What kind of filling for your sofa cushions?

12 05 2015

 

One thing that most people care about is how the cushions feel to them – do you like to sink down into the cushions or you like a denser, more supportive cushion? Either way, the cushions are important.

Before plastics, our grandparents filled cushions with feathers, horsehair, wool or cotton batting – even straw (one of the earliest stuffing materials). This stuff often shifted, meaning that you’d have to plump up the feathers, horsehair or batting to make the sofa look, and feel, good.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 55 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP and it behaved!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is: start with good foam and you won’t be sorry.”

Polyurethane foam for cushions are generally measured by two values:

  1. The density or weight per cubic foot. The higher the number, the more it weighs.   Foam that has a density of 1.8, for example, contains 1.8 lbs. of foam per cubic foot and foam that has a density of 2.5 would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  2. The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35.

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block 33%.

After choosing which foam to use, it is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually:

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is considered the ‘workhorse’ of flexible foam production.
  • Both methyloxirane and TDI have been formally identified as carcinogens by the State of California
  • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
  • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.  However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2] The fact that California has amended the old law that required fire retardants in polyurethane foam doesn’t affect the fact that in a fire, the toxic gasses released by the foam (such as hydrogen cyanide) would incapacitate the occupants of a house in just a few minutes.

The newest entry in the green sweepstakes is what’s called a bio-based foam made from soybeans. This “soy foam” is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe. To begin, let’s look at why they claim soy foam is green:

  • it’s made from soybeans, a renewable  resource
  • it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’. It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”. Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain; the EPA finds nervous system effects such as depression, loss of concentration and a potential for cancer(4).  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

 

[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

(4) Technical Fact Sheet on: Styrene; Environmental Protection Agency; http://www.epa.gov/ogwdw/pdfs/factsheets/voc/tech/styrene.pdf

 

 





What you can do to avoid toxins

27 06 2013

North-Cascades-e1346800825850I’ll be taking a few weeks off so instead of sitting in front of the computer I’ll be hiking in the mountains and sitting by a lake. Have a wonderful fourth, and see you in August.

Last week I promised you the list of things to do to avoid toxins in your life. In putting together the list, it all became a bit overwhelming and I found myself asking whether it would really make a difference. I mean, the chemicals in use are so pervasive and ubiquitous that I wasn’t sure whether my puny attempts at reducing exposure would result in any improvements. Like that old adage: you can’t buy health – can you protect yourself from exposure? I mean, they found GMO wheat in a remote field in Oregon. Then I ran across the Michael Pollan piece in the New York Times (for the full article, click here) in which he talks about what we can do to fight climate change and it seems to reflect my own feelings about chemical exposure:

Why bother? That really is the big question facing us as individuals hoping to do something about climate change, and it’s not an easy one to answer. I don’t know about you, but for me the most upsetting moment in “An Inconvenient Truth” came long after Al Gore scared the hell out of me, constructing an utterly convincing case that the very survival of life on earth as we know it is threatened by climate change. No, the really dark moment came during the closing credits, when we are asked to . . . change our light bulbs. That’s when it got really depressing. The immense disproportion between the magnitude of the problem Gore had described and the puniness of what he was asking us to do about it was enough to sink your heart.

But then he answers his own question: “Going personally green is a bet, nothing more or less, though it’s one we probably all should make, even if the odds of it paying off aren’t great. Sometimes you have to act as if acting will make a difference, even when you can’t prove that it will.”

The fact that chemicals are not being directly linked to health issues is largely because of the long delay between time of exposure and effect, so causation is difficult to prove. As Ed Brown points out in his new documentary “Unacceptable Levels” (click here for more information), it’s only because these chemicals have been in our environment for so long that we can now start to monitor their results. Another reason it’s difficult to prove the effects of these chemicals is that we’re exposed to low levels of individual chemicals from different sources – and they enter your body and react with all the other chemicals found there. Yet chemicals are tested for safety only one by one. As Ken Cook points out, no doctor will prescribe a new drug for a patient before finding out what other drugs that patient is taking.

So, yes, it’s overwhelming but that’s okay. Now that you know, begin to read up a bit and learn what all the fuss is about. Then you can start to make some changes that might mean all the difference.

Back to my list: my top 11 suggestions to avoid toxins are below. If you can do even some of those, you’ll be ahead of the game:

• Take off your shoes in the house – simple and easy, and it prevents lots of pesticides and other chemicals from being tracked in.

• Vacuum and/or dust regularly –because the dust in our homes has been proven to contain lots of chemicals (want proof? click here )

• Filter your water. You’d be surprised to read the list of really bad chemicals found in most tapwater in the US – if you’re interested, read the series called “Toxic Waters” which was published in the New York Times. Click here.

• Buy only GOTS or Oeko Tex certified fabrics if you can – for everything, not just sheets and pajamas – starting now. Never buy wrinkle-free or permanent-press anything and pass on any stain protection treatments. Fabrics – even those made of organic cotton – are, by weight, 27% synthetic chemicals. Click here to get started on what that means!

• Check the labels on your furniture. The California Furniture Flammability Standard essentially requires that cushioned furniture, children’s car seats, diaper-changing tables and other products containing polyurethane foam be drenched in flame retardants – and most manufacturers build to that standard, so don’t think you’re off the hook just because you don’t live in California. (Click here to read why that’s important). Check the labels on electronics, too. Avoid polyurethane if possible.

• Read the labels of your grooming products – avoid anything that includes the words “paraben” (often used as a suffix, as in methylparaben) or “phthalate” (listed as dibutyl and diethylhexyl or just “fragrance”). If there isn’t an ingredients list, log on to cosmeticsdatabase.com, a Web site devised by the Environmental Working Group that identifies the toxic ingredients of thousands of personal-care products.

• About plastics: Never use plastics in the microwave. Avoid “bad plastics” like PVC and anything with “vinyl” in its name. And don’t eat microwave popcorn, because the inside of a microwave popcorn bag is usually coated with a chemical that can migrate into the food when heated. It has been linked to cancer and birth defects in animals.

* As Michael Pollan says: “Eat food. Not too much. Mostly plants.” I’d add: eat organic as much as possible, support local farmers and don’t eat meat and fish every day. Grow an organic garden – one of the most powerful things you can do! If you can only purchase a few organic foods, there are lots of lists (EWG has a good one, click here) that tell you which are the most pesticide-laden.

• Replace cleaning products with non toxic alternatives – either commercially available cleaning products (avoiding ammonia, artificial dyes, detergents, aerosol propellants, sodium hypochlorite, lye, fluorescent brighteners, chlorine or artificial fragrances) or homemade. You probably can do most cleaning with a few simple ingredients like baking soda, lemon juice and distilled white vinegar. Lots of web sites offer recipes for different cleaners – I like essential oils (such as lavender, lemongrass, sweet orange, peppermint, cedar wood and ylang-ylang) in a bucket of soap and hot water. It can clean most floors and surfaces and it won’t kill me.

• And now that we mention it, avoid using any product which lists “fragrance” as an ingredient.

• Fly less – in this case my issue is not with the carbon footprint (which is tremendous) but because the fabrics are so drenched in flame retardants that people who fly often have elevated levels of PBDEs in their blood – and you already know that PBDEs and their ilk are to be avoided as much as possible (click here and here ).

• Get involved and become informed! Force the federal government to fulfill its obligation to protect us from harm – join something (like a Stroller Brigade, sponsored by Safer Chemicals, Healthy Families or Washington Toxics Coalition, for example) and urge your representatives to support the Safe Chemicals Act.





GMOs and nanotechnology – hope for the future

6 06 2013

I ran into some interesting ideas that seem to display why we should not immediately discredit new science – like genetic engineering or nanotechnology – because it might well provide clues to how we can continue to live on this planet.  So rather than taking a global stand against GMOs or nanotechnology perhaps we should look at how the science is used.

Carbon dioxide (CO2)  – the natural gas that allows sunlight to reach the Earth –  also prevents some of the sun’s heat from radiating back into space, thus trapping heat and warming the planet. Scientists call this warming the greenhouse effect. When t­his effect occurs naturally, it warms the Earth enough to sustain life. In fact, if we had no greenhouse effect, our planet would be an average temperature of minus 22 degrees Fahrenheit (minus 30 degrees Celsius)[1].  My kids would love the skiing, but they’d be too dead to enjoy it.  So carbon dioxide and the greenhouse effect are necessary for Earth to survive. But human inventions like power plants and cars, which burn fossil fuels, release extra CO2 into the air. Because we’ve added (and continue to add) this carbon dioxide to the atmosphere, more heat is stored on Earth, which causes the temperature of the planet to slowly rise, a phenomenon called global warming.

Carbon dioxide isn’t the only greenhouse gas (GHG) – others include water vapor, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride – but it’s the most important.  And it’s going up as a direct result of human activity.[2]  Just recently, we passed a milestone that climate scientists have warned is impressively scary – for the first time in human history, atmospheric carbon dioxide levels will surpass 400 ppm.[3]

So what to do? Traditionally, we’ve relied on natural systems to deal with this extra CO2 – like trees and other plants which soak up the stuff through photosynthesis.  But the amounts being generated exceed the capacity of natural systems to deal with it.  So we look to technological solutions, which basically consist of:  capture (i.e., trapping the gas at its emission source and then putting it someplace where it won’t escape) and geologic sequestration or storage (putting it someplace where it won’t escape.)  But I’m not a believer in these measures – after all, captured CO2 must be transported (by rail, truck or ship) to its final storage place.  And where is there a storage place that will not leak and can accommodate the 30 billion metric tons of CO2 we generate every year – without dire environmental consequences.

We have to look outside the box.  There have been many such ideas, from the more outlandish (i.e., create man-made volcanoes to pump sulfur dioxide into the atmosphere to block sunlight and cool the planet[4]) to several I’ve outlined below that just might help.  But they depend  on the use of GMO and nano science.

As Technology.org describes it:  “It is not widely appreciated that the most substantial process of carbon sequestration on the planet is accomplished by myriad marine organisms making their exoskeletons, or shells.   Shells are produced biologically from calcium and magnesium ions in sea water and carbon dioxide from the air, as it is absorbed by sea water. When the organisms die, their shells disintegrate and form carbonate sediments, such as limestone, which are permanent, safe carbon sinks.”[5]

from ecoco: sustainable design

from ecoco: sustainable design

By studying how sea urchins grow their own shells, scientists at Newcastle University in the UK have discovered a way to trap CO2 in solid calcium carbonate using nickle nanoparticles.  “It is a simple system,” said Dr Lidija Siller from Newcastle University. “You bubble CO2 through the water in which you have nickel nanoparticles and you are trapping much more carbon than you would normally—and then you can easily turn it into calcium carbonate.”[6]  Most carbon capture and storage programs must first trap the CO2 and then pump it into holes deep under ground, which is both expensive and has a high environmental risk.    Lead author, PhD student Gaurav Bhaduri, is quoted: “ [the nickel catalyst]  is very cheap, a thousand times cheaper than carbon anhydrase”.  The two researchers have patented the process and are looking for investors.

Meanwhile, MIT professor Angela Belcher, who had done her thesis on the abalone,   and graduate students Roberto Barbero and Elizabeth Wood are also looking into this.  They have  created a process that can convert carbon dioxide into carbonates that could be used as building materials. Their process, which has been tested in the lab, can produce about two pounds of carbonate for every pound of carbon dioxide captured.

Their process requires using genetically modified yeast.

Yeast don’t normally do any of those reactions on their own, so Belcher and her students had to engineer them to express genes found in organisms such as the abalone. Those genes code for enzymes and other proteins that help move carbon dioxide through the mineralization process.

The MIT team’s biological system captures carbon dioxide at a higher rate than other systems being investigated. Another advantage of the biological system is that it requires no heating or cooling, and no toxic chemicals.

Dr. Belcher has also used genetically modified viruses so they would have a binding affinity with carbon nanotubes – which allowed them to build a high-powered lithium ion battery cathode that could power a green LED.  Dr. Belcher thinks that she might one day drive a virus-powered car.

I think these two examples demonstrate that we should always keep an open mind.  And remember that it’s not always the science that’s causing a problem, but rather how we use it.  The idea that GMO seeds are intellectual property (owned largely by Monsanto) for example, is one of the wrong ways to use this technology.  But let’s not throw the baby out with the bath water.





How to buy a quality sofa – part 4: So which fabric should it be?

17 10 2012

So for the past two weeks we’ve discussed the differences between synthetic and natural fibers. But there’s more to consider than just the fiber content of the fabric you buy. There is the question of whether a natural fiber is organically grown, and what kind of processing is used to create the fabric.

First, by substituting organic natural fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits. Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers)[1], which helps to mitigate climate change, but it also:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity;
  • conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • ensures sustained biodiversity;
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles. As such it can be seen as more than a set of agricultural practices, but also as a tool for social change [2] . For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But if you start with organic natural fibers (a great choice!) but process those fibers conventionally, then you end up with a fabric that is far from safe. Think about making applesauce: if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stablizers and who knows what else – do you end up with organic applesauce? The US Department of Agriculture would not let you sell that mixture as organic applesauce, but there is no protection for consumers when buying fabric. And the same issues apply, because over 2000 chemicals are used routinely in textile processing.[4] Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates, benzenes and others). In fact, one yard of fabric made with organic cotton fiber is about 25% by weight synthetic chemicals – many of which are proven toxic to humans. [5]

I know you’re saying that you don’t eat those fabrics, so what’s the danger? Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body). Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in. Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern? Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis, for example, which are linked to many of the chemicals used in textile processing) are reaching epidemic rates, and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t [6];
  • We know formaldehyde is bad for us, but in fabric? A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths. [7] Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories with acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.[9]
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.[10]

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops. [11]
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys. They are ubiquitous – and are also found in most textile inks.[12] So parents careful not to bring toxic toys into their homes for can be nevertheless unknowingly putting their kids to sleep on cute printed sheets full of phthalates.
  • Greenpeace did a study of children’s wear sold by the Walt Disney Company – you know, like those cute Tinkerbell pajamas? Turns out that of the 5 chemicals they tested for, most items tested had far more than is considered safe.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re less prepared because we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum. And our children are the pawns in this great experiment. And if you think artifical pathogens  are  not main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the maximum has replaced bacteria and viruses as the major cause of human illness. We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized – certainly not the darling of venture capatalists who look for the next big thing. So not many research dollars are going into new ways of producing fabrics. Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible: in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge [13].


[1] Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf Also see: Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

[4] See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

[5] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609

[6] Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

[7] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

[8] Occupational and Environmental Medicine 2010, 67:263-269 doi:
10.1136/oem.2009.049817 SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[9] Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

[12] “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week, September 22, 2008 SEE ALSO: Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

[13] Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.





How to buy a “quality” sofa – soy foam

19 09 2012

In my last post I explained that polyurethane foam (polyfoam) has a plethora of problems associated with it:

  • The chemicals used to manufacture the foam have been formally identified as carcinogens; and the flame retardant chemicals added to almost all foams increase the chemical toxicity.  These chemicals evaporate (VOCs)  and pollute our indoor air and dust;
  • It does not decompose in the landfill; the recycling claim only perpetuates the continued use of hazardous chemicals;
  • It is dependent on a non-renewable resource: crude oil.

When untreated foam (aka, “solid gasoline”)  is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly is the toxic gas produced by burning polyurethane foam – hydrogen cyanide gas.  Hydrogen cyanide itself is so toxic that it was used by the Aum Shinrikyo terrorists who attacked Tokyo’s subway system in 1995, and in Nazi death camps during World War II. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Polyfoam is so flammable  – burning  so hot and emitting such toxic fumes while burning –  that even the National Association of State Fire Marshals (NASFM) recommends that it be placed in Class 9 (an unusual but clearly hazardous material) because they are concerned about the safety of firemen and other first responders.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.

But today – not long after jumping on the bandwagon –  we have concerns about polyurethane:  in addition to all the problems mentioned above there is concern about its carbon footprint. So now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock, CEO of Upholstery Arts,  says  – who wouldn’t sleep sounder with such promising news?   I have again leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So-called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable resource
  2. it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. As Len Laycock asks, if you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations (theoretical because 40% soy has not resulted in useable foams). This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’ as claimed.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly“, Len Laycock presents another sinister side of  soy based foam marketing:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale. As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”





Bioplastics – are they the answer?

16 04 2012

From Peak Energy blog; August 27, 2008

From last week’s blog post, we discussed how bio based plastics do indeed save energy during the production of the polymers, and produce fewer greenhouse gasses during the process.  Yet right off the bat, it could be argued that carbon footprints may be an irrelevant measurement,  because it has been established that plants grow more quickly and are more drought and heat resistant in a CO2 enriched atmosphere!   Many studies have shown that worldwide food production has risen, possibly by as much as 40%, due to the increase in atmospheric CO2 levels.[1] Therefore, it is both ironic and a significant potential problem for biopolymer production if the increased CO2 emissions from human activity were rolled back, causing worldwide plant growth to decline. This in turn would greatly increase the competition for biological sources of food and fuel – with biopolymers coming in last place.[2]  But that’s probably really stretching the point.

The development of bioplastics holds the potential of renewability, biodegradation, and a path away from harmful additives. They are not, however, an automatic panacea.  Although plant-based plastics appeal to green-minded consumers thanks to their renewable origins,  their production carries environmental costs that make them less green than they may seem.  It’s important to remember that bioplastics, just like regular plastics, are synthetic polymers; it’s just that plants are being used instead of oil to obtain the carbon and hydrogen needed for polymerization.

It’s good marketing, but bad honesty, as they say, because there are so many types of plastics and bioplastics that you don’t know what you’re getting in to;  bioplastics are much more complicated than biofuels.  There are about two dozen different ways to create a bioplastic, and each one has different properties and capabilities.

Actually the term “bioplastic” is pretty meaningless, because some bioplastics are actually made from oil – they’re called “bioplastics” because they are biodegradeable.  That causes much confusion because plastics made from oil can be biodegradeable whereas some plant-based  bioplastics are not. So the term bioplastics can refer either to the raw material (biomass) or, in the case of oil-based plastic, to its biodegradability.  The problem with biodegradability and compostability is that there is no agreement as to what that actually means either,  and under what circumstances

You might also see the term “oxo-degradable”.   Oxo-degradables look like plastic, but they are not. It is true that the material falls apart, but that is because it contains metal salts which cause it to disintegrate rapidly into tiny particles. Then you cannot see it anymore, but it is still there, in the ocean too. Just as with conventional plastics, these oxo-degradables release harmful substances when they are broken down.

Let’s re-visit  some of the reasons bioplastics are supposed to be an environmental benefit:

  • Because it’s made from plants, which are organic, they’re good for the planet.  Polymer bonds can be created from oil, gas or plant materials. The use of plant materials does not imply that the resulting polymer will be organic or more environmentally friendly. You could make non-biodegradable, toxic plastic out of organic corn!
  • Bioplastics are biodegradable. Although made from materials that can biodegrade, the way that material is turned into plastic  makes it difficult (if not impossible) for the materials to naturally break down.  There are bioplastics made from vegetable matter (maize or grass, for example) which are no more biodegradable than any other plastics, says Christiaan Bolck of Food & Biobased Research.[3]  Bioplastics do not universally biodegrade in normal conditions  –  some require special, rare conditions to decompose, such as high heat composting facilities, while others may simply take decades or longer to break down again, mitigating the supposed benefits of using so-called compostable plastics material. There are no independent standards for what even constitutes “biodegradable plastic.”  Sorona makes no claim to break down in the environment; Ingeo is called “compostable” (though it can only be done in industrial high heat composters). Close studies of so-called degradable plastics have shown that some only break down to plastic particles which are so small they can’t be seen  (“out of sight, out of mind”), which are more easily ingested by animals. Indeed, small plastic fragments of this type may also be better able to attract and concentrate pollutants such as DDT and PCB.[4]
  • Bioplastics are recyclable. Because bioplastics come in dozens of varieties, there’s no way to make sure you’re getting the right chemicals in the recycling vat – so although some bioplastics are recyclable, the recycling facilities won’t separate them out.  Cargill Natureworks insists that PLA  can in theory be recycled, but in reality it is likely to be confused with polyethylene terephthalate (PET).  In October 2004, a group of recyclers and recycling advocates issued a joint call for Natureworks to stop selling PLA for bottle applications until the recycling questions were addressed.[5]  But the company claims that levels of PLA in the recycling stream are too low to be considered a contaminant.  The process of recycling bioplastics is cumbersome and expensive – they present a real problem for recyclers because they cannot be handled using conventional processes. Special equipment and facilities are often needed. Moreover, if bioplastics commingle with traditional plastics, they contaminate all of the other plastics, which forces waste management companies to reject batches of otherwise recyclable materials.
  • Bioplastics are non-toxicBecause they’re not made from toxic inputs (as are oil based plastics), bioplastics have the reputation for being non toxic.  But we’re beginning to see the same old toxic chemicals produced from a different (plant-based) source of carbon. Example:  Solvay’s bio-based PVC uses phthalates,  requires chlorine during production, and produces dioxins during manufacture, recycling and disposal. As one research group commissioned by the European Bioplastics Association was forced to admit, with regard to PVC,  “The use of bio-based ethylene is …  unlikely to reduce the environmental impact of PVC with respect to its toxicity potential.[6]

The arguments against supporting bioplastics include the fact that they are corporate owned, they compete with food, they bolster industrial agriculture and lead us deeper into genetic engineering, synthetic biology and nanotechnology.  I am not with those who think we shouldn’t go there, because we sorely need scientific inquiry  and eventually we might even get it right.  But, for example, today’s industrial agriculture is not, in my opinion, sustainable, and the genetic engineering we’re doing is market driven with no altruistic motive. 

If properly designed, biodegradable plastics have the potential to become a much-preferred alternative to conventional plastics. The Sustainable Biomaterials Collaborative (SBC)[7] is a coalition of organizations that advances the introduction and use of biobased products. They seek to replace dependence on materials made from harmful fossil fuels with a new generation of materials made from plants – but the shift they propose is more than simply a change of materials.  They promote (according to their website): sustainability standards, practical tools, and effective policies to drive and shape the emerging markets for these products.  They also refer to “sustainable bioplastics” rather than simply “bioplastics”.  In order to be a better choice, these sustainable bioplastics must be:

  • Derived from non-food, non-GMO source materials – like algae rather than GMO corn, or from sustainably grown and harvested cropland or forests;
  • Safe for the environment during use;
  • Truly compostable and biodegradable;
  • Free of toxic chemicals during the manufacturing and recycling process;
  • Manufactured without hazardous inputs and impacts (water, land and chemical use are considerations);
  • Recyclable in a cradle-to-cradle cycle.

Currently, manufacturers are not responsible for the end-life of their products. Once an item leaves their factories, it’s no longer the company’s problem. Therefore, we don’t have a system by which adopters of these new bioplastics would be responsible for recovering, composting, recycling, or doing whatever needs to be done with them after use. Regarding toxicity, the same broken and ineffective regulatory system is in charge of approving bioplastics for food use, and there is no reason to assume that these won’t raise just as many health concerns as conventional plastics have. Yet again, it will be an uphill battle to ban those that turn out to be dangerous.

A study published in Environmental Science & Technology traces the full impact of plastic production all the way back to its source for several types of plastics.[8]   Study author Amy Landis of the University of Pittsburgh says, “The main concern for us is that these plant-derived products have a green stamp on them just because they’re derived from biomass.  It’s not true that they should be considered sustainable. Just because they’re plants doesn’t mean they’re green.”

The researchers found that while making bioplastics requires less fossil fuel and has a lower impact on global warming, they have higher impacts for eutrophication, eco-toxicity and production of human carcinogens.  These impacts came largely from fertilizer use, pesticide use and conversion of lands to agricultural fields, along with processing the bio-feedstocks into plastics, the authors reported.

According to the study, polypropylene topped the team’s list as having the least life-cycle impact, while PVC and PET (polyethylene terephthalate) were ranked as having the highest life-cycle impact.

But as the Plastic Pollution Coalition tells us, it’s not so much changing the material itself that needs changing – it’s our uses of the stuff itself.  We are the problem:   If we continue to buy single-use disposable objects such as plastic bottles and plastic bags, with almost 7 billion people on the planet, our throwaway culture will continue to harm the environment, no matter what it’s made of.

The Surfrider Foundation

The Surfrider Foundation has a list of ten easy things you can do to keep plastics out of our environment:

  1. Choose to reuse when it comes to  shopping bags and bottled water.  Cloth bags and metal or glass reusable  bottles are available locally at great prices.
  2. Refuse single-serving packaging, excess  packaging, straws and other ‘disposable’ plastics.  Carry reusable utensils in your purse, backpack or car to use at bbq’s, potlucks or take-out  restaurants.
  3. Reduce everyday plastics such as sandwich bags and juice cartons by replacing them with a reusable lunch bag/box that includes a thermos.
  4. Bring your to-go mug with you to the coffee shop, smoothie shop or restaurants that let you use them. A great  way to reduce lids, plastic cups and/or plastic-lined cups.
  5. Go digital! No need for plastic cds,  dvds and jewel cases when you can buy your music and videos online.
  6. Seek out alternatives to the plastic  items that you rely on.
  7. Recycle. If you must use plastic, try to choose #1 (PETE) or #2 (HDPE), which are the most commonly recycled      plastics. Avoid plastic bags and polystyrene foam as both typically have very low recycling rates.
  8. Volunteer at a beach cleanup. Surfrider Foundation Chapters often hold cleanups monthly or more frequently.
  9. Support plastic bag bans, polystyrene  foam bans and bottle recycling bills.
  10. Spread the word. Talk to your family and friends about why it is important to Rise Above Plastics!

[1] See for example: Idso, Craig, “Estimates of Global Food Production in the year 2050”, Center for the Study of Carbon dioxide and Global Change, 2011  AND  Wittwer, Sylvan, “Rising Carbon Dioxide is Great for Plants”, Policy Review, 1992  AND  http://www.ciesin.org/docs/004-038/004-038a.html

[2] D. B. Lobell and C. B. Field, Global scale climate-crop yield relationships and the impacts of recent warming, Env. Res. Letters 2, pp. 1–7, 2007 AND L. H. Ziska and J. A. Bunce, Predicting the impact of changing CO2 on crop yields: some thoughts on food, New Phytologist 175, pp. 607–618, 2007.

[3] Sikkema, Albert, “What we Don’t Know About Bioplastics”, Resource, December 2011; http://resource.wur.nl/en/wetenschap/detail/what_we_dont_know_about_bioplastics

[4] Chandler Slavin, “Bio-based resin report!” Recyclable Packaging Blog May 19, 2010 online at http://recyclablepackaging.wordpress.com/2010/05/19/bio-based-resin-report

[6] L. Shen, “Product Overview and Market Projection of Emerging Bio- Based Plastics,” PRO-BIP 2009, Final Report, June 2009





Enzymes and GOTS

9 12 2011

Last week we reviewed the ways enzymes are helping to give textile processes a lighter footprint while at the same time producing better finished goods – at a lower cost.  Seems to be a win/win situation, until you begin to unpeel the onion:

It begins with the production of the enzyme:  Enzymes have always been obtained from three primary sources, i.e., animal tissue, plants or microbes.  By starting with the primary source and “feeding” it properly (known as fermentation), we ended up with our target product – like beer, for example.

But these naturally occurring enzymes are often not readily available in sufficient quantities for  industrial use. The production of enzymes – including microorganisms used to produce enzymes –  is a pursuit central to the modern biotechnology industry.  Until recently, the availability of enzymes  have been limited to the quantities that could be produced in the host organism in which they were naturally derived.

Today, the starting point is a vial of a selected strain of microorganisms – microbial hosts which have been selectively bred by industry. They will be nurtured and fed until they multiply many thousand times.  Once fermentation is complete, the microorganisms are destroyed, the desired enzymes are recovered from the fermentation broth and sold as a standardized product.

Modern biotechnology has improved enzyme production and enzyme quality in several ways:

1)     Increased efficiency of enzyme production resulting in higheryields;

2)     Increased enzyme purity through reduction or elimination of side activities;

3)     Enhancing the function of specific enzyme proteins, e.g., by increasing the temperature range over which an enzyme is active.

The results, as we discussed last week,  are better products, produced more efficiently, often at lower cost and with less environmental impact.

It wasn’t until genetic engineering came about that these biological methods became economically viable. Targeted genetic manipulation has not only enhanced the productivity of these methods, it also has resulted in the production of substances that were previously impossible. To date, up to 60% of all technical enzymes are produced with genetically modified organisms (GMO) – and this number is sure to increase given that GMO-based enzyme production requires 40-50% less energy and raw materials than traditional enzyme production.[1]  And therein lies the rub.

Cheese, eggs and milk, for example, may not be genetically modified themselves but may contain ingredients and additives that were produced from genetically modified microorganisms.

Take cheese for example: Traditionally, this enzyme preparation, sometimes known as rennin, was extracted from calf stomachs. The active ingredient is chymosin, an enzyme produced in the stomach of suckling calves needed for breaking down cow’s milk.

It is now possible to produce chymosin in genetically modified fungi. These modified microorganisms contain the gene derived from the stomach of calves that is responsible for producing chymosin. When grown in a bioreactor, they release chymosin into the culture medium. Afterwards, the enzyme is extracted and purified yielding a product that is 80 to 90 percent pure. Natural rennin contains only 4 to 8 percent active enzyme.[2]

Even the nutritive medium used to grow bacteria and fungi is often made from GMOs.

Again, what are the arguments against GMO?

Briefly, because I want to get to how this pertains to the textile industry, here are the most common concerns :

1)     What happens when these GMOs interact with other organisms?  Already there is concern that GMO crops resistant to weed killers will themselves become uncontrolled weeds in other fields – the GMO plant may cross pollinate with a related species that is a weed which then becomes resistant to weed killers.  This is already happening according to many published reports.  And it can happen in really subtle ways:

  1. Since 1986, Novo Nordisk, one of the world’s largest producers of industrial enzymes,  has processed the residuals of fermentation processes generated by GMOs into “biomass” or “sludge” called NovoGro. The sludge is dehydrated and freely distributed among farmers. NovoGro is virtually the company’s only possibility to dispose of its massive enzyme production waste. In 1996, 2.2 million cubic meters of NovoGro were produced. Daily about 150 truckloads of NovoGro are spread over 70 hectares of land in Denmark .  Total costs are about US$ 13 million per year, all carried by Novo Nordisk. A Danish farmers’ organization protested against the distribution of NovoGro because it suspected pollution by GMOs. There are concerns that risks associated with the use of GMO products is not worth the benefits as long as the environmental impacts are not monitored by third parties.[3]

2)     The argument rages about the human health risks of genetically engineered foods – specifically with regard to the rise in food allergies. The British Medical Association (BMA)  in a study done in 2003, concluded that the risks to human health associated with GMO foods is negligible, while calling for further research and surveillance.[4]

3)     Ethical concern of the “slippery slope”: because it appears to provide costless benefits, so companies and governments may rush into production one or more products of the new technologies that will turn out to be harmful, either to the environment or to humans directly.

The manufacturers and scientists tell us that there are no traces of these GMO microorganisms in the final product, and no microbial DNA is detectable.

Additives (such as enzymes) that are produced with the help of genetically modified microorganisms do not require labeling because GMOs are not directly associated with the final product.  In the textile industry, they are known as auxiliaries or processing aids.

In textiles, the Global Organic Textile Standard (GOTS) has stated that the use of genetically modified organisms – including their enzymes – is incompatible with the production of textiles labelled as ‘organic’ or ‘made with organic’ under GOTS.  According to the GOTS website:  “While the IWG Technical Committee acknowledges that there are applications including, and based on GM technologies, that result in a reduction of energy and water use and replace chemicals compared to some conventional textile processes this is only one side of the coin.”  They go on to say that it is important to give consumers a choice to actively decide for themselves if they want to purchase a textile product made without using any GMO derived inputs.

As a company which is trying to do the right thing, I don’t know where I stand on this issue.    What do you think?