Is Ultrasuede® a “green” fabric?

8 09 2010

In 1970, Toray Industries colleagues Dr. Toyohiko Hikota and Dr. Miyoshi Okamoto created the world’s first micro fiber as well as the process to combine those fibers with a polyurethane foam into a non-woven structure – which the company trademarked as Ultrasuede®.

In April 2009,  Toray announced “a new  environmentally responsible line of products which are based on innovative recycling technology”, called EcoDesign™.    An EcoDesign™ product, according to the company press release, “captures industrial materials, such as scrap polyester films, from the Toray manufacturing processes and recycles them for use in building high-quality fibers and textiles.”

One of the first EcoDesign™ products to be introduced by Toray is a variety of their Ultrasuede®  fabrics.

So I thought we’d take a look at Ultrasuede® to see what we thought of their green claims.

The overriding reason Toray’s EcoDesign™ products are supposed to be environmentally “friendly” is because recycling postindustrial polyesters reduces both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters, according to Des McLaughlin, executive director of Toray Ultrasuede (America).   (Conventional recycling of polyesters generally state energy savings of between 33% – 53%.)

If that is the only advance in terms of environmental stewardship, we feel it falls far short of being considered an enlightened choice.  If we just look at the two claims made by the company:

  1. Re: energy reduction:  If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ[1], and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede® –  still far more energy than is needed to produce 1 KG of organic hemp (2 MJ), linen (10 MJ), or cotton (12 MJ).
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[2] acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[3]

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with it’s EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  1. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
    1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
    2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
    3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
    4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise un-useable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is  premature. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:     indeed plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7] We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

We’ve said it before and we’ll say it again:  The trend to eco consciousness in textiles represents major progress in reclaiming our stewardship of the earth, and in preventing preventable human misery.  You have the power to stem the toxic stream caused by the production of fabric. If you search for and buy an eco-textile, you are encouraging a shift to production methods that have the currently achievable minimum detrimental effects for either the planet or for your health. You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles do exist and they give you a greener, healthier, fair-trade alternative.

What will an eco-textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.


[1]“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute

[2] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[3] Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.

[4] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009

[6] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf

[7] http://www.edf.org/documents/1889_SomethingtoHide.pdf and http://discovermagazine.com/2009/oct/21-numbers-plastics-manufacturing-recycling-death-landfill

Advertisements




Optical brighteners

14 07 2010

I got a call awhile ago from Harmony Susalla, founder and chief designer for Harmony Art  (if you haven’t seen her glorious fabrics go right now to www.harmonyart.com).  She was wondering about optical brighteners, and I discovered I couldn’t tell her much except to say that some are derived from benzene, which is a chemical nobody wants to live with.  GOTS allows the use of optical brighteners – with caveats (see below) – but they are supposed to reevaluate them “in two years from date of adoption” of version 2.0, which puts the reevaluation right about now.

So let’s explore optical brighteners, which are used extensively in:

  • Laundry detergents (to replace whitening agents removed during washing and to make the clothes appear cleaner.) – detergents may contain up to 0.2% whitening agents,
  • Paper, especially high brightness papers, resulting in their strongly fluorescent appearance under UV illumination. Paper brightness is typically measured at 457nm, well within the fluorescent activity range of brighteners. Paper used for banknotes does not contain optical brighteners, so a common method for detecting counterfeit notes is to check for fluorescence.
  • Cosmetics: One application is in formulas for washing and conditioning grey or blonde hair, where the brightener can not only increase the luminance and sparkle of the hair, but can also correct dull, yellowish discoloration without darkening the hair).  Some advanced face and eye powders contain optical brightener microspheres that brighten shadowed or dark areas of the skin, such as “tired eyes”.
  • as well as fabrics, which may contain 0.5% OBAs. A side effect of textile optical whitening is to make the treated fabrics more visible with Night Vision Devices than non-treated ones (the fluorescence caused by optical brighteners can easily be seen with an ordinary black light). This may or may not be desirable for military or other applications

You can still buy “bluing” – which is advertised to “whiten whites and brighten colors”.  Bluing works by removing yellow light to lessen the yellow tinge.   Optical brighteners – also called optical brightening agents (OBAs), fluorescent brightening agents (FBAs), and/or fluorescent whitening agents (FWAs) or “synthetic fluorescent dyes” –  work a bit differently.  Optical brighteners are chemicals similar to dyes which absorb ultraviolet light and emit it back as visible blue light – in other words, they fluoresce the ultraviolet light into visible light. The blue light emitted by the brightener compensates for the diminished blue of the treated material and changes the hue away from yellow or brown and toward white.

They are designed to mask yellow or brown tones in the fibers and make the fabric look cleaner and brighter than it would otherwise appear to the naked eye.   In other words, the undesirable color is made invisible to the eye in an “optical manner”.  Optical brighteners are used both on natural fibers (cotton, linen, hemp, silk) as well as in polymer melts for polyester and other synthetic fiber production.

Optical brighteners aren’t effective unless they remain in the fabric, and persist after washing.  They only last so long, until the point when they actually burn out and no longer do anything. They are also subject to fading when exposed long term to UV.

Brighteners can be “boosted” by the addition of certain polyols like high molecular weight polyethylene glycol or polyvinyl alcohol. These additives increase the visible blue light emissions significantly. Brighteners can also be “quenched”. Too much use of brightener will often cause a greening effect as emissions start to show above the blue region in the visible spectrum.

Optical brighteners are synthesized from various chemicals.  The group of chemicals which are called “optical brighteners” consists of approximately 400 different types listed in the Color Index, but less than 90 are produced commercially. (To get more information about the Color Index click here .)

Basic classes of chemicals used in OBAs  include:

  • Triazine-stilbenes (di-, tetra- or hexa-sulfonated)
  • Coumarins
  • Imidazolines
  • Diazoles
  • Triazoles
  • Benzoxazolines
  • Biphenyl-stilbenes

Using these chemicals, many companies compose their own chemical versions of an optical brightener, and sell it under a branded name, such as:

  • Blankophar R
  • Calcofluor
  • Uvitex
  • Bluton
  • CBS
  • DMS E=416
  • Kolorcron 2B

To find out what is in the optical brightener in any fabric, you must know the name of the optical brightener, and also the C.I. number (such as Brightener 24 or 220).  Then you can look up the chemical composition of the substance – but  only if you’re a subscriber to the Color Index database.  So it’s pretty difficult to confirm what is actually in an optical brightener.

In exploring some of the chemicals used in formulating optical brighteners,  I found one called cyanuric chloride, a derivative of 1,3,5 triazine.  Cyanuric chloride is used as a precursor and crosslinking agent in sulfonated triazine-stilbene based optical brighterners.   It is also classified as “very toxic”, “harmful” and “corrosive” by the EU and has several risk phrases identified with it – including R26 (“very toxic by inhalation”).  R26 is a substance which is specifically prohibited by GOTS.  So how can optical brighteners be allowed under GOTS?

The short answer is:  some are allowed, some are not – it depends on the chemical composition of each individual optical brightener.   Like dyestuffs, GOTS allows optical brighteners if they “meet all criteria for the selection of dyes and auxiliaries as defined in chapter 2.4.6, Dyeing.”  Those criteria include the prohibition of all chemicals listed in 2.3.1 and substances which are assigned certain risk phrases “or combinations thereof”.   But in order to know if a particular optical brightener meets these criteria, it’s necessary to know the chemical formula for that brightener.   And that takes a bit of detective work – and even so you might not be able to get final answers.  Don’t you begin to feel like a hamster in one of those wheels going round and round?

What are the problems associated with optical brighteners?
Some brighteners have been proven to cause allergic skin reactions or eye irritation in sensitive people.   The German Textiles Working Group conducted a health assessment of various optical brightening agents  following concerns of potential health risks to the public. It was found that there is a general lack of information on toxicity and a need for studies into dermal  absorption and the release of these substances from clothes.  While it has not been shown to negatively affect health, it has also not been proven safe.

They are known to be toxic to fish and other animal and plant life and have been found to cause mutations in bacteria.

Most OBAs are not readily biodegradable, so chemicals remain in wastewater for long periods of time, negatively affecting water quality and animal and plant life.  It is assumed that the substances accumulate in sediment or sludge, leading to high concentrations.
In wastewater, OBAs can also leach into groundwater, streams, and lakes. Since fluorescence is easy to detect,  optical brightener monitoring is an emerging technique to quickly and cost-effectivley detect the contamination of stormwater by sanitary wastewater.

REACH is the new European Union regulation which aims to  improve human health and the environment through better and earlier identification of the properties of chemical substances.  REACH stands for Registration, Evaluation, Authorisation and Restriction of Chemical substances.   REACH contains provisions to reduce the use of what are called “high volume production” chemicals.  These are defined as chemicals having annual production and/or importation volumes above 1 million pounds.  It is assumed that high volume production is a proxy for high exposure; in addition, large releases of low toxicity substances such as salts do cause environmental harm due to the sheer volume of the substance.
Much of the impact from optical brighteners comes in the form of large releases of low toxicity substances.  A number of these optical brighteners are listed as high and low production volume substances and so will be subject to REACH.   For example, C.I. Fluorescent Brightener 220 is listed as a high production volume chemical.





Textiles and water use

24 02 2010

Water.  Our lives depend on it.  It’s so plentiful that the Earth is sometimes called the blue planet – but freshwater is a remarkably finite resource that is not evenly distributed everywhere or to everyone.  The number of people on our planet is growing fast, and our water use is growing even faster.  About 1 billion people lack access to potable water, and about 5 million people die each year from poor drinking water, or poor sanitation often resulting from water shortage[1] – that’s 10 times the number of people killed in wars around the globe.[2] And the blues singers got it right: you don’t miss your water till the well runs dry.

I just discovered that the word “rival” comes from the Latin (rivalis) meaning those who share a common stream.  The original meaning, apparently, was closer to our present word for companion, but as words have a way of doing, the meaning became skewed to mean competition between those seeking a common goal.

This concept – competition between those seeking a common goal – will soon turn again to water, since water, as they say, is becoming the “next oil”;  there’s also talk of “water futures” and “water footprints”  – and both governments and big business are looking at water (to either control it or profit from it).  Our global water consumption rose sixfold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.  The pressure is on.

Note: There are many websites and books which talk about the current water situation in the world, please see our bibliography which is at the bottom of this post.

What does all this have to do with fabrics you buy?

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, bleaching and mercerizing, use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used in that step before moving on to the next step.  The water used is usually returned to our ecosystem without treatment – meaning that the wastewater which is returned to our streams contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

When we say the textile industry uses a lot of water, just how much is a lot?  One example we found:  the Indian textile industry uses 425,000,000 gallons of water every day [3] to process the fabrics it produces.  Put another way, it takes about 20 gallons of water to produce one yard of upholstery weight fabric.  If we assume one sofa uses about 25 yards of fabric, then the water necessary to produce the fabric to cover that one sofa is 500 gallons.  Those figures vary widely, however, and often the water footprint is deemed higher.  The graphic here is from the Wall Street Journal, which assigns 505 gallons to one pair of Levi’s 501 jeans [4]:

The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

The process chemicals used by the mills are used on organic fibers just as they’re used on polyesters and conventionally produced natural fibers.  Unless the manufacturer treats their wastewater – and if they do they will most assuredly let you know it, because it costs them money – then we have to assume the worst.  And the worst is plenty bad.  So just because you buy something made of “organic X”, there is no assurance that the fibers were processed using chemicals that will NOT hurt you or that the effluent was NOT discharged into our ecosystem, to circulate around our planet.

You might hear from plastic manufacturers that polyester has virtually NO water footprint, because the manufacturing of the polyester polymer uses very little water – compared to the water needed to grow or produce any natural fiber.  That is correct.  However, we try to remind everyone that the production of a fabric involves two parts:

  • The production of the fiber
  • The weaving of the fiber into cloth

The weaving portion uses the same types of process chemicals – same dyestuffs, solubalisers and dispersents, leveling agents, soaping, and dyeing agents, the same finishing chemicals,  cationic and nonionic softeners, the same FR, soil and stain, anti wrinkling or other finishes – and the same amount of water and energy.  And recycled polyesters have specific issues:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[5]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.

So water treatment of polyester manufacturing should be in place also.  In fact there is a new standard called the Global Recycle Standard, which was issued by Control Union Certifications.   The standard has strict environmental processing criteria in place in addition to percentage content of recycled  product – it includes wastewater treatment as well as chemical use that is based on the Global Organic Textile Standard (GOTS) and the Oeko-Tex 100.

And to add to all of this, Maude Barlow, in her new book, Blue Covenant (see bibliography below) argues that water is not a commercial good but rather a human right and a public trust.  These mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water a a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.

BIBLIOGRAPHY:

The World’s Water:  http://www.worldwater.org/

Water.org:    http://water.org/learn-about-the-water-crisis/facts/

Ground water and drinking water:  http://www.epa.gov/ogwdw000/faq/faq.html

New York Times series, Toxic Waters:  http://projects.nytimes.com/toxic-waters

Barlow, Maude, “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008

Water Footprint Network:  http://www.waterfootprint.org/?page=files/home


[1]Tackling the Big Three (air and water pollution, and sanitation), David J. Tenenbaum, Environmental Health Perspectives, Volume 106, Number 5, May 1998.

[2] Kirby, Alex, “Water Scarcity: A Looming Crisis?”, BBC News Online

[3] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment, New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur, South India”, Prakash Nelliyat, Madras School of Economics.

[4] Alter, Alexandra, “Yet Another Footprint to worry about: Water”, Wall Street Journal, February 17, 2009

[5] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008





Embodied energy needed to make one sofa

6 01 2010

I just read the article by Team Treehugger on Planet Green on what to look for if you’re interested in green furniture. And sure enough, they talked about the wood (certified sustainable – but without any  explanation about why Forest Stewardship Council (FSC) certified wood should be a conscientious consumers only choice), reclaimed materials, design for disassembly, something they call “low toxicity furniture”, buying vintage…the usual suspects.  Not once did they mention your fabric choice.

Of course, all these are important considerations and like most green choices, there are tradeoffs and degrees of green.  But if we look at the carbon footprint of an average upholstered sofa and see what kind of energy requirements are needed to produce that sofa, we can show you how your fabric choice is the most important choice you can make in terms of embodied energy.  Later on (next week’s post) we’ll take a look at what your choices mean in terms of toxicity and environmental degredation.

These are the components of a typical sofa:

  • Wood
  • Foam (most commonly) or other cushion filling
  • Fabric
  • Miscellaneous:
    • Glue
    • Varnish/paint
    • Metal springs
    • Thread
    • Jute webbing
    • Twine
  1. WOOD: A 6 foot sofa uses about 32 board feet of lumber (1) .  For kiln dried maple, the embodied energy for 32 board feet is 278 MJ.  But if we’re looking at a less expensive sofa which uses glulam (a laminated lumber product), the embodied energy goes up to 403 MJ.
  2. FOAM:  Assume 12 cubic feet of foam is used, with a density of 4 lbs. per cubic foot (this is considered a good weight for foam);  the total weight of the foam used is 48 lbs. The new buzz word for companies making upholstered furniture is “soy based foam” (an oxymoron which we’ll expose in next week’s post), which is touted to be “green” because (among other things)  it uses less energy to produce.  Based on Cargill Dow’s own web site for the BiOH polyol which is the basis for this new product, soy based foam uses up to 60% less energy than does conventional polyurethane foams.   Companies which advertise foam made with 20% soy based polyols  use 1888 MJ of energy to create 12 cubic feet of foam, versus 2027 MJ if conventional polyurethane was used.  For our purposes of comparison, we’ll use the lower energy amount of 1888 MJ and give the manufacturers the benefit of the doubt.
  3. FABRIC:  Did you know that the decorative fabric you choose to upholster your couch is not the only fabric used in the construction?  Here’s the breakdown for fabric needed for one sofa:
    1. 25 yards of decorative fabric
    2. 20 yards of lining fabric
    3. 15 yards of burlap
    4. 10 yards of muslin

TOTAL amount of fabric needed for one sofa:  70 yards!

Using data from various sources (see footnotes below), the amount of energy needed to produce the fabric varies between 291 MJ (if all components were made of hemp, which has the lowest embodied energy) and 7598 MJ (if all components were made of  nylon, which has the highest embodied energy requirements).  If we choose the most commonly used fibers for each fabric component, the total energy used is 2712 MJ:

fiber Embodied energy in MJ
25 yards decorative fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
TOTAL: 2712

I could not find any LCA studies which included the various items under “Miscellaneous” so for this example we are discounting that category.  It might very well impact results, so if anyone knows of a study which addresses these items please let us know!

So  we’re looking at three components (wood, foam and fabric), only two of which most people seem to think are important in terms of upholstered furniture manufacture.  But if we put the results in a table, it’s suddenly very clear that fabric is the most important consideration – at least in terms of embodied energy:

Embodied energy in MJ
WOOD: 32 board feet, kiln dried maple 278
FOAM: 12 cubic feet, 20% bio-based polyol 1888
SUBTOTAL wood and foam: 2166
FABRIC: FIBER:
25 yards uphl  fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
SUBTOTAL, fabric: 2712

If we were to use the most egregious fabric choices (nylon), the subtotal  for the energy used to create just the fabric would be 7598 MJ – more than three times the energy needed to produce the wood and foam!  This is just another instance where  fabric, a forgotten component,  makes a profound impact.

(1)  From: “Life Cycle Analysis of Wood Products: Cradle to Gate LCIof residential wood building material”, Wood and Fiber Science, 37 Corrim Special Issue, 2005, pp. 18 – 29.

(2)  Data for embodied energy in fabrics:

“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, Stockholm Environment Institute, 2005

Composites Design and Manufacture, School of Engineering, University of Plymouth UK, 2008, http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Study: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow.





Greenwashing and textiles

29 12 2009

I have been saying for years that fabric is the forgotten product.  People just don’t seem to care about what their fabric choices do to them or to the environment.  (Quick, what fiber is your shirt/blouse made of?  What kinds of fibers do you sleep on?)   They are too busy to do research, or they’re gullible – either way they decide to believe claims made by many product manufacturers.  And I can’t really blame them, because the issues are complex.

Green products are proliferating so quickly (the average number of “green” products per store almost doubled between 2007 and 2008, according to TerraChoice’s Greenwashing Report 2009) and adding so many new consumer claims that the term “greenwash” (verb: the act of misleading consumers regarding the environmental practices of a company or the environmental benefits of a product or service) has become part of most people’s vocabulary.    In the area of fabrics, the greenwashing going on has led the FTC to make the publication of its new Green Guide on textiles a priority.

Incidences of greenwashing are going up, and that means increased risk:

  • Consumers may be misled into purchases that do not deliver on their environmental promise.
  • Illigetimate environmental claims will take market share away from products that offer legitimate benefits, thereby slowing the spread of real environmental innovation.
  • Greenwashing will lead to cynicism and doubt about all environmental claims.  Consumers may just give up.
  • And perhaps worst of all – the sustainability movement will lose the power of the market to accelerate real progress towards sustainability.

The first step to cleaning up greenwashing is to identify it, and Kevin Tuerff (co-founder of the marketing consultancy EnviroMedia) and his partners have hit on an innovative way to spotlight particularly egregious examples. They’ve launched the Greenwashing Index,  a website that allows consumers to post ads that might be examples of greenwashing and rate them on a scale of 1 to 5–1 is a little green lie; 5 is an outright falsehood.  This hopefully teaches people to be a bit more cautious about the claims they hear.  Read more about greenwashing here.

TerraChoice published its six sins of greenwashing in 2007 but added a seventh sin in 2009.  Let’s look at these sins:

1)      The Sin of Worshiping False Labels:  a product that (through words or images) gives the impression of third-party endorsement or certification where none really exists; basically fake labels.  Examples:

  1. Using the company’s own in-house environmental program without further explanation.
  2. Using certification-like images with green jargon including “eco-safe”, “eco-preferred”.

I’ve begun to see examples of products which claim to be certified to the GOTS standard  (Global Organic Textile Standard) – but the reality is that the fiber is certified to the GOTS standard while the final fabric is not.  There is a big difference between the two.  And the GOTS-certifying agencies have begun to require retailers to be certified – to keep the supply chain transparent because there have been so many incidences of companies substituting non- GOTS products for those that actually received the certification.

2)      Sin of the Hidden Trade-off:  a claim suggesting that a product is “green” based on a narrow set of attributes without attention to other important environmental issues.  The most overused example of this is with recycled content of fabrics – a textile is advertised as “green” because it is made of x% recycled polyester.  Other important environmental issues such as heavy metal dyes used, whether the polyester is woven with other synthetics or even natural fibers  (thereby contributing to other environmental degredation), the fact that plastic is not biodegradeable and contains antimony or bisphenol A  may be equally important.  Cargill Dow introduced it’s new Ingeo fiber with much fanfare, saying that it is based on a renewable resource (rather than oil).  Missing entirely from Cargill Dow’s press materials is any acknowledgement of the fact that the source material for these products is genetically engineered corn, designed by one of Cargill Dow’s corporate parents, Cargill Inc., a world leader in genetic engineering.  (See our blog postings on genetic engineering dated 9.23 and 9.29.09) That’s a potentially huge problem, since millions of consumers around the world and several governments have rejected the use of genetically engineered (GE) products, because of the unforeseen consequences of unleashing genetically altered organisms into nature.

3)      Sin of No Proof:  An environmental claim that cannot be substantiated by easily accessible supporting information or by a reliable third-party certification.  Google organic fabric and you can find any number of companies offering “organic and natural fabrics” with no supporting documentation.   And the People for the Ethical Treatment of Animals really took exception to this claim:

4)      Sin of Vagueness:  a claim so poorly defined or broad that its real meaning is likely to be misunderstood by the consumer. ‘All-natural’ is an example. Arsenic,  mercury, and formaldehyde are all naturally occurring, used widely in textile processing,  and poisonous. ‘All natural’ isn’t necessarily ‘green’. Hemp is a fabric that has been expertly greenwashed, as most people have been led to focus on the fact that it grows in a manner that it is environmentally friendly. Few realize that hemp is naturally made into rope and that it requires a great deal of chemical softening to be suitable for clothing or bed linen.  Or this ad from Cotton Inc.:

5)      Sin of Irrelevance:  An environmental claim that may be truthful but is unimportant or unhelpful for consumers seeking environmentally preferable products.  The term “organic” is the most often used word in textile marketing – and what does it really mean?  Organic, by definition, means carbon-based, so unless the word “organic” is coupled with “certified” the term is meaningless.  But even “certified organic” fiber can cause untold harm during the processing and finishing of the fabric – think of turning organic apples into applesauce (adding Red Dye #2, stabalizers, preservatives, emulsifiers) where the final result cannot be considered organic APPLESAUCE even though the apples started out as organic. It is said that the amount of “organic cotton” supposedly coming out of India far outweighs the amount of organic cotton actually being grown. It is common practice for vendors to call a batch of cotton “organic”, if minimal or no chemicals have been used, even if no certification has been obtained for the fiber. It’s also generally understood that certification can be “acquired”, even if not earned.

6)      Sin of Lesser of Two Evils:  A claim that may be true within the product category, but that risks distracting the consumer from the greater environmental impacts of the category as a whole.  Again, the use of recycled polyester as a green claim distracts from the greater environmental impact that plastics have on the environment,  the much greater carbon footprint that any synthetic has compared to any natural fiber,  the antimony used in polyester production, the fact that polyesters are dependent on non renewable resources for feedstock…the list goes on.

7)      Sin of Fibbing:  just what it says – environmental claims that are simply false.

I’d like to add an additional sin which I think is specific to the textile industry: that of a large fabric company touting it’s green credentials because it has a “green” collection  (sometimes that “green” collection is anything but) – but if you look at the size of the green collection and compare it to conventional offerings, you’ll find that maybe only 10% of the company’s fabrics have any possible claim to “green”.  Is that company seriously trying to make a difference?





Why is recycled polyester considered a sustainable textile?

14 07 2009

 

plastic_bottles

Synthetic fibers are the most popular fibers in the world – it’s estimated that synthetics account for about 65% of world production versus 35% for natural fibers.[1] Most synthetic fibers (approximately 70%) are made from polyester, and the polyester most often used in textiles is polyethylene terephthalate (PET).   Used in a fabric, it’s most often referred to as “polyester” or “poly”.

The majority of the world’s PET production – about 60% – is used to make fibers for textiles; about 30% is used to make bottles.   It’s estimated that it takes about 104 million barrels of oil for PET production each year – that’s 70 million barrels just to produce the virgin polyester used in fabrics.[2] That means most polyester – 70 million barrels worth –  is manufactured specifically to be made into fibers, NOT bottles, as many people think.  Of the 30% of PET which is used to make bottles, only a tiny fraction is recycled into fibers.  But the idea of using recycled bottles – “diverting waste from landfills” – and turning it into fibers has caught the public’s imagination.

The reason recycled polyester (often written rPET) is considered a green option in textiles today is twofold, and the argument goes like this:

  1. energy needed to make the rPET is less than what was needed to make the virgin polyester in the first place, so we save energy.
  2. And  we’re keeping bottles and other plastics out of the landfills.

Let’s look at these arguments.

1) The energy needed to make the rPET is less than what is needed to make the virgin polyester, so we save energy:

 

It is true that recycling polyester uses less energy that what’s needed to produce virgin polyester.  Various studies all agree that it takes  from 33%  to 53% less energy[3].  If we use the higher estimate, 53%,  and take 53% of the total amount of energy needed to make virgin polyester (125 MJ per KG of ton fiber)[4], the amount of energy needed to produce recycled polyester in relation to other fibers is:

Embodied Energy used in production of various fibers:

energy use in MJ per KG of fiber:

hemp, organic

2

flax

10

hemp, conventional

12

cotton, organic, India

12

cotton, organic, USA

14

cotton,conventional

55

wool

63

rPET

66

Viscose

100

Polypropylene

115

Polyester

125

acrylic

175

Nylon

250

rPET is also cited as producing far fewer emissions to the air than does the production of  virgin polyester: again estimates vary, but Libolon’s website introducing its new RePET yarn put the estimate at 54.6% fewer CO2 emissions.  Apply that percentage to the data from the Stockholm Environment Institute[5], cited above:

KG of CO2 emissions per ton of spun fiber:

crop cultivation

fiber production

TOTAL

polyester USA

0

9.52

9.52

cotton, conventional, USA

4.2

1.7

5.89

rPET

5.19

hemp, conventional

1.9

2.15

4.1

cotton, organic, India

2

1.8

3.75

cotton, organic, USA

0.9

1.45

2.35

Despite the savings of both energy and emissions from the recycling of PET, the fact is that it is still more energy intensive to recycle PET into a  fiber than to use organically produced natural fibers – sometimes quite a bit more energy.

2) We’re diverting bottles and other plastics from the landfills.

 

That’s undeniably true,  because if you use bottles then they are diverted!

But the game gets a bit more complicated here because rPET is divided into “post consumer” PET and “post industrial” rPET:  post consumer means it comes from bottles; post industrial might be the unused packaging in a manufacturing plant, or other byproducts of manufacturing.  The “greenest” option has been touted to be the post consumer PET, and that has driven up demand for used bottles. Indeed, the demand for used bottles, from which recycled polyester fibre is made, is now outstripping supply in some areas and certain cynical suppliers are now buying NEW, unused bottles directly from bottle producing companies to make polyester textile fiber that can be called recycled.[6]

Using true post consumer waste means the bottles have to be cleaned (labels must be removed because labels often contain PVC) and sorted.  That’s almost always done in a low labor rate country since only human labor can be used.   Add to that the fact that the rate of bottle recycling is rather low – in the United States less than 6% of all waste plastic gets recycled [7].  The low recycling rate doesn’t mean we shouldn’t continue to try, but in the United States where it’s relatively easy to recycle a bottle and the population is relatively well educated in the intricacies of the various resin codes, doesn’t it make you wonder how successful we might be with recycling efforts in other parts of the world?

pet-recycling-graph-2 SOURCE: Container Recycling Institute

There are two types of recycling:  mechanical and chemical:

    • Mechanical recycling is accomplished by melting the plastic and re-extruding it to make yarns.  However, this can only be done  few times before the molecular structure breaks down and makes the yarn suitable only for the landfill[8] where it may never biodegrade, may biodegrade very slowly, or may add harmful materials to the environment as it breaks down (such as antimony).  William McDonough calls this  “downcycling”.
    • Chemical recycling means breaking the polymer into its molecular parts and reforming the molecule into a yarn of equal strength and beauty as the original.  The technology to separate out the different chemical building blocks (called depolymerization) so they can be reassembled (repolymerization) is very costly and almost nonexistent.

Most recycling is done mechanically (or as noted above, by actual people). Chemical recycling does create a new plastic which is of the same quality as the original,  but the process is very expensive and is almost never done, although Teijin has a new program which recycles PET fibers into new PET fibers.

The real problem with making recycled PET a staple of the fiber industry is this:  recycling, as most people think of it, is a myth.  Most people believe that plastics can be infinitely recycled  – creating new products of a value to equal the old bottles or other plastics which they dutifully put into recycling containers to be collected. The cold hard fact is that there is no such thing as recycling plastic, because it is not a closed loop.  None of the soda and milk bottles which are collected from your curbside are used to make new soda or milk bottles, because each time the plastic is heated it degenerates, so the subsequent iteration of the polymer is degraded and can’t meet food quality standards for soda and milk bottles.  The plastic must be used to make lower quality products.  The cycle goes something like this:

  • virgin PET can be made into soda or milk bottles,
  • which are collected and recycled into resins
    • which are appropriate to make into toys, carpet, filler for pillows, CD cases, plastic lumber products,  fibers or a million other products. But not new soda or milk bottles.
  • These second generation plastics can then be recycled a second time into park benches, carpet, speed bumps or other products with very low value.
  • The cycle is completed when the plastic is no longer stable enough to be used for any product, so it is sent to the landfill
    • where it is incinerated (sometimes for energy generation, which a good LCA will offset)  –
    • or where it will hold space for many years or maybe become part of the Great Pacific Garbage Patch![9]

And there is another consideration in recycling PET:  antimony, which is present in 80 – 85% of all virgin PET[10], is converted to antimony trioxide at high temperatures – such as are necessary during recycling, releasing this carcinogen from the polymer and making it available for intake into living systems.

Using recycled PET for fibers also creates some problems specific to the textile industry:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[11]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.
  • Many rPET fibers are used in forgiving constructions such as polar fleece, where the construction of the fabric hides slight yarn variations.  For fabrics such as satins, there are concerns over streaks and stripes.

Once the fibers are woven into fabrics, most fabrics are rendered non-recyclable  because:

  • the fabrics almost always have a chemical backing, lamination or other finish,
  • or they are blends of different synthetics (polyester and nylon, for example).

Either of these renders the fabric unsuitable for the mechanical method of recycling, which cannot separate out the various chemicals in order to produce the recycled yarn; the chemical method could  –   if we had the money and factories to do it.

One of the biggest obstacles to achieving McDonough’s Cradle-to-Cradle vision lies outside the designers’ ordinary scope of interest – in the recycling system itself. Although bottles, tins and newspapers are now routinely recycled, furniture and carpets still usually end up in landfill or incinerators, even if they have been designed to be  recycled [12] because project managers don’t take the time to separate out the various components of a demolition job, nor is collection of these components an easy thing to access.

Currently, the vision that most marketers has led us to believe, that of a closed loop, or cycle, in which the yarns never lose their value and recycle indefinitely is simply that – just a vision.  Few manufacturers, such as Designtex (with their line of EL fabrics designed to be used without backings) and Victor Innovatex (who has pioneered EcoIntelligent™ polyester made without antimony),  have taken the time, effort and money needed to accelerate the adoption of sustainable practices in the industry so we can one day have synthetic fabrics that are not only recycled, but recyclable.


[1]“New Approach of Synthetic Fibers Industry”, Textile Exchange,  http://www.teonline.com/articles/2009/01/new-approach-of-synthetic-fibe.html

[2] Polyester, Absolute Astronomy.com: http://www.absoluteastronomy.com/topics/Polyester and Pacific Institute, Energy Implications of Bottled Water, Gleick and Cooley, Feb 2009, http://www.pacinst.org/reports/bottled_water/index.htm)

[3] Website for Libolon’s RePET yarns:  http://www.libolon.com/eco.php

[4] Data compiled from:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,                                                                       http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm and  “Ecological Footprint and Water

Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[5] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[6] The Textile Dyer, “Concern over Recycled Polyester”,May 13, 2008,

[7] Watson, Tom, “Where can we put all those plastics?”, The Seattle Times, June 2, 2007

[8] William McDonough and Michael Braungart, “Transforming the Textile Industry”, green@work, May/June 2002.

[9] See http://www.greatgarbagepatch.org/

[10] Chemical Engineering Progress, May 2003

[11] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008

[12] “Taking Landfill out of the Loop”, Sarah Scott, Azure, 2006





More reasons to find a replacement for polyester.

22 06 2009

plastic trap The mass of  debris in the photo is, apparently, a tiny part of what the Wall Street Journal reports is afloat in the Pacific.   Nobody really knows how big it is:   “Some say it is about the size of Quebec, or 600,000 square miles — also described as twice the size of Texas. Others say this expanse of junk swept together by currents is the size of the U.S. — 3.8 million square miles. Or, it could be twice that size.”

Called The Great Pacific Garbage Patch, it’s a mass of floating plastic.  Nobody seems to be able to agree on the size, or even whether the plastic is dangerous or serving a function.   Plastics can harm ocean birds and mammals who eat it, because they carry toxins, can pierce internal organs and can trick animals into thinking they are full. But hard numbers are tough to come by. “It’s so hard to say a bird died due to plastic in its stomach,” says Holly Bamford, director of the National Oceanic and Atmospheric Administration’s marine-debris program. “We have seen birds mature and live out their whole life, and necropsies show plastic in their stomach.”  On the other hand, David Karl, an oceanographer at the University of Hawaii, says that the plastics have a high concentration of microorganisims clinging to them which are producing oxygen.

Polyester, or PET, is  a major component of this trash because PET is the major component of beverage containers (like bottled water).  But most PET (60% of global production) is used to make fibers and textiles.  In addition to the fact that this polyester remains in our oceans and landfills for around 1,000 years, it’s a very expensive way to spend our energy resources:

Polyester production, running at around 50 million tons  per year, consumes about 104 million barrels of oil for production (and that doesn’t include the energy needed for transportation).

We have called for research into substitutes for polyester fabrics and still insist that we  (a people which have sent men to the moon, after all) should be able to find a substitute for our plastic obsession.  Recycled polyester seems to have been crowned the Queen of Green by decorative fabrics distributors because it is claimed that by recycling the polyester we can have a lighter footprint.  I’ve outlined our arguments against that in other posts, not least of which is the fact that there are no workable takeback programs in place.

The argument in favor of recycling is that if consumers have an “easy” way to recycle their plastic, and are educated and reminded on the need to do so, most will, resulting in a cleaner environment.   However, Americans recycle only about 20% of their plastic bottles – and this in a nation where it’s relatively easy to throw a used bottle into a recycling container.   What percentage of fabrics do you think will be torn off sofas or delivered to a recycling facility?  How many project managers will tear out banquettes and order the separation of the fabric from the wooden frame?

Add to those arguments the fact that there has been a history of corporations collecting plastics and sending them overseas to be processed, such as the famous case of Pepsi Cola exporting tons of PET bottles to India in the 1990s.  This case amounts to an indictment of much of what passes for recycling in the United States and elsewhere – putting the plastic waste out of sight, out of mind.  The plastics industry is exporting their waste to less industrialized countries, avoiding domestic regulations, avoiding community opposition to waste handling facilities, paying their workers pennies a day, and maintaining a “green” image at home.  People in developed countries can lower their ecological guilt by depending on environmental injustice in Asia.  This is not recycling; this is, at best, a type of reprocessing that delays the eventual dumping of the plastic.  And at worst it encourages consumers to buy more plastic because their environmental concerns are lessened by the promise that the goods are being recycled.