorinated phenols
  • Chloro-organic benzenes and toluenes
  • Heavy metals
  • Organotin compounds (TBT and DBT)
  • Formaldehyde

Oeko-Tex certified fabrics are required to have a skin friendly pH. If you remember your high school chemistry, pH is the indication of the level of acidity or base (salt). Skin’s natural pH is a tad acidic, and when it’s eroded your defenses are down, leaving you vulnerable to bacteria, moisture loss, and irritation. Oeko-Tex certified fabrics will not create these stresses. And the fabrics will feel lovely against your skin.

Textiles considered for this standard are classified into four categories, and each category has different test values for chemicals allowed in the product:

  • Product Class I: Products for Babies – all textile products and materials used to manufacture such textile products for children up to the age of 36 months (leather clothing is an exception)
  • Product Class II: Products with direct contact to Skin – worn articles of which a large surface touches the skin (i.e. underwear, shirts, pants)
  • Product Class III: Products without Direct Contact to Skin – articles of which only a small part of their surface touches the skin (i.e. linings, stuffings)
  • Product Class IV: Decoration Material – this may also be thought of as housewares, as this category includes table cloths, wall coverings, furnishing fabrics, curtains, upholstery fabrics, floor coverings, and mattresses.

Certification may be given to a finished product (such as a shirt), or to individual components (such as yarn, or fabric).

To read more about Oeko Tex, go to: https://www.oeko-tex.com/en/manufacturers/manufacturers.xhtml

What does it mean for a product to be GreenSpec listed? Green Spec

BuildingGreen.com is the publisher of Environmental Building News (EBN) and the GreenSpec directory. GreenSpec was developed as a way to find products with environmental benefits in mind: GreenSpec listed products are those that are considered the best-of-the-best green building products, according to Environmental Building News.   The products are independently selected by the researchers at BuildingGreen to ensure that the products contain unbiased, quality information. This certification is in a sort of grey area, because the staff of Environmental Building News does not have a stake in any of the companies producing the recommended products, so they do not have a vested interest. They do have an interest in promoting products which they consider to be harmless to people and the environment.

The criteria which the products must meet include:

  • Avoidance of hazardous ingredients
  • Low-emitting
  • Biobased and sustainably sourced
  • Produced by companies which have responsible corporate practices
  • Information transparency

All of the fabrics in the Two Sisters collection are GreenSpec listed.

 

 





Greenwashing

16 11 2015

Please take a look at our new retail website, Two Sisters Ecotextiles (www.twosistersecotextiles.com).  We launched a few weeks ago and we’d love to know what you think!

As one pundit said, “our product is green” is joining “the check’s in the mail” as one of the most frequent fibs in our modern times.   And as David Gelles noted in the New York Times on October 18, 2015, Volkswagen’s campaign to promote diesel fuel as a low-emissions alternative to gasoline has become one of the most egregious examples of greenwashing to date – now that we’ve found out that they rigged their diesel cars with software that tricked emissions tests to get better results.

Greenwashing (when a company tries to portray itself as more environmentally minded than it actually is) has become the order of the day because consumers have (finally) warmed to sustainable and organic products and services.  This year, Cone Inc.’s Trend Tracker found that nearly three-quarters of consumers (71%) will stop buying a product if they feel misled by environmental claims – and more than a third will go so far as to boycott a company’s products.

One corporation after another has jumped on the “green-your-corporation-for-a-better-public-image” bandwagon.     This is so ubiquitous that Steven Colbert, for one, couldn’t resist:  he said that they now have a “Green Colbert Report”  –  they’re reducing their emissions by jumping on the bandwagon.  In this rush to be seen as green, companies often exaggerate claims, or simply make them up.   Magali Delmas, a professor of management at the University of California, Los Angeles, has said that “more and more firms have been combining poor environmental performance with positive communication about environmental performance.”

So why is this necessarily a bad thing?  Doesn’t really hurt anybody does it?

Actually, it does hurt us all.  As advertising giant Ogilvy & Mather puts it in a new report, greenwash is actually “an extremely serious matter…it is insidious, eroding consumer trust, contaminating the credibility of all sustainability-related marketing and hence inhibiting progress toward a sustainable economy.” In other words, it’s very hard for customers to know what choices make a difference when some marketers are muddying the waters for all. When buyers throw up their hands in confusion, we all lose.  And it results in consumer and regulator complacency – if one corporation in a particular industry gets away with greenwashing, then other corporations will follow suit, leading to an industry-wide illusion of sustainability, rather than sustainability itself.

With textiles specifically, we see environmental claims that are just as outrageous as the new “Natural Energy Snack on the Go” from Del Monte – individually wrapped bananas.

Packaged bananas from Del Monte.

Packaged bananas from Del Monte.

The problem is that the issues involved in evaluating a claim are often complex, and they vary greatly by product.   In addition, there is a raging debate about what constitutes green practices – for example, recycled polyester is considered a “green” choice in textiles, yet what yardstick is being used to make that claim?  We have done numerous blog posts on why any kind of synthetic has a much greater environmental impact  than any naturally raised fiber.  If we compare synthetics to organically raised fibers, do we also include the benefits of supporting organic agriculture, or is that a benefit that gets lost in the equation?

Even though the Federal Trade Commission (FTC) has established guidelines for environmental claims (called the Green Guides), these guidelines are not law, and are only enforceable if a complaint is lodged to the FTC and there is enough evidence to get a court order forcing the company to remove the claim.  But what if people simply don’t have enough knowledge to lodge a complaint?

I’ve spent years reading about the issues involved in textile production (one of the most complex supply systems in all manufacturing) but don’t feel capable of evaluating other products.   That’s where transparency on the part of manufacturers comes in:  Consumers have to understand that there are no green products – every product uses resources and creates waste.  And there are tradeoffs.  But beyond that understanding, third party certifications give us all certain measurable standards by which we can compare products, and are a useful tool.

But even certifications need some kind of knowledge base on the part of the consumer in order to be valuable.  (What’s being measured?  Who’s doing the measuring? Which environmental claims are relevant, and what are subterfuge?)

Certifications  (not to be confused with labels and standards) fall into three categories:  first, second and third party certifications:

  • In first party certifications, a person or an organization says it meets certain claims; there is not usually an independent test to verify those claims.  These are usually a fairly simple claim, such as that the product will last for at least a year.  An example of this type of certification is that of  Kravet’s “Kravet Green” collection,  because Kravet itself is telling us that their fabrics are green.   There is no mention of any other certification bodies corroborating their statements.
  • In second party certification, an association or group provides the assurance that a product meets certain criteria.  This type of certification offers little assurance against conflicts of interest.   Under new FTC guidelines, companies that are members of the trade organization or group that certifies their product must disclose that relationship to the consumer.  An example of second party certification can be considered that of the American Textile Manufacturers Institute’s Encouraging Environmental Excellence (E3) program, which has developed a set of standards and which awards use of their logo if companies comply with these standards.
  • Third party certifications are issued by independent testing companies based on impartial evaluation of a claim by expert unbiased sources with reference to a publicly available set of standards.  Third party certification is considered the highest level of assurance you can achieve.  A third party certification is represented by the Global Organic Textile Standard, which has a public set of standards and which is administered by independent testing labs around the world.  In other words, you can’t pay these labs to misrepresent their findings, since their business is testing and certification only.

Like green claims, there is also an abundance of seals and labels that assure environmental worthiness, experts say.

“About once a week, I have a client that will bring up a new certification I’ve never even heard of –  and I’m in this industry,” said Kevin Wilhelm, chief executive officer of Sustainable Business Consulting, a Washington-based company that helps businesses plan green marketing strategies. “It’s kind of a Wild West, anybody can claim themselves to be green.”

Mr. Wilhelm said the plethora of labels made it difficult for businesses and consumers to know which labels they should pay attention to. “There’s no way for the average consumer or even for a C.E.O. to know which ones to go for or what they should get,” he said.

Okay, which certifications apply to textiles and what do they tell us?  Tune in next week.





Should I choose a hemp or linen fabric?

5 08 2015

We are often asked for 100% hemp fabric in lieu of linen fabrics. We offer hemp and adore it, but it may not be the best eco choice.  Make no mistake – we love hemp, we sell hemp fabrics and we think the re-introduction of hemp as a crop would be a boon for American farmers and consumers.

But hemp that is used to produce hemp fabric via conventional methods – as opposed to GOTS methods – is an inferior choice to any GOTS certified fabric. So the overriding difference is not between hemp and any other fiber, but between a GOTS certified fabric versus one that is not GOTS certified, because GOTS certification assures us that the fabric is free of any chemicals that can change your DNA, give you cancer or another dread disease or affect you in other ways ranging from subtle to profound. It also assures us that the mill which produced the fabric has water treatment in place, so these chemicals don’t pollute our groundwater – and that the mill pays fair wages to their workers who toil in safe conditions!

The GOTS certification requires that the fiber used in the fabric be third party certified organic. Organic linen is more available and less expensive then organic hemp, so we often use linen instead of hemp in our fabrics. Using organic linen instead of organic hemp keeps the price lower for you and you do not give up any performance characteristics at all.   Allow me to say that once more: You do not give up any performance at all.

To begin with, do not be confused by the difference between the fiber and the cloth woven from that fiber – because the spinning of the yarn and the weaving of the cloth introduces many variables that have nothing to do with the fibers. Both hemp and flax (from which linen is derived) are made from fibers found in the stems of plants, and both are very laborious to produce. The strength and quality of both fibers are highly dependent on seed variety, the conditions during growth, time of harvest and manner of retting and other post-harvest handling.

Yarns, made from the fibers, are graded from ‘A’, the best quality, to below ‘D’ and the number of twists per unit length is often (but not always) an indication of a stronger yarn.   In addition, the yarns can be single or plied – a plied yarn is combined with more than one strand of yarn. Next, the cloth can be woven from grade ‘A’ yarns with double twist per unit length and double ply into a fabric where the yarns are tightly woven together from cloth that is lightweight or heavier, producing a superior fabric.  Or not.

Now let’s look at some of the differences between hemp and linen:

Hemp and linen fibers are basically interchangeable – there is very little to distinguish flax fibers from hemp fibers.  In fact,  hemp’s fibers so closely resemble flax that a high-power microscope is needed to tell the difference. Without microscopic or chemical examination, the fibers can only be distinguished by the direction in which they twist upon wetting: hemp will rotate counterclockwise; flax, clockwise.  And in general, they tend to have the same properties.

In general, there are many similarities between cloth made from hemp and cloth made from linen:

  • Both linen and hemp become soft and supple through handling, gaining elegance and creating a fluid drape.
  • Both hemp and linen are strong fibers – though most sources say hemp is stronger (by up to 8 times) than linen (even though the real winner is spider silk), but this point becomes moot due to the variables involved in spinning the fiber into yarn and then weaving into fabric.   The lifespan of hemp is the longest of all the natural fibers.
  • Both hemp and linen wrinkle easily.
  • Both hemp and linen absorb moisture. Hemp’s moisture retention is a bit more (12%) than linen’s (10 – 12%)
  • Both hemp and linen breathe.
  • Both hemp and linen are natural insulators: both have hollow fibers which means they’re cool in summer and warm in winter.
  • Both hemp and linen have anti-bacterial properties.
  • Both hemp and linen benefit from washing, becoming softer and more lustrous with each wash.
  • Both hemp and linen are resistant to moths and other insects.
  • Both hemp and linen absorb dyestuffs readily.
  • Both hemp and linen biodegrade.

In general, hemp fiber bundles are longer than those of flax.   So the first point of differentiation is this: the length of the fibers. Hemp fibers vary from 4 to about 7 feet in length, while linen is general 1.5 to 3 feet in length. Other differences:

  • The color of flax fibers is described as yellowish-buff to gray, and hemp as yellowish-gray to dark brown.
  • Hemp is highly resistant to rotting, mildew, mold and salt water.
  • Hemp is also highly resistant to ultraviolet light, so it won’t fade or disintegrate in sunlight.
  • Hemp’s elastic recovery is very poor and less than linen; it stretches less than any other natural fiber.

The biggest difference between hemp and linen might be in the agricultural arena: Hemp grows well without the use of chemicals because it has few serious pest problems, although the degree of immunity to attacking organisms has been greatly exaggerated.  Several insects and fungi specialize exclusively in hemp!  But despite this, the use of pesticides and fungicides are usually unnecessary to get a good yield. Hemp has a fiber yield that averages between 485 – 809 lbs., compared to flax, which averages just 323 – 465 lbs. on the same amount of land.  This yield translates into a high biomass, which can be converted into fuel in the form of clean-burning alcohol.

Farmers claim that hemp is a great rotation crop – it was sometimes grown the year prior to a flax crop because it left the land free of weeds and in good condition.   Hemp, it was said, is good for the soil, aerating and building topsoil. Hemp’s long taproot descends for three feet or more, and these roots anchor and protect the soil from runoff. Moreover, hemp does not exhaust the soil. Additionally, hemp can be grown for many seasons successively without impacting the soil negatively. In fact, this is done sometimes to improve soil tilth and clean the land of weeds.

The price of hemp in the market is far higher than for linen, despite hemp’s yields.   We have no idea why this is so.

The overriding difference is not between hemp and linen, but between a hemp OR linen fabric that has a GOTS certification and one that does not. That means that a conventional hemp fabric, which enjoys all the benefits of hemp’s attributes, also introduces unwanted chemicals into your life: such as formaldehyde, phthalates, heavy metals, endocrine disruptors and perhaps soil or fire retardants.   The GOTS certified fabric is the better choice. If the choice is between a conventional hemp fabric and a GOTS certified linen fabric, we wouldn’t hesitate a second to choose the linen over the hemp, especially because hemp and linen are such close cousins.

 

 

 

 

 

 





More about fabric choices for your sofa.

25 06 2015

Our previous blog post we talked about fabric – how to determine the quality of the fabric you’re considering for your new sofa.  But the most important consideration merits a blog all its own, and that is the safety of the fabrics you’ve chosen.  We define “safe” as a fabric that has been processed with none of the many chemicals known to harm human health – and in a perfect world we’d  throw in water treatment and human rights/labor issues too.

It’s a great idea to start with organic fibers, if you can.  By substituting organic natural fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits. Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers)[1], which helps to mitigate climate change, but it also:

  • Eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity;
  • Conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • Ensures sustained biodiversity;
  • And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles. As such it can be seen as more than a set of agricultural practices, but also as a tool for social change [2]. For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But even if you start with organic natural fibers (a great choice!) but process those fibers conventionally, then you end up with a fabric that is far from safe. Think about making applesauce: if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stabilizers and who knows what else – do you end up with organic applesauce? The US Department of Agriculture would not let you sell that mixture as organic applesauce.  There is no similar protection for consumers when buying fabric, even though the same issues apply, because over 2000 chemicals are used routinely in textile processing.[4] Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates, benzenes and others). In fact, one yard of fabric made with organic cotton fiber is about 25% by weight synthetic chemicals – many of which are proven toxic to humans [5] and are outlawed in other products.

I know you’re saying that you don’t eat those fabrics, so what’s the danger? Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body). Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in. Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern? Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis, for example, which are linked to many of the chemicals used in textile processing) are reaching epidemic rates, and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t [6];
  • We know formaldehyde is bad for us, but in fabric? A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths. [7] Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories which produce acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.[9]
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.[10]

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops. [11].
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys. They are ubiquitous – and are also found in most textile inks.[12] So parents careful not to bring toxic toys into their homes for can be nevertheless unknowingly putting their kids to sleep on cute printed sheets full of phthalates.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum. And our children are the pawns in this great experiment. And if you think artificial  pathogens  are  not the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the max has replaced bacteria and viruses as the major cause of human illness. We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized – certainly not the darling of venture capitalists who look for the next big thing. So not many research dollars are going into new ways of producing fabrics. Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible: in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge [13].

You can begin to protect yourself by looking for fabrics that have third party certifications:  either Oeko-Tex or The Global Organic Textile Standard (GOTS), which we believe is the gold standard in textiles because though Oeko-Tex assures you of a safe fabric and while GOTS confirms the same assurance, GOTS  also requires water treatment (important because the textile industry is the #1 industrial polluter of water on the planet (14) – and in this era of water shortages we have to start paying attention to our water resources) and prohibits child or slave labor (sadly still an issue) and makes sure workers have safe conditions to work in and are paid fair wages.

[1] Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf Also see: Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

[4] See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

[5] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609

[6] Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

[7] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

[8] Occupational and Environmental Medicine 2010, 67:263-269 doi:

10.1136/oem.2009.049817 SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[9] Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

[10] http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp

[11]http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

[12] “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week, September 22, 2008 SEE ALSO: Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

[13] Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.

(14)  Cooper, Peter, “Clearer Communication”, Ecotextile News, May 2007





Relationships and systems

1 07 2014

 

 

 

From Jewel  Renee Illustration; jewelrenee.blogspot.com/2011/06/starfish-7-legged-and-otherwise.html

From Jewel Renee Illustration; jewelrenee.blogspot.com/2011/06/starfish-7-legged-and-otherwise.html


From Alaska to Southern California, sea stars (or as I call them,  starfish.    But  scientists like to point out they’re not fish, ergo: “sea stars”) are dying by the millions.  Drew Harvell, a marine epidemiologist at Cornell University, calls it the largest documented marine epidemic in human history.   The disease deflates sea stars, causing them to become weak, lose limbs  and develop lesions that eat through their entire bodies – or simply disintegrate into bacterial goop within days.   

Two affected species – sunflower and ochre stars – are “keystone species” in their respective habitats. That is, they are species that have disproportionately large impacts on their ecosystems, and they fill a vital niche. The term was coined 45 years ago by zoology professor Robert Paine, of the University of Washington, specifically to describe the importance of the ochre star in the Pacific Northwest.  They are a top predator, eating mussels, barnacles and sea snails.

“This is the species that defined the term, which is a central concept in ecological theory,” explained Drew Harvell.   “We do expect the impact to be dramatic. And to take away not just one, but both of these keystone species in adjoining ecosystems? It’s going to have a big effect.”[1]

Nobody knows why the sea stars are dying.  Theories have run from waterborne pathogens or other disease agents, manmade chemicals, ocean acidification, wastewater discharge or warming oceans.  There is even a contingent that thinks the Fukushima nuclear meltdown is the cause.  The newest theory is that they’re being infected with a disease that can more easily grow in the Pacific Ocean thanks to warming waters, which provide a better place for the disease organisms to multiply.  According to the scientists, the warmer waters also compromises the immune systems of the sea stars, allowing them to be more susceptible to the disease.

I’m sure you know where I’m going with this:  like Colony Collapse Disorder (CCD) of honeybees, the sea star wasting syndrome is beyond the range of what we expect in a healthy ecosystem.  Most scientists have concurred that the CCD was caused by a variety of environmental stresses (malnutrition, pathogens, mites, pesticides, radiation from cell phones and other man made devices, as well as genetically modified crops with pest control characteristics) which increased stress and reduced the immune systems of the honeybees.

And though bees and sea stars are both rather small and seem insignificant, they are both essential components of our ecosystem.  Without bees, for example, there would be significantly less pollination, which would result in limited plant growth and lower food supplies. According to Dr. Albert Einstein, “If the bee disappears from the surface of the earth, man would have no more than four years to live. No more bees, no more pollination…no more men”.[2]    It’s a bit early to assess the impact of the loss of sea stars, but according to Carol Blanchette, a research biologist at University of California Santa Barbara,  “losing a predator like that is bound to have some pretty serious ecological consequences and we really don’t know exactly how the system is going to look but we’re quite certain that it’s going to have an impact.”[3]

I read a book many years ago about time travelers who went to the distant past.  One of them stepped on an insect.  When they returned to their own time, everything had changed.  Ecologists tell us that everything is connected to everything else – ecosystems are complex and interconnected.  “The system,” Barry Commoner writes, “is stabilized by its dynamic self-compensating properties; these same properties, if overstressed, can lead to a dramatic collapse.” Further, “the ecological system is an amplifier, so that a small perturbation in one place may have large, distant, long-delayed effects elsewhere.”[4]

So how does the textile industry figure into this equation?  Answer:  the textile industry pollutes our water.  In fact, some sources put it as the leading industrial polluter of water on the planet.  It takes about 505 gallons of water to produce one pair of Levi’s 501 jeans.[5]  Imagine how much water is used every day by textile mills worldwide.   The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

Maude Barlow, in her book, Blue Covenant [6] argues that water is not a commercial good but rather a human right and a public trust.   She shares these startling facts about water during her presentations:

  • Every 8 seconds a child dies from drinking dirty water.
  • 50% of the world’s hospital beds are occupied by people who have contracted waterborne diseases.
  • The World Health Organization says contaminated water is the cause of 80% of all sickness and disease worldwide.
  • 9 countries control 60% of the world’s available freshwater.[7]
  • In China, 80% of all major rivers are so polluted they don’t support aquatic life at all.

This year’s drought in the US pointed to a new water related issue, the generation of energy.  Power plants are completely dependent on water for cooling and make up about half the water usage in the US.  If water levels in the rivers that cool them drop too low, the power plant – already overworked from the heat – won’t be able to draw in enough water. In addition, if the cooling water discharged from a plant raises already-hot river temperatures above certain thresholds, environmental regulations require the plant to shut down.[8]

The textile mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water as a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

Please ask whether the fabric you buy has been produced in a mill which treats its wastewater.   The Global Organic Textile Standard (GOTS) assures consumers that the mill which produced the fabric has treated its wastewater, but so far it is the only third party certification with that requirement as a standard.  Oeko Tex 1000 has also included that in its requirements, however I have never seen an Oeko Tex 1000 certification – most fabrics are simply Oeko Tex certified.  Also look into the Greenpeace Detox challenge, which is working to “expose the direct links between global clothing brands, their suppliers, and toxic water pollution around the world.”  Click here for more information.

 

[1] Gashler, Krisy, “Sea star wasting devastates Pacific Coast species”, Cornell Chronicle, Feb 17, 2014

[2] http://www.beesfree.biz/The%20Buzz/Bees-Dying

[3] http://www.pbs.org/newshour/updates/scientists-zero-whats-causing-starfish-die-offs/

[4] Commoner, Barry; “The Closing Circle: Nature, Man and Technology”, Random House, October 1971

[5] Alter, Alexandra, “Yet Another Footprint to Worry About: Water”, The Wall Street Journal, February 17, 2009.

[6] Barlow, Maude; “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008.

[7] WBCSD, Facts and Trends: Water (version 2), 2009.

[8] Reardon, Sara, “Water shortages hit US power supply”, New Scientist, 20 August 2012.

 





How to buy a quality sofa – part 4: natural fibers

10 10 2012

Since the 1960s, the use of synthetic fibers has increased dramatically,  causing the natural fiber industry to lose much of its market share. In December 2006, the United Nations General Assembly declared 2009 the International Year of Natural Fibres (IYNF); a year-long initiative focused on raising global awareness about natural fibers with specific focus on increasing market demand to help ensure the long-term sustainability for farmers who rely heavily on their production.

                       International Forum for Cotton Promotion

Natural fibers  have a history of being considered the fibers that are easiest to live with, valued for their comfort, soft hand and versatility.  They also carry a certain cachet:  cashmere, silk taffeta and 100% pure Sea Island cotton convey different images than does 100% rayon,  pure polyester or even Ultrasuede, don’t they?  And natural fibers, being a bit of an artisan product, are highly prized especially in light of campaigns by various trade associations to brand fiber:    “the fabric of our lives” from Cotton, Inc. and merino wool with the pure wool label are two examples.                                                              

Preferences for natural fibers seem to be correlated with income; in one study, people with higher incomes preferred natural fibers by a greater percentage than did those in lower income brackets.   Cotton Incorporated funded a study that demonstrated that  66% of all women with household incomes over $75,000 prefer natural fibers to synthetic.

What are the reasons, according to the United Nations, that make natural fibers so important?  The UN website, Discover Natural Fibers lists the following reasons why natural fibers are a good choice.  Please remember that this list does not include organic natural fibers, which provide even more benefits (but that’s another post):

  1. Natural fibers are a healthy choice.
    1. Natural fiber textiles absorb perspiration and release it into the air, a process called “wicking” that creates natural ventilation. Because of their more compact molecular structure, synthetic fibers cannot capture air and “breathe” in the same way. That is why a cotton T-shirt is so comfortable to wear on a hot summer’s day, and why polyester and acrylic garments feel hot and clammy under the same conditions. (It also explains why sweat-suits used for weight reduction are made from 100% synthetic material.) The bends, or crimp, in wool fibers trap pockets of air which act as insulators against both cold and heat – Bedouins wear thin wool to keep them cool. Since wool can absorb liquids up to 35% of its own weight, woollen blankets efficiently absorb and disperse the cup of water lost through perspiration during sleep, leaving sheets dry and guaranteeing a much sounder slumber than synthetic blankets.
    2. The “breathability” of natural fiber textiles makes their wearers less prone to skin rashes, itching and allergies often caused by synthetics. Garments, sheets and pillowcases of organic cotton or silk are the best choice for children with sensitive skins or allergies, while hemp fabric has both a high rate of moisture dispersion and natural anti-bacterial properties.   Studies by Poland’s Institute of Natural Fibers have shown that 100% knitted linen is the most hygienic textile for bed sheets – in clinical tests, bedridden aged or ill patients did not develop bedsores. The institute is developing underwear knitted from flax which, it says, is significantly more hygienic than nylon and polyester. Chinese scientists also recommend hemp fiber for household textiles, saying it has a high capacity for absorption of toxic gases.
  2. Natural fibers are a responsible choice.
    1. Natural fibers production, processing and export are vital to the economies of many developing countries and the livelihoods of millions of small-scale farmers and low-wage workers. Today, many of those economies and livelihoods are under threat: the global financial crisis has reduced demand for natural fibers as processors, manufacturers and consumers suspend purchasing decisions or look to cheaper synthetic alternatives.
    2. Almost all natural fibers are produced by agriculture, and the major part is harvested in the developing world.
      1. For example, more than 60% of the world’s cotton is grown in China, India and Pakistan. In Asia, cotton is cultivated mainly by small farmers and the sale of cotton provides the primary source of income for some 100 million rural households.
      2. In India and Bangladesh, an estimated 4 million marginal farmers earn their living – and support 20 million dependents – from the cultivation of jute, used in sacks, carpets, rugs and curtains. Competition from synthetic fibers has eroded demand for jute over recent decades and, in the wake of recession, reduced orders from Europe and the Middle East could cut jute exports even further.
      3. Silk is another important industry in Asia. Raising silkworms generates income for some 700 000 farm households in India, while silk processing provide jobs for 20 000 weaving families in Thailand and about 1 million textile workers in China.
      4. Each year, developing countries produce around 500 000 tonnes of coconut fiber – or coir – mainly for export to developed countries for use in rope, nets, brushes, doormats, mattresses and insulation panels. In Sri Lanka, the single largest supplier of brown coir fiber to the world market, coir goods account for 6% of agricultural exports, while 500 000 people are employed in small-scale coir factories in southern India.
      5. Across the globe in Tanzania, government and private industry have been working to revive once-booming demand for sisal fiber, extracted from the sisal agave and used in twine, paper, bricks and reinforced plastic panels in automobiles. Sisal cultivation and processing in Tanzania directly employs 120 000 people and the sisal industry benefits an estimated 2.1 million people.
  3. Natural fibers are a sustainable choice.
    1. Natural fibers will play a key role in the emerging “green” economy based on energy efficiency, the use of renewable feed stocks in bio-based polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste.  Natural fibers are a renewable resource, par excellence – they have been renewed by nature and human ingenuity for millennia. During processing, they generate mainly organic wastes and leave residues that can be used to generate electricity or make ecological housing material. And, at the end of their life cycle, they are 100% biodegradable.
    2. An FAO study estimated that production of one ton of jute fiber requires just 10% of the energy used for the production of one ton of synthetic fibers (since jute is cultivated mainly by small-scale farmers in traditional farming systems, the main energy input is human labor, not fossil fuels).
    3. Processing of some natural fibers can lead to high levels of water pollutants, but they consist mostly of biodegradable compounds, in contrast to the persistent chemicals, including heavy metals, released in the effluent from synthetic fiber processing. More recent studies have shown that producing one ton of polypropylene – widely used in packaging, containers and cordage – emits into the atmosphere more than 3 ton of carbon dioxide, the main greenhouse gas responsible for global warming. In contrast, jute absorbs as much as 2.4 tonnes of carbon per tonne of dry fiber.
    4. The environmental benefits of natural fiber products accrue well beyond the production phase. For example, fibers such as hemp, flax and sisal are being used increasingly as reinforcing in place of glass fibers in thermoplastic panels in automobiles. Since the fibers are lighter in weight, they reduce fuel consumption and with it carbon dioxide emissions and air pollution.
    5. But where natural fibers really excel is in the disposal stage of their life cycle. Since they absorb water, natural fibers decay through the action of fungi and bacteria – this releases the fixed CO2 in the fibers and closes the cycle; it also improves soil structure.  Synthetics present society with a range of disposal problems. In land fills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants and, in the case of high-density polyethylene, 3 tonnes of carbon dioxide emissions for every tonne of material burnt. Left in the environment, synthetic fibers contribute, for example, to the estimated 640 000 tonnes of abandoned fishing nets and gear in the world’s oceans.
  4. Natural fibers are a high-tech choice.
    1. Natural fibers have intrinsic properties – mechanical strength, low weight and low cost – that have made them particularly attractive to the automobile industry.
      1. In Europe, car makers are using mats made from abaca, flax and hemp in press-molded      thermoplastic panels for door liners, parcel shelves, seat backs, engine shields and headrests.
        1. For consumers, natural fiber composites in automobiles provide better thermal and acoustic insulation than fiberglass, and reduce irritation of the skin and respiratory system. The low density of plant fibers also reduces vehicle weight, which cuts fuel consumption.
        2. For car manufacturers, the moulding process consumes less energy than that of fibreglass and produces less wear and tear on machinery, cutting production costs by up to 30%. The use of natural fibres by Europe’s car industry is projected to reach 100 000 tonnes by 2010. German companies lead the way. Daimler-Chrysler has developed a flax-reinforced polyester composite, and in 2005 produced an award-winning spare wheel well cover that incorporated abaca yarn from the Philippines. Vehicles in some BMW series contain up to 24 kg of flax and sisal. Released in July 2008, the Lotus Eco Elise (pictured above) features body panels made with hemp, along with sisal carpets and seats upholstered with hemp fabric. Japan’s carmakers, too, are “going green”. In Indonesia, Toyota manufactures door trims made from kenaf and polypropylene, and Mazda is using a bioplastic made with kenaf for car interiors.
    1. Worldwide, the construction industry is moving to natural fibres for a range of products, including light structural walls, insulation materials, floor and wall coverings, and roofing. Among recent innovations are cement blocks reinforced with sisal fibre, now being manufactured in Tanzania and Brazil. In India, a growing shortage of timber for the construction industry has spurred development of composite board made from jute veneer and coir ply – studies show that coir’s high lignin content makes it both stronger and more resistant to rotting than teak. In Europe, hemp hurd and fibres are being used in cement and to make particle boards half the weight of wood-based boards. Geotextiles are another promising new outlet for natural fibre producers. Originally developed in the Netherlands for the construction of dykes, geotextile nets made from hard natural fibres strengthen earthworks and encourage the growth of plants and trees, which provide further reinforcement. Unlike plastic textiles used for the same purpose, natural fibre nets – particularly those made from coir – decay over time as the earthworks stabilize.
  1. Natural fibers are a fashionable choice.
    John Patrick Organic Fall/Winter 2010
    1. Natural fibers are at the heart of a fashion movement that goes by various names: sustainable, green, uncycled, ethical, eco-, even eco-environmental. It focuses fashion on concern for the environment, the well-being of fiber producers and consumers, and the conditions of workers in the textile industry. Young designers now offer “100% carbon neutral” collections that strive for sustainability at every stage of their garments’ life cycle – from production, processing and packaging to transportation, retailing and ultimate disposal. Preferred raw materials include age-old fibres such as flax and hemp, which can be grown without agrochemicals and produce garments that are durable, recyclable and biodegradable. Fashion collections also feature organic wool, produced by sheep that have not been exposed to pesticide dips, and “cruelty-free” wild silk, which is harvested – unlike most silk – after the moths have left their cocoons.
    2. The Global Organic Textile Standard (GOTS)   sets strict standards on chemicals permitted in processing, on waste water treatment, packaging material and technical quality parameters, on factory working conditions and on residue testing.
    3. Sustainable fashion intersects with the “fair trade” movement, which offers producers in developing countries higher prices for their natural fibres and promotes social and environmental standards in fibre processing. Fair trade fashion pioneers are working with organic cotton producers’ cooperatives in Mali, hand-weavers groups in Bangladesh and Nepal, and alpaca producers in Peru. A major UK chain store launched in 2007 a fair trade range of clothing that uses cotton “ethically sourced” from farmers in the Gujarat region of India. It has since sold almost 5 million garments and doubled sales in the first six months of 2008.
    4. Another dimension of sustainable fashion is concern for the working conditions of employees in textile and garment factories, which are often associated with long working hours, exposure to hazardous chemicals used in bleaching and dyeing, and the scourge of child labor. The  Global Organic Textile Standard (GOTS), widely accepted by manufacturers, retailers and brand dealers, includes a series of “minimum social criteria” for textile processing, including a prohibition on the use of child labor, workers’ freedom of association and right to collective bargaining, safe and hygienic working conditions, and “living wages”.