How to buy a quality sofa – part 4: natural fibers

10 10 2012

Since the 1960s, the use of synthetic fibers has increased dramatically,  causing the natural fiber industry to lose much of its market share. In December 2006, the United Nations General Assembly declared 2009 the International Year of Natural Fibres (IYNF); a year-long initiative focused on raising global awareness about natural fibers with specific focus on increasing market demand to help ensure the long-term sustainability for farmers who rely heavily on their production.

                       International Forum for Cotton Promotion

Natural fibers  have a history of being considered the fibers that are easiest to live with, valued for their comfort, soft hand and versatility.  They also carry a certain cachet:  cashmere, silk taffeta and 100% pure Sea Island cotton convey different images than does 100% rayon,  pure polyester or even Ultrasuede, don’t they?  And natural fibers, being a bit of an artisan product, are highly prized especially in light of campaigns by various trade associations to brand fiber:    “the fabric of our lives” from Cotton, Inc. and merino wool with the pure wool label are two examples.                                                              

Preferences for natural fibers seem to be correlated with income; in one study, people with higher incomes preferred natural fibers by a greater percentage than did those in lower income brackets.   Cotton Incorporated funded a study that demonstrated that  66% of all women with household incomes over $75,000 prefer natural fibers to synthetic.

What are the reasons, according to the United Nations, that make natural fibers so important?  The UN website, Discover Natural Fibers lists the following reasons why natural fibers are a good choice.  Please remember that this list does not include organic natural fibers, which provide even more benefits (but that’s another post):

  1. Natural fibers are a healthy choice.
    1. Natural fiber textiles absorb perspiration and release it into the air, a process called “wicking” that creates natural ventilation. Because of their more compact molecular structure, synthetic fibers cannot capture air and “breathe” in the same way. That is why a cotton T-shirt is so comfortable to wear on a hot summer’s day, and why polyester and acrylic garments feel hot and clammy under the same conditions. (It also explains why sweat-suits used for weight reduction are made from 100% synthetic material.) The bends, or crimp, in wool fibers trap pockets of air which act as insulators against both cold and heat – Bedouins wear thin wool to keep them cool. Since wool can absorb liquids up to 35% of its own weight, woollen blankets efficiently absorb and disperse the cup of water lost through perspiration during sleep, leaving sheets dry and guaranteeing a much sounder slumber than synthetic blankets.
    2. The “breathability” of natural fiber textiles makes their wearers less prone to skin rashes, itching and allergies often caused by synthetics. Garments, sheets and pillowcases of organic cotton or silk are the best choice for children with sensitive skins or allergies, while hemp fabric has both a high rate of moisture dispersion and natural anti-bacterial properties.   Studies by Poland’s Institute of Natural Fibers have shown that 100% knitted linen is the most hygienic textile for bed sheets – in clinical tests, bedridden aged or ill patients did not develop bedsores. The institute is developing underwear knitted from flax which, it says, is significantly more hygienic than nylon and polyester. Chinese scientists also recommend hemp fiber for household textiles, saying it has a high capacity for absorption of toxic gases.
  2. Natural fibers are a responsible choice.
    1. Natural fibers production, processing and export are vital to the economies of many developing countries and the livelihoods of millions of small-scale farmers and low-wage workers. Today, many of those economies and livelihoods are under threat: the global financial crisis has reduced demand for natural fibers as processors, manufacturers and consumers suspend purchasing decisions or look to cheaper synthetic alternatives.
    2. Almost all natural fibers are produced by agriculture, and the major part is harvested in the developing world.
      1. For example, more than 60% of the world’s cotton is grown in China, India and Pakistan. In Asia, cotton is cultivated mainly by small farmers and the sale of cotton provides the primary source of income for some 100 million rural households.
      2. In India and Bangladesh, an estimated 4 million marginal farmers earn their living – and support 20 million dependents – from the cultivation of jute, used in sacks, carpets, rugs and curtains. Competition from synthetic fibers has eroded demand for jute over recent decades and, in the wake of recession, reduced orders from Europe and the Middle East could cut jute exports even further.
      3. Silk is another important industry in Asia. Raising silkworms generates income for some 700 000 farm households in India, while silk processing provide jobs for 20 000 weaving families in Thailand and about 1 million textile workers in China.
      4. Each year, developing countries produce around 500 000 tonnes of coconut fiber – or coir – mainly for export to developed countries for use in rope, nets, brushes, doormats, mattresses and insulation panels. In Sri Lanka, the single largest supplier of brown coir fiber to the world market, coir goods account for 6% of agricultural exports, while 500 000 people are employed in small-scale coir factories in southern India.
      5. Across the globe in Tanzania, government and private industry have been working to revive once-booming demand for sisal fiber, extracted from the sisal agave and used in twine, paper, bricks and reinforced plastic panels in automobiles. Sisal cultivation and processing in Tanzania directly employs 120 000 people and the sisal industry benefits an estimated 2.1 million people.
  3. Natural fibers are a sustainable choice.
    1. Natural fibers will play a key role in the emerging “green” economy based on energy efficiency, the use of renewable feed stocks in bio-based polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste.  Natural fibers are a renewable resource, par excellence – they have been renewed by nature and human ingenuity for millennia. During processing, they generate mainly organic wastes and leave residues that can be used to generate electricity or make ecological housing material. And, at the end of their life cycle, they are 100% biodegradable.
    2. An FAO study estimated that production of one ton of jute fiber requires just 10% of the energy used for the production of one ton of synthetic fibers (since jute is cultivated mainly by small-scale farmers in traditional farming systems, the main energy input is human labor, not fossil fuels).
    3. Processing of some natural fibers can lead to high levels of water pollutants, but they consist mostly of biodegradable compounds, in contrast to the persistent chemicals, including heavy metals, released in the effluent from synthetic fiber processing. More recent studies have shown that producing one ton of polypropylene – widely used in packaging, containers and cordage – emits into the atmosphere more than 3 ton of carbon dioxide, the main greenhouse gas responsible for global warming. In contrast, jute absorbs as much as 2.4 tonnes of carbon per tonne of dry fiber.
    4. The environmental benefits of natural fiber products accrue well beyond the production phase. For example, fibers such as hemp, flax and sisal are being used increasingly as reinforcing in place of glass fibers in thermoplastic panels in automobiles. Since the fibers are lighter in weight, they reduce fuel consumption and with it carbon dioxide emissions and air pollution.
    5. But where natural fibers really excel is in the disposal stage of their life cycle. Since they absorb water, natural fibers decay through the action of fungi and bacteria – this releases the fixed CO2 in the fibers and closes the cycle; it also improves soil structure.  Synthetics present society with a range of disposal problems. In land fills they release heavy metals and other additives into soil and groundwater. Recycling requires costly separation, while incineration produces pollutants and, in the case of high-density polyethylene, 3 tonnes of carbon dioxide emissions for every tonne of material burnt. Left in the environment, synthetic fibers contribute, for example, to the estimated 640 000 tonnes of abandoned fishing nets and gear in the world’s oceans.
  4. Natural fibers are a high-tech choice.
    1. Natural fibers have intrinsic properties – mechanical strength, low weight and low cost – that have made them particularly attractive to the automobile industry.
      1. In Europe, car makers are using mats made from abaca, flax and hemp in press-molded      thermoplastic panels for door liners, parcel shelves, seat backs, engine shields and headrests.
        1. For consumers, natural fiber composites in automobiles provide better thermal and acoustic insulation than fiberglass, and reduce irritation of the skin and respiratory system. The low density of plant fibers also reduces vehicle weight, which cuts fuel consumption.
        2. For car manufacturers, the moulding process consumes less energy than that of fibreglass and produces less wear and tear on machinery, cutting production costs by up to 30%. The use of natural fibres by Europe’s car industry is projected to reach 100 000 tonnes by 2010. German companies lead the way. Daimler-Chrysler has developed a flax-reinforced polyester composite, and in 2005 produced an award-winning spare wheel well cover that incorporated abaca yarn from the Philippines. Vehicles in some BMW series contain up to 24 kg of flax and sisal. Released in July 2008, the Lotus Eco Elise (pictured above) features body panels made with hemp, along with sisal carpets and seats upholstered with hemp fabric. Japan’s carmakers, too, are “going green”. In Indonesia, Toyota manufactures door trims made from kenaf and polypropylene, and Mazda is using a bioplastic made with kenaf for car interiors.
    1. Worldwide, the construction industry is moving to natural fibres for a range of products, including light structural walls, insulation materials, floor and wall coverings, and roofing. Among recent innovations are cement blocks reinforced with sisal fibre, now being manufactured in Tanzania and Brazil. In India, a growing shortage of timber for the construction industry has spurred development of composite board made from jute veneer and coir ply – studies show that coir’s high lignin content makes it both stronger and more resistant to rotting than teak. In Europe, hemp hurd and fibres are being used in cement and to make particle boards half the weight of wood-based boards. Geotextiles are another promising new outlet for natural fibre producers. Originally developed in the Netherlands for the construction of dykes, geotextile nets made from hard natural fibres strengthen earthworks and encourage the growth of plants and trees, which provide further reinforcement. Unlike plastic textiles used for the same purpose, natural fibre nets – particularly those made from coir – decay over time as the earthworks stabilize.
  1. Natural fibers are a fashionable choice.
    John Patrick Organic Fall/Winter 2010
    1. Natural fibers are at the heart of a fashion movement that goes by various names: sustainable, green, uncycled, ethical, eco-, even eco-environmental. It focuses fashion on concern for the environment, the well-being of fiber producers and consumers, and the conditions of workers in the textile industry. Young designers now offer “100% carbon neutral” collections that strive for sustainability at every stage of their garments’ life cycle – from production, processing and packaging to transportation, retailing and ultimate disposal. Preferred raw materials include age-old fibres such as flax and hemp, which can be grown without agrochemicals and produce garments that are durable, recyclable and biodegradable. Fashion collections also feature organic wool, produced by sheep that have not been exposed to pesticide dips, and “cruelty-free” wild silk, which is harvested – unlike most silk – after the moths have left their cocoons.
    2. The Global Organic Textile Standard (GOTS)   sets strict standards on chemicals permitted in processing, on waste water treatment, packaging material and technical quality parameters, on factory working conditions and on residue testing.
    3. Sustainable fashion intersects with the “fair trade” movement, which offers producers in developing countries higher prices for their natural fibres and promotes social and environmental standards in fibre processing. Fair trade fashion pioneers are working with organic cotton producers’ cooperatives in Mali, hand-weavers groups in Bangladesh and Nepal, and alpaca producers in Peru. A major UK chain store launched in 2007 a fair trade range of clothing that uses cotton “ethically sourced” from farmers in the Gujarat region of India. It has since sold almost 5 million garments and doubled sales in the first six months of 2008.
    4. Another dimension of sustainable fashion is concern for the working conditions of employees in textile and garment factories, which are often associated with long working hours, exposure to hazardous chemicals used in bleaching and dyeing, and the scourge of child labor. The  Global Organic Textile Standard (GOTS), widely accepted by manufacturers, retailers and brand dealers, includes a series of “minimum social criteria” for textile processing, including a prohibition on the use of child labor, workers’ freedom of association and right to collective bargaining, safe and hygienic working conditions, and “living wages”.




Eucalyptus fiber by any other name

2 03 2012

Fibers are divided into three main categories:

  • Natural – like flax, wool, silk and cotton
  • Manufactured – made from cellulose or protein
  • Synthetic – made from synthetic chemicals

The difference between “manufactured” and “synthetic” fibers is that the manufactured fibers are derived from naturally-occurring cellulose or protein, while synthetic fibers are not.  And  manufactured fibers are unlike  natural fibers because they require extensive processing (or at least more than is required by natural fibers) to become the finished product.  The category of “manufactured” fibers is often called “regenerated cellulose” fibers.  Cellulose is a carbohydrate and the chief component in the walls of plants.

Rayon is the oldest manufactured fiber, having been in production since the 1880s in France, where it was originally developed as a cheap alternative to silk.   Most rayon production begins with wood pulp, though any plant material with long molecular chains is suitable.

There are several chemical and manufacturing techniques to make rayon, but the most common method is known as the viscose process. In the viscose process, cellulose is treated with caustic soda (aka: sodium hydroxide) and carbon disulfide, converting it into a gold, highly viscous  liquid about the color and consistency of honey.  This substance gives its name to the manufacturing process, called the viscose process.

The viscous fluid is allowed to age, breaking down the cellulose structures further to produce an even slurry, and is then filtered to remove impurities.  Then the mixture is forced through fine holes, called a spinerette, directly into a chemical bath where it hardens into fine strands. When washed and bleached these strands become rayon yarn.

Although the viscose process of making rayon from wood or cotton has been around for a long time, it wasn’t until 2003 that a method was devised for using bamboo for this process.(3)  Suddenly, bamboo was the darling of marketers, and the FTC had to step in to remind manufacturers to label their products as “bamboo viscose” rather than simply bamboo.

Now we hear about fabrics made from  eucalyptus, or soy.  But it’s the same story – the fibers are created using the viscose process.  Because the FTC did not specifically name these two substances in their proclamation regarding bamboo,   marketers can claim fabrics are  “made from eucalyptus”.    The reality is that the viscose process can produce fibers from any cellulose or protein source – chicken feathers, milk and even bacteria have been used (rayon comes specifically from wood or cotton).  But those inputs are not nearly as exciting to the marketers as eucalyptus or soy, so nobody has been advertising fibers made from bacteria.

After the brouhaha about bamboo viscose hit the press, many people did a quick scan of viscose and declared it “unsafe” for the environment.  The reason the viscose process is thought to be detrimental to the environment is based on the process chemicals used. Though sodium hydroxide is routinely used in the processing of organic cotton, and is approved by the Global Organic Textile Standard (GOTS), carbon disulfide can cause nervous system damage with chronic exposure.  And that “chemical bath” to harden the threads?  Sulfuric acid.  But these chemicals do not remain as a residue on the fibers – the proof of this is that almost all of the viscose produced can be (and often is) Oeko Tex certified (which certifies that the finished fiber has been tested for any chemicals which may be harmful to a person’s health and contains no trace of these chemicals.)

The environmental burden comes in disposing of these process chemicals: the sodium hydroxide (though not harmful to humans) is nevertheless harmful to the environment if dumped into our rivers as untreated effluent. Same with carbon disulfide  and, certainly, sulfuric acid.  And there are emissions of these chemicals as well, which contribute to greenhouse gasses.  And the reason that these fibers can be Oeko Tex certified:  Oeko Tex certifies only the final product, i.e.,the fibers or the fabric.  They do not look at the production process, which is where the majority of the environmental burden is found.  And then of course there is the weaving of these viscose fibers into fabric – if done conventionally, the environmental burden is devastating (in terms of chemical and water use) and the fabric itself probably contains many chemicals known to be harmful to our health.

Certainly the standard viscose production process is definitely NOT environmentally friendly, but then there is Tencel ® and Modal ®.   These fibers are manufactured by the Austrian company Lenzing, which  advertises its environmentally friendly production processes, based on closed loop systems.  Lyocell is the generic name for the fibers produced by Lenzing, which are not produced by the traditional viscose process but rather by solvent spinning.

According to Lenzing:

  • There is an almost complete recovery of the solvent, which both minimizes emissions and conserves resources.  Lenzing uses  a new non-toxic solvent (amine oxide) and the cellulose is dissolved in N-Methylmorpholine N-oxide rather than sulfuric acid. Water is also evaporated, and the resulting solution filtered and extruded as filaments through spinnerets into an aqueous bath. Over 99% of the solvent can washed from the fiber and purified for re-use. The water is also recycled.
  •  The by products of production, such as acetic acid, xylose and sodium sulphate are key ingredients in the food and glass industry. Remaining materials are used as energy for the Lenzing process.
  • Tencel ® is made from eucalyptus, which is grown on marginal land unsuitable for food crops; these trees are grown with a minimum of water and are grown using sustainable forestry initiatives.
  • The final fibers are biodegradable and can decompose in soil burial or in waste water treatment plants.

So Lenzing fibers can be considered a good choice if you’re looking for a sustainable fiber – in fact there is a movement to have Lenzing Tencel® eligible for GOTS certification, which we support, because the production of these fibers conforms with the spirit of GOTS.  They already have the EU Flower certification.

But Lenzing does not make fabrics – it sells yarns to mills and others which use the yarns to make fabric and other goods.

So  we’re back to the beginning again, because people totally forget about the environmental impact in the weaving of fibers into fabric, where the water and chemical use is very high –  if done conventionally, the environmental burden is devastating  and the finished fabric itself probably contains many chemicals which are outlawed in other products.

It’s critically important to look at both the fiber as well as the weaving in order to make a good choice.





Can it be an organic fabric if it uses synthetic dyestuffs?

3 11 2011

At the  International Federation of Organic Agriculture Movements (IFOAM ) Congress   in February, 2011, Ann Shankar from Biodye India, a company that produces natural dyes based on wild plants,  made a provocative suggestion –  that the term “organic textile” is not an accurate description of any textile where synthetic dyes and auxiliaries are used.  The Global Organic Textile Standard   allows the use of synthetic dyestuffs ( which are made from unsustainable sources and are not biodegradable).  She suggests that a separate category for such textiles be called “organic fibers with responsible synthetic dyes”.  According to Ann, even if it takes another couple of years for anyone to be able to claim a fully organic supply chain that would warrant the name ‘organic textile’ it should exist as a goal. Until then, natural dyes and auxiliaries (definitions by GOTS) should be given a separate standard such as ‘Organic fibers with natural dyes’ – a term separate but equal with the label for synthetic dyes.

She said that her company has recently overcome the technical difficulties often associated with using natural dyestuffs, especially at an industrial level.   Biodye is not the only company which produces dyestuffs from organic material which can be used for manufacturing; Rubia Natural Colors also has developed dyes in the red range from madder.

One of the major problems with synthetic dyestuffs is the pollution problems they present coupled with our “end of pipe” solutions.  Pointing out the impracticality of this end of pipe scenario, she points to two examples:

  1. The Central Pollution Control Board (CPCB) in India categorizes process waste sludge from synthetic dye production as hazardous, yet has no norms for proper disposal.  The result is that solid waste is stacked in any available space,  on riverbanks and roadsides, where it leaches back into the water or soil.

    National Geographic

  2. Water is a critical concern, since the dye process uses so much water.  In 2006, over 6.9 million acres of agricultural land in 68 villages in India was destroyed (meaning no crops could grow on the land)  by water from the Noyyal River, which had long been the recipient of untreated textile mill effluent.  The water pollution was so bad that the Madras High Court ordered the dyeing and bleaching facilities which used the river to pay fines to both the government as well as to local farmers, who had lost their livelihood.[1]  They also instituted  a “zero discharge” requirement for all dyeing units.  However, in January 2011, the Madras High Court again forced  the closure of all dyeing units in the area when it was found that pollution levels were above allowable limits.  Despite a grant from the government to build treatment facilities, the General Secretary of the Tirapur Dyes & Chemicals Association, said “At present we do not have any technology for zero discharge.”

The use of natural dyes means that there is no pollution to dispose of, and it also increases the green cover for plants and animals.   She uses as an example the differences between synthetic indigo and natural indigo:

Synthetic indigo:

  • Made from petrochemicals.
  • Impurities include toxic aniline and N-methylaniline residues.
  • Not biodegradable – incineration is the only recommended means of disposal.
  • Toxic to daphnids and algae.
  • Small creatures do not live around the rims of fermentation vats containing synthetic indigo, nor can a frog survive a dip in the vat.
  • Called “nature identical” by chemists.

Natural indigo:

  • Dye is made in the leaves of the plant Indigofera.
  • Impurities include plant polymers and soil particles
  • Biodegradable. If natural indigo ceases to be added to a natural fermentation vat, it loses its power to dye within 75 days. A sour vat will consume the indigo within 15 days.
  • Small insects and creepy crawlies live around the rims of natural fermentation vats containing natural indigo, and frogs can hop in and out without harm

Biodye uses no toxic mordants and treats its waste water so sludge is available as fertilizer and water can be used as irrigation.





New sustainable textile standard: NSF/ANSI 336

26 09 2011

Back in 2003, the Association for Contract Textiles (ACT), a trade organization for North American manufacturers of contract textiles consisting of many of the big textile companies (click here for members), identified the need for a universal standard to better serve suppliers, distributors and specifiers.  According to Petie Davis of NSF International, a not-for-profit, non-governmental organization, which provides standards development, product certification, education, and risk-management for public health and safety,   “Architects, designers, and specifiers have been demanding a uniform, transparent sustainability standard that would give them the assurance they need to specify sustainable product.”   The manufacturers saw the writing on the wall, and a cynical person might think they wanted to get a jump start on creating their own set of standards before something else was foisted on them.

In early 2004, the ACT Environmental Committee selected GreenBlue[1] to develop a standard suitable for textiles used in commercial interiors.  That fall, ACT and GreenBlue approached NSF International to provide American National Standards Institute (ANSI)[2]-certified credentials needed to build a standard, which became  NSF/ANSI 336.  They saw this new standard as being applicable on a national level and available as a model to other areas of the textile industry.  The standard was developed using a consensus-based process, which included textile mills, suppliers,  architects and designers, academics, trade associations, representatives from the U.S. Environmental Protection Agency as well as state agencies and non-governmental organizations.

As you might imagine, it took a long time to hammer out an agreement:   7 years of wrangling and compromise, suggestions and counter-suggestions, before everybody agreed on a standard that they could all live with.  The new NSF/ANSI Standard  336 was officially finalized in April, 2011, and debuted in June, 2011 at NeoCon.

So now it’s supposed to be a lot easier to specify a sustainable fabric.  But is this new standard the one that provides specifiers with the assurance that what they’re buying is indeed a sustainable product?

Environmental Building News (EBN) said that “this new standard represents significant progress for an industry with significant toxicity concerns due to fabric processing and finishes.”[3]  This time we do not agree with EBN, because we think the standard represents a roadblock to progress.

Let’s just consider how the standard deals with toxicity issues, which were highlighted by EBN.   When you do that, you find that the new NSF standard is anemic when compared to existing standards, such as Oeko Tex and GOTS, which
are both stunningly more strict than the new NSF/ANSI 336.  Even though 336 pertains to contract textiles, which are overwhelmingly made of synthetics,  the processing and finishes of these synthetics could follow the same parameters as are in place now with existing standards such as GOTS.   For example, see the limits for metals in dyes and pigments as listed in section 6.4.1 of NSF/ANSI 336 versus Oeko Tex and GOTS:

Metal

NSF/ANSI 336

OEKO TEX

GOTS

Limit for
dyes (ppm)
Limit for
pigments(ppm)

1: Baby in ppm

IV: interiors fabrics : in ppm

Antimony

50

250

30

30

prohibited

Arsenic

50

50

0.2

1

prohibited

Cadmium

20

50

0.1

0.1

prohibited

Chromium

100

100

1

2

prohibited

Lead

100

100

0.2

1

prohibited

Mercury

4

25

0.02

0.02

prohibited

Zinc

1500

1000

not listed

prohibited

Copper

250

unlimited

25

50

prohibited

Nickel

200

unlimited

1

4

prohibited

Tin

250

 unlimited

not listed

prohibited

Barium

100

100

prohibited

Cobalt

500

unlimited

1

4

prohibited

Iron

2500

unlimited

not listed

prohibited

Manganese

1000

unlimited

prohibited

Selenium

20

100

prohibited

Silver

100

unlimited

prohibited

Consider lead –  under the new Consumer Product Safety Improvement Act of 2008,  products designated for children must meet 100 ppm lead content by August, 2011.  Does this limit value of 100 ppm really represent progress when studies have shown that exposure to lead in any amount can be hazardous?  Sorry, this time we do not agree with Environmental Building News  – we think this new standard represents an obfuscation of the issues and is a roadblock to progress.

Next week we’ll show you how the standard is set up so as to allow the obfuscation of issues.


[1] GreenBlue is a non-profit institute
that stimulates the creative redesign of industry by focusing the expertise of
professional communities to create practical solutions, resources, and
opportunities for implementing sustainability. GreenBlue is recognized for its
ability to convene stakeholders, establish ambitious objectives, and develop
practical design tools and resources. http://www.greenblue.org

[2] The American National Standards Institute
or ANSI is a private non-profit organization that oversees the development of
voluntary consensus standards for products, services, processes, systems, and
personnel in the United States. The organization also coordinates U.S.
standards with international standards so that American products can be used
worldwide.

ANSI accredits
standards that are developed by representatives of standards developing
organizations, government agencies, consumer groups, companies, and others.
These standards ensure that the characteristics and performance of products are
consistent, that people use the same definitions and terms, and that products
are tested the same way. http://www.ansi.org





Global Recycle Standard

9 09 2011

It looks like the plastic bottle is here to stay, despite publicity about bisphenol A  and other chemicals that may leach into liquids inside the bottle.   Plastic bottles (the kind that had been used for some kind of consumer product) are the feedstock for what is known as “post-consumer recycled polyester”. Even though plastic recycling appears to fall far short of its promise,  recycled polyester, also called rPET, is now accepted as a “sustainable” product in the textile market, because it’s a message that can be easily understood by consumers – and polyester is much cheaper than natural fibers.   So manufacturers, in their own best interest, have promoted “recycled polyester” as the sustainable wonder fabric, which has achieved pride of place as a green textile option in interiors.

We have already posted blogs about plastics (especially recycled plastics) last year ( to read them, click here, here or here ) so you know where we stand on the use of plastics in fabrics.  All in all, plastic recycling is not what it’s touted to be. Even if recycled under the best of conditions, a plastic bottle or margarine tub will probably have only one additional life. Since it can’t be made into another food container, your Snapple bottle will become a “durable good,” such as carpet or fiberfill for a jacket. Your milk bottle will become a plastic toy or the outer casing on a cell phone. Those things, in turn, will eventually be thrown away.  Even though the mantra has been “divert from the landfill”, what do they mean?  Divert to where?

But the reality is that polyester bottles exist,  and recycling some of them  into fiber seems to be a better use for the bottles than land filling them.

Recycled post consumer polyester is made from bottles – which have been collected, sorted by hand, and then melted down and formed into chips (sometimes called flakes).

PET resin chips


These chips or flakes are then sent to the yarn spinning mills, where they’re melted down, often mixed with virgin polyester,  and  and spun into yarn, which is why you’ll often see a fabric that claims it’s made of 30% post consumer polyester and 70% virgin polyester, for example.

Polyester yarn

But today the supply chains for recycled polyester are not transparent, and if we are told that the resin chips we’re using to spin fibers are made from bottles – or from industrial scrap or old fleece jackets  – we have no way to verify that.  Once the polymers are at the melt stage, it’s impossible to tell where they came from.  So the yarn/fabric could be virgin polyester or  it could be recycled.   Many so called “recycled” polyester yarns may not really be from recycled sources at all because – you guessed it! – the  process of recycling is much more expensive than using virgin polyester.  Unfortunately not all companies are willing to pay the price to offer a real green product, but they sure do want to take advantage of the perception of green.   So when you see a label that says a fabric is made from 50% polyester and 50% recycled polyester – well, (until now) there was absolutely no way to tell if that was true.

Along with the fact that whether what you’re buying is really made from recycled yarns – or not – most people don’t pay any attention to the processing of the fibers.  Let’s just assume, for argument’s sake, that the fabric (which is identified as being made of 100% recycled polyester) is really made from recycled polyester.  But unless they tell you specifically otherwise, it is processed conventionally.

What does that mean?    It can be assumed that the chemicals used in processing – the optical brighteners, texturizers, dyes, softeners, detergents, bleaches and all others – probably contain some of the chemicals which have been found to be harmful to living things.  In fact the chemicals used, if not optimized, may very well contain the same heavy metals, AZO dyestuffs and/or finish chemicals that have been proven to cause much human suffering.

It’s widely thought that water use needed to recycle polyester is low, but who’s looking to see that this is true?  The weaving, however, uses the same amount of water (about 500 gallons to produce 25 yards of upholstery weight fabric) – so the wastewater is probably expelled without treatment, adding to our pollution burden.

And it’s widely touted that recycling polyester uses just 30 – 50% of the energy needed to make virgin polyester – but is that true in every case?

There is no guarantee that the workers who produce the fabric are being paid a fair wage – or even that they are working in safe conditions.

And finally there are issues specific to the textile industry:

  • The base color of the recyled chips varies from white to creamy yellow.  This makes it difficult to get consistent dyelots, especially for pale shades, necessitating more dyestuffs.
  • In order to get a consistently white base, some dyers use chlorine-based bleaches.
  • Dye uptake can be inconsistent, so the dyer would need to re-dye the batch.  There are high levels of redyeing, leading to increased energy use.
  • PVC is often used in PET labels and wrappers and adhesives.  If the wrappers and labels from the bottles used in the post-consumer chips had not been properly removed and washed, PVC may be introduced into the polymer.
  • Some fabrics are forgiving in terms of appearance and lend themselves to variability in yarns,  such as fleece and carpets; fine gauge plain fabrics are much more difficult to achieve.

As the size of the recycled polyester market grows, we think the integrity of the sustainability claims for polyesters will become increasingly important.  There has not been the same level of traceability for polyesters as there is for organically labeled products.  According to Ecotextile News, this is due (at least in part) to lack of import legislation for recycled goods.

One solution, suggested by Ecotextile News, is to create a tracking system that follows the raw material through to the final product.  This would be very labor intensive and would require a lot of monitoring, all of which adds to the cost of production – and don’t forget, recycled polyester now is fashion’s darling because it’s so cheap, so those manufacturer’s wouldn’t be expected to increase costs.

There are also private standards which have begun to pop up, in an effort to differentiate their brands.  One fiber supplier which has gone the private standard route is Unifi.   Repreve™ is the name of Unifi’s recycled polyester – the company produces recycled polyester yarns, and (at least for the filament yarns) they have Scientific Certification Systems certify that Repreve™ yarns are made with 100% recycled content.  Unifi’s  “fiberprint” technology audits orders across the supply chain  to verify that if Repreve is in a product it’s present in the amounts claimed.  But there are still  many unanswered questions (because they’re  considered “proprietary information” by Unifi)  so the process is not transparent.

But now, Ecotextile News’s  suggestion has become a reality.   There is now a new, third party certification which is addressing these issues.  The Global Recycle Standard (GRS), originated by Control Union and now administered by Textile Exchange (formerly Organic Exchange),  is intended to establish independently verified claims as to the amount of recycled content in a yarn, with the important added dimension of prohibiting certain chemicals, requiring water treatment and upholding workers rights, holding the weaver to standards similar to those found in the Global Organic Textile Standard:

  • Companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • All prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • All wastewater must be treated for pH, temperature, COD and BOD before disposal;
  •  There is an extensive section related to worker’s rights.

The GRS provides a track and trace certification system that ensures that the claims you make about a product can be officially backed up. It consists of a three-tiered system:

  • Gold standard –  products contain between 95 percent to 100 percent recycled material;
  • Silver standard – products contain between 70 percent to 95 percent recycled product;
  • Bronze standard –  products  have a minimum of 30 percent recycled content.

I have long been concerned about the rampant acceptance of recycled polyester as a green choice  when no mention has been made of processing chemicals, water treatment or workers rights, so we welcome this new GRS certification, which allows us to be more aware of what we’re really buying when we try to “do good”.





Global Organic Textile Standard

2 09 2011

In the 1980’s, producers of eco-friendly textiles generally worked under the umbrella of  organic food associations.  However, they found that the food association was impractical for textile producers because  although the growing and harvesting of food and fiber crops were similar, the processing of fibers in preparation to make fabric varied widely.  The organic food associations were concerned primarily with food related issues.   In addition, organic fabrics and fashion was being shown in specialized stores rather than in organic food markets.

In 2002, at the Intercot Conference in Dusseldorf, Germany, a workshop with representatives of organic cotton producers, the textile industry, consumers, standard organizations and certifiers discussed the need for a harmonized and world-wide recognized organic textile standard.  The many different standards, they felt, was causing confusion and acting as a obstacle to international exchange and recognition of organic fabrics.  As a result of this workshop, the  “International Working Group on Global Organic Textile Standard“ (IWG) was founded, with an aim to work on the codification of various regional approaches and to develop a set of global standards.  Members of this group included Internationale Verband der Naturtextilwirtschaft e. V.“ (IVN),  the  Organic Trade Association (United States), the Soil Association (England)  and Japan Organic Cotton Association  (Japan).

In 2006, their work was published as the Global Organic Textile Standard (GOTS) , which has since evolved into the leading set of criteria in the field of organic textile processing.  A main achievement of this group was the ability to compromise and to find even consensus for points that were considered to be ‘non-negotiable’.   Not all standard organizations that participated the process ended up with signing the agreement of the Working Group.

From the GOTS website:  “Since its introduction in 2006 by the International Working Group on Global Organic Textile Standard, the GOTS has gained universal recognition, led to abolishment of numerous previous similar standards of limited application and has become – with more than 2750 certified textile processing, manufacturing and trading operators in more than 50 countries and an abundance of certified products – the leading standard for the processing of textile goods using organic fibers, including environmentally oriented technical as well as social criteria.”  This is a major accomplishment, especially given the global nature of the textile supply chain.

Beside the technical requirements a certifier has to meet to become approved by the IWG for GOTS certification, it is also a prerequisite that he discontinues use of any other certification. This measure was chosen to support the goal of a harmonized Global Standard and related certification system that allows certified suppliers to export their organic textiles with one certificate recognized in all relevant sales markets in order to strengthen the awareness and market for organic textiles.

The following standards have become completely harmonized with GOTS:

  • North American Fiber Standard – Organic Trade Association (USA)
  • Guidelines ‘Naturtextil IVN Zertifiziert’ – International Association Natural Textile Industry (Germany)
  • Standards for Processing and Manufacture of Organic Textiles – Soil Association (England)
  • EKO Sustainable Textile Standard – Control Union Certifications (formerly SKAL)
  • Standards for Organic Textiles – Ecocert (France)
  • Organic Textile Standard – ICEA (Italy)
  • Standards for Organic Textiles – ETKO (Turkey)
  • Organic Fiber Standards – Oregon Tilth (USA)
  • Standards for Processing of Organic Textile Products – OIA (Argentina)

One member of the IWG offers beside GOTS as their basic standard one further standard for certification that complies with GOTS but contains some additional requirements:

  • Guidelines ‘Naturtextil IVN Zertifiziert BEST’ – International Association Natural Textile Industry (Germany)

GOTS aims to define a universal standard for organic fabrics—from harvesting the raw materials, through environmentally and socially responsible manufacturing, to labeling—in order to provide credible assurance to consumers. Standards apply to fiber products, yarns, fabrics and clothes and cover the production, processing, manufacturing, packaging, labeling, exportation, importation and distribution of all natural fiber products.   GOTS provides a continuous quality control and certification system from field to shelf.  A GOTS certified fabric is therefore much more than just a textile which is made from organic fibers.

Why is this a big deal?  As we’ve said before, it’s like taking organic apples, and cooking them with Red Dye #2, preservatives, emulsifiers, and stabilizers –  you can’t call the finished product organic applesauce.  Same is true with fabrics, which contain as much as 27% (by weight) synthetic chemicals.

And in today’s world, with the complex supply chain that multinational companies like Wal-Mart, Nordstrom and Levi’s use, this is a very big deal.   As companies attempt to get a handle on their suppliers and maintain quality control, the list of universally understood environmental criteria in GOTS  is coming in handy. While consumers probably won’t see a GOTS tag on conventional cotton jeans, some companies are asking suppliers to use only GOTS-certified dyes and chemicals on conventional cotton clothing.  In fact, the companies mentioned above, along with Banana Republic, H&M and Target are just some of the companies that plan to use GOTS certification for their organic products.

The GOTS standard includes:

  • Harvesting criteria which requires the use of from 70% to 95% organic fiber.
    • As the GOTS website explains, “As it is to date technically nearly impossible to produce any textiles in an industrial way without the use of chemical inputs, the approach is to define criteria for low impact and low residual natural and synthetic chemical inputs.   So in addition to requiring that   all inputs have to meet basic requirements on toxicity and biodegradability GOTS also  prohibits entire classes of chemicals, rather than calling out specific prohibited chemicals.  What that means is that instead of prohibiting, for example lead and cadmium (and therefore allowing other heavy metals by default), GOTS prohibits ALL heavy metals.  Here’s the Version 3.0 list:
SUBSTANCE GROUP CRITERIA
Aromatic solvents Prohibited
Chlorophenols (such as TeCP, PCP) Prohibited
Complexing agents and surfactants Prohibited are: All APEOS, EDTA, DTPA, NTA, LAS, a-MES
Fluorocarbons Prohibited (i.e., PFOS, PFOA)
Formaldehyde and short-chain aldehydes Prohibited
GMO’s Prohibited
Halogenated solvents Prohibited
Heavy Metals Prohibited
Inputs containing functional nanoparticles Prohibited
Inputs with halogen containing compounds Prohibited
Organotin compounds Prohibited
Plasticizers (i.e., Phthalates, Bisphenol A and all others with endocrine disrupting potential) Prohibited
Quaternary ammonium compounds Prohibited: DTDMAC, DSDMAC and DHTDM
  • Environmental manufacturing practices, with a written environmental policy, must be in place.
  • Environmentally safe processing requirements, which includes wastewater treatment internally before discharge to surface waters, must be in place.  This pertains to pH and  temperature as well as to biological and chemical residues in the water.
  • Environmentally sound packaging requirements are in place; PVC in packaging is prohibited, paper must be post-consumer recycled or certified according to FSC or PEFC.
  • Labor practices are interpreted in accordance with the International Labor Organization (ILO – no forced, bonded, or slave labor; workers have the right to join or form trade unions and to bargain collectively; working conditions are safe and hygienic; there must be no new recruitment of child labor (and for those companies where children are found to be working, provisions must be made to enable him to attend and remain in quality education until no longer a child);  wages paid must meet, at a minimum, national legal standards or industry benchmarks, whichever is higher; working hours are not excessive and inhumane treatment is prohibited.
  • GOTS has a dual system of quality assurance consisting of on-side annual inspection (including possible unannounced inspections based on risk assessment of the operations) and residue testing.
  • There are requirements surrounding exportation, importation and distribution of all natural fibers.

In June, 2011, The Global Organic Textile Standard launched an open comment period on it’s first revision draft of the new GOTS version 3.0.  Following this announcement, IFOAM collected comments from its members and related stakeholders in order to shape the position of the movement towards the Global Organic Textile Standard.

A total of 36 persons and/or organizations sent their comments to IFOAM.  Two important issues were raised:  90% of the respondents were against the use of nanotechnologies in organic textiles (5% abstention, 5% in favor),  and 86 % were in principle against the use of synthetic chemicals in textiles labeled as organic (3% abstention, 11% in favor). Based on the feedback provided, IFOAM submitted detailed comments to GOTS and proposed:

  • to further restrict the use of synthetic substances, possibly switching to a positive list of allowed substances, instead of a list of forbidden ones.
  • to add requirements to ban the deliberate use of nano-technologies in the textile processing.

GOTS is a positive ethical choice among both consumers and producers and is the most comprehensive in terms of addressing environmental issues.  Although it is difficult to obtain, it can lead to important strategic business benefits.

However, the GOTS certification applies to only natural fibers, so it cannot be applied to polyester or other synthetic fibers, which are by far the most popular fiber choice in the U.S. today.  In addition, it does not directly address the carbon footprint of an organization or its production practices.  (Please note: the choice of a fabric made of organically raised natural fibers has been shown to have a much lower carbon impact than any fabric made of synthetic fibers.  We touched on that in our some of our blog posts; click here and here to read them.)





Certifications: Oeko Tex

28 07 2011

I have an apology to make:  I made a statement last week that turns out to be incorrect, based on experience from years ago.  I said

“it’s not unusual to find a GOTS certification logo on a product – because it’s hard to get, and those who have it certainly want to display the logo.  But the certification may apply only to the organic fibers – the logo itself is not specific as to what is being certified.”

Laurie Lemmlie-Leung, of Sapphire International, Ltd, which is a GOTS certified terry mill, pointed out that in their experience,  “If we do not have an approved “GOTS Product Specification Plan” and transaction certificates showing that all the inputs are also GOTS certified, then we cannot use the GOTS label on the product.”  And that is indeed the case:  a GOTS logo on any product means that all processing up to the final product is GOTS certified.  So if GOTS certified cotton yarn is being sold, it can display the logo.  However, if that yarn is used to weave a fabric in a non-certified facility, the final fabric cannot display the logo.

So when you see a GOTS logo on a product, you can rest assured that the entire supply chain has been certified.

Now, back to discussion of certifications:  Before giving a summary of the main points of each of the certifications which deal with fiber processing (i.e., weaving), it’s important to remember that most of these certification programs are in business – so it costs money to achieve the certification – sometimes it costs a LOT of money.  In addition there is the burden of documentation, which increases administrative costs for the manufacturer.

Cradle to Cradle and GreenGuard can cost quite a bit, so when you look on the web sites to find which products have these certifications,  you see mostly large, well established companies which can afford to absorb the certification costs.  On the GreenGuard website, for example, it lists 1943 individual products, but all 1943 products are manufactured by only 20 large, well-known companies.  Sometimes smaller manufacturers decide not to pay the costs of certification, even though they may be doing everything “by the book”, because they’re operating on a shoestring.  Unfortunately, the many unethical claims make third party certification a requirement.

In addition to certifications, there are many new “green guides” on the internet which purport to list green products.  Some are valiantly trying to make order out of chaos, while others are simply adding to the confusion.  Of these, a basic listing may (or may not) be free, but any additional bells and whistles costs money.  So green products may be specially featured or identified (sometimes as “best”) because the manufacturer has paid for the spotlight.  The same is true of television shows which purport to cover new green products.  We have been approached several times by television programs featuring a well-known personality who would wax eloquently about our fabrics – if only we were to pay the right price.

What does this all mean?  Do your own homework!  Most of these “experts” have no more knowledge than you do.  And again, certifications provide a reliable yardstick to determine quality standards.

The third party certifications which cover textile processing and/or final products which you’ll see most often include:

  • Oeko Tex
  • GreenGuard
  • Cradle 2 Cradle by MBDC
  • Global Organic Textile Standard
  • Global Recycle Standard
  • SMART Sustainable Textile Standard

These are the certifications you’re most likely to run into, and they are very different.  So different, in fact, that we’ll take a few weeks to explore what each one tells us.

This week, we’ll start with one of the oldest certifications:  Oeko Tex.

Oeko Tex is an independent, third party certifier that offers two certifications for textiles:

  1. Oeko-Tex 100 (for products)
  2. Oeko-Tex 1000 (for production sites/factories).

Products satisfying the criteria for Oeko-Tex 100 which are produced in an Oeko-Tex 1000 certified facility may use the Oeko-Tex 100Plus mark, which is simply a combination of the two.

Oeko Tex was founded in 1992, by the Austrian Textile Research Intitute (OTI) and the German Research Institute Hohenstein,  to provide an objective and reliable product label for consumers.  Its aim is to ensure that products posed no risk to health.

Oeko Tex Standard 100

The Oeko-Tex Standard 100 standard is concerned primarily with health and safety of textile products – it tests only the end product.  The processing is not addressed – for example, wastewater treatment is not included.   It is NOT an organic certification and products bearing this mark are not necessarily made from organically grown fibers. (Note:  When you see the logo, make sure that the test number is quoted (No. 11-20489 in the image above)  and the test institute is named (Shirley is the institute which tested the product).)

Textiles considered for this standard are classified into four categories, and each category has different test values for chemicals allowed in the product:

  • Product Class I: Products for Babies – all textile products and materials used to manufacture such textile products for children up to the age of 36 months (leather clothing is excepted)
  • Product Class II: Products with Direct Contact to Skin – worn articles of which a large surface touches the skin (i.e. underwear, shirts, pants)
  • Product Class III: Products without Direct Contact to Skin – articles of which only a small part of their surface touches the skin (i.e. linings, stuffings)

Textile products bearing the Oeko-Tex 100 certification mark:

  • Do not contain allergenic dye-stuffs and dye stuffs that form carcinogenic arylamines.
  • Have been tested for pesticides and chlorinated phenoles.
  • Have been tested for the release of heavy metals under artificial perspiration conditions.
  • Formaldehyde is banned; other aldehyde limits are significantly lower than the required legal limits.
  • Have a skin friendly pH.
  • Are free from chloro-organic carriers.
  • Are free from biologically active finishes.

The certification process includes thorough testing for a lengthy list of chemicals, including lead, antimony, arsenic, phthalates, pesticides, and chlorinated phenols. The official table of limits for tested chemicals may be found on the Oeko-Tex website.  Specifically banned are:

  • AZO dyes
  • Carcinogenic and allergy-inducing dyes
  • Pesticides
  • Chlorinated phenols
  • Chloro-organic benzenes and toluenes
  • Extractable heavy metals
  • Phthalates in baby articles
  • Organotin compounds(TBT and DBT)
  • Emissions of volatile components

Certification may be given to a finished product (such as a shirt), or to individual components (such as yarn, or fabric).

Oeko-Tex Standard 1000

The Oeko-Tex 1000 is a certification for environmentally-friendly textile production.
The goal of the Oeko-Tex 1000 Standard is to be “an evaluation of the environmental performance of textile production sites and products and to document independently that certain environmental measures are undertaken and a certain level achieved.”

The evaluation process includes considerations for:

  • environmental impact: energy consumption, whether materials used are renewable or non-renewable, and the overall impact of the space utilized
  • global impact: use of fossil fuels, use of ozone-depleting chemicals regional impact: VOC’s, water contamination, acidification of soil and water from fossil fuel use, emissions (often from chlorine bleaching)
  • local effects: emissions, workplace contamination, noise, use of dangerous chemical products

The mark is not applied directly to products, but may be used by the production site (for example, on its letterhead and official documents). The “local effects” consideration does NOT include an evaluation of labor practices and is not meant to be an indicator of whether a production site is following fair labor practices.

Oeko-Tex 100Plus

This label may be used on products that have met the Oeko-Tex 100 Standard and are also produced in a facility that meets the Oeko-Tex 1000 Standard.

So, these are the important points to keep in mind when you see the Oeko Tex logo:

  1. Oeko Tex 100 is product specific – they don’t look at processing (i.e., water treatment, workers rights, emissions, sludge), it only means that the finished product (fabric, yarn, clothing, etc.) has limit values for chemicals which are below the threshold limits on the Oeko Tex list, with many specifically prohibited.
  2. Oeko Tex 1000 is site specific, and documents that certain environmental standards are met, but these do not include workers rights issues.
  3. Oeko Tex 100+ means that the site meets environmental standards and the product itself is safe to use.