Listmania: LBC Red List and others

19 06 2012

I love lists – you know, all those “best of” lists – movies, books, toxic chemicals.

Having a list makes it easy for us to tick off those bad chemicals that nobody wants to live with.  And in the building industry there have been a proliferation of lists which identify chemicals of concern:  the Perkins & Will Precautionary List, the LEED Pilot 11 and the Living Building Challenge Red List, among others.  And make no mistake, we think it’s critical that we begin to develop these lists, because we all need a baseline.   As long as we need to eat and breathe, toxics should be an important consideration.  We just have a problem with  how these lists are used.

So let me explain.

First, lists for the most part are developed on the basis of science that usually occurred five or 10 years ago, so they can  (though not always) be lagging indicators of safety to humans and the environment.  (But that’s a minor point, just wanted us to remember to maintain those lists.)

When using lists, it’s important to remember the concept of reactive chemistry:  many of the chemicals, though possibly deemed to be benign themselves, will react with other chemicals to create a third substance which is toxic.   This reaction can occur during the production of inputs, during the manufacture of the final product, or at the end of life (burning at the landfill, decomposing or biodegrading).   So isn’t it important to know the manufacturing supply chain and the composition of all the products – even those which do not contain any chemicals of concern on the list you’re using – to make sure there are no, say … dioxins created during the burning of the product at the landfill, for example?

It’s also important to remember that  chemicals are synergistic  – toxins can make each other more toxic.  A small dose of mercury that kills 1 in 100 rats and a dose of aluminum that will kill 1 in 100 rats, when combined, have a striking effect: all the rats die.  So if the product you’re evaluating is to be used in a way that introduces a chemical which might react with those in your product, shouldn’t that be taken into consideration?

So, O.K., the two problems above would be extremely difficult to define  – I mean, wouldn’t you need a degree in chemistry, not to mention the time and money, to determine if these could occur .  The average consumer wouldn’t have a clue.  Just wanted you to know that these problems do exist and contribute to our precautionary admonition regarding lists.

Each list has a slightly different interpretation – and lists different chemicals.  The Healthy Building Network published this Venn diagram of several of the most prevalent lists used in building materials:

The real reason we don’t like the way lists are used is that people see the list, are convinced by a manufacturer that their product doesn’t contain any of the chemicals listed, so without any further ado the product is used.

What does that mean in the textile industry, for example?

By attempting to address all product types, most lists do not mention many of the toxic chemicals which ARE used in textile processing. In the Living Building Challenge Red List, no mention is made of polyester, the most popular fiber for interiors, which itself is made from two toxic ingredients (ethylene glycol and terephthalic acid – both carcinogens, neither of which are on the list).  That means  a fabric made of polyester – even recycled polyester – that has been processed using some pretty nasty chemicals – could be specified.   Chemicals which are commonly used in textile processing  and which are NOT included on the Living Building Challenge Red List, for example,  but which have been found to be harmful , include:

Chlorine   (sodium hypochlorite NaOCL); registered in the Toxic Substances Control Act   as hypochlorous acid ; sodium chlorite
Sodium cyanide;   potassium cyanide
sodium sulfate   (Na2SO4)
Sodium sulfide
 APEOs ( Alkylphenolethoxylates)
Chromium III   and VI (hexavalent chromium)
Zinc
Copper
pentachlorophenol   (PCP)
permethrin
Dichloromethane   (DCM, methylene chloride)
Tetrachloroethylene   (also known as perchloroethylene, perc and PCE)
Methyl ethyl   ketone
Toluene:   toluene diisocyanate and other aromatic amines
Methanol (wood   alcohol)
Chloroform;   methyl chloroform
Arsenic
Phosphates   (concentrated phosphoric acid)
Dioxin –   by-product of chlorine bleaching; also formed during synthesis of certain   textile chemicals
Benzenes and   benzidines; nitrobenzene; C3 alkyl benzenes; C4 alkyl benzenes
Sulfuric Acid
Optical   brighteners: includes several hundred substances, including triazinyl   flavonates; distyrylbiphenyl sulfonate
Acrylonitrile
ethylenediaminetetra   acetic acid [EDTA]
diethylenetriaminepenta   acetic acid [DTPA]
Perfluorooctane   sulfonates (PFOS)

In the case of arsenic (used in textile printing and in pesticides) and pentachlorophenol (used as a biocide in textile processing) – the Living Building Challenge Red List expressly forbids use in wood treatments only, so using it in a textile would qualify as O.K.

Perhaps we should manufacture with a “green list” in mind: substituting chemicals and materials that are inherently safer, ideally with a long history of use (so as to not introduce completely new hazards)?

But using any list of chemicals of concern ignores what we consider to be the most important aspect needing amelioration in textile processing – that of water treatment.  Because the chemicals used by the textile industry include many that are persistent and/or bioaccumulative which can interfere with hormone systems in people and animals and may be carcinogenic and reprotoxic, and because the industry often ignores water treatment even when it is required (chasing the lowest cost) the cost of dumping untreated effluent into our water is incalculable.

The textile industry uses a LOT of water – according to the World Bank, 20% of industrial freshwater pollution is from the textile industry; that’s another way of saying that it’s the #1 industrial polluter of water on the planet.  In India alone textile effluent averages around 425,000,000 gallons per day, largely untreated[1].   The chemically infused effluent – saturated with dyes, de-foamers, detergents, bleaches, optical brighteners, equalizers and many other chemicals –  is often released into the local river, where it enters the groundwater, drinking water, the habitat of flora and fauna, and our food chain.  The production of polychlorinated biphenyls (PCBs) were banned in USA more than 30 years ago (maybe that’s why they’re not listed on any of these lists?), but are still showing up in the environment as unintended byproducts of  the chlorination of wastes in sewage disposal plants that have a large input of biphenyls (used as a dye carrier) from textile effluent.[2]

Please click HERE to see the PDF by Greenpeace on their new campaign on textile effluent entitled  “Dirty Laundry”, which points the finger at compliant corporations which basically support what they call the “broken system”.  It asks corporations to become champions for a post toxic world, by putting in place policies to eliminate the use and release of all hazardous chemicals across a textile company’s entire supply chain based on a precautionary approach to chemicals management, to include the whole product lifecycle and releases from all pathways.

Another problem in the textile industry which is often overlooked is that of end of life disposal.  Textile waste in the UK, as reported by The Ecologist, has risen from 7% of all waste sent to landfills to 30% in 2010.[3]  The US EPA estimates that textile waste account for 5% of all landfill waste in the U.S.[4]  And that waste slowly seeps chemicals into our groundwater, producing environmental burdens for future generations.  Textile sludge is often composted, but if untreated,  that compost is toxic for plants.[5]

What about burning:    In the United States, over 40 million pounds of still bottom sludge from the production of ethylene glycol (one of the components of PET fibers) is generated each year. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[6]

These considerations are often neglected in looking at environmental pollution by textile mills[7] – but is never a consideration on a list of chemicals of concern.

So yes, let’s recognize that there are chemicals which need to be identified as being bad, but let’s also look at each product and make some kind of attempt to address any other areas of concern which the manufacture of that product might raise.  Using a list doesn’t get us off the hook.


[1] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment,New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur,South India”, Prakash Nelliyat, Madras School of Economics.  See also:

Jacks Gunnar et al (1995), “The Environmental Cost of T-Shirts”, Sharing Common Water Resources, First Policy Advisory Committee Meeting, SIDA, Madras Institute of Development Studies, Chennai.

Also:  CSE: Down to Earth Supplement on Water use inIndia, “To use or to misuse”;  http://www.cseindia.org/dte-supplement/industry20040215/misuse.htm

[3] Ecologist, “’Primark effect’ sill clogging up UK landfills”, January 19, 2010,  http://www.newsinferno.com/legal-news/possible-link-between-formaldehyde-lou-gehrigs-disease-found/2926

[5] Scientia Agricola, vol. 62, no 3 May/June 2005

[6] Sustainable Textile Development at Victor,  http://www.victor-innovatex.com/doc/sustainability.pdf

[7] Assuming a beginning value of 375ppm of antimony in an undyed polyester fiber, as much as 175ppm of antimony can be leached from the fiber during the dyeing process. This seemingly insignificant amount translates into a burden on water treatment facilities and is still a hazardous waste when precipitated out during treatment. The U.S. EPA lists the allowable limit for antimony in drinking water to be 6 parts per billion (ppb). Countries that can afford technologies that precipitate the metals out of the water are left with a hazardous sludge that must then be disposed of in a properly managed landfill or incinerator operations. Countries who cannot, or who are unwilling to employ these end-of-pipe treatments, release antimony along with a host of other dangerous substances to open waters. Victor Defining Sustainability, http://www.victor-innovatex.com/doc/sustainability.pdf





LEED and human health

16 03 2012

Does living or working in a LEED certified space mean that you are safe from building contaminants – or does it promote a false sense of security?

A study published by the nonprofit,  Environment and Human Health, Inc. (EHHI),  in May 2010, emphatically claims that you are not safe.  The lead author of the study,  Dr. John Wargo, is professor of environmental policy, risk analysis and political science at the Yale School of Forestry & Environmental Studies.  He is also an advisor to the U.S. Centers for Disease Control and Prevention.  This  study outlined why  LEED, which has emerged as the green standard of approval for new buildings in the United States,  largely ignores factors relating to human health, particularly the use of potentially toxic building materials.   As Nancy Alderman, the president of EHHI, told BuildingGreen.com, “it is possible to build a LEED building and have it not be healthy inside, and we’re saying this needs to be fixed.”[1]

Many of the chemical ingredients in building materials are well known to be hazardous to human health. Some are respiratory stressors, neurotoxins, hormone mimics, carcinogens, reproductive hazards, or developmental toxins. Thousands of synthetic and natural chemicals make up modern buildings, and many materials and products “off-gas” and can be inhaled by occupants.   Dr. Wargo points out in a blog posting on Environment 360, that one of LEED’s major accomplishments — saving energy by making buildings more airtight — has had the paradoxical effect of more effectively trapping the gases emitted by these often toxic chemicals used in today’s building materials and furnishings.  

He makes the case that LEED puts almost no weight on human health factors in deciding whether a building meets its environmental and social goals.  And he calls for a comprehensive Federal law to control the chemical content of the built environment.

Many sectors of the economy, including pharmaceuticals and pesticides, are highly regulated by the federal government to protect public health. But the building sector — which now produces $1.25 trillion in annual revenues, roughly 9 percent of U.S. gross domestic product in 2009 — has escaped such federal control. The lack of government regulation is explained, in part, by the building industry’s enormous financial power, but also by its recent success in creating green building and development standards that give the impression of environmental responsibility and protection of human health.

John Wargo called for a new national healthy building  policy, which would  include:

  • New chemicals tested to understand their threat to human health before they are allowed to be sold.  We should adopt the precautionary principle, as in the EU. Existing chemicals should also be  tested, rather than be exempted, as they are currently under the Toxic Substances Control Act.
  • The burden of proof of safety should rest with chemical and building product manufacturers.  The testing itself should be conducted by an independent, government-supervised institute, but paid for by the manufacturers.
  • A clear environmental safety standard should also be adopted to prevent further development and sale of persistent and bio-accumulating compounds.
  • The chemical contents of building materials and their country of origin should be identified.
  • EPA should maintain a national registry of the chemical content of building products, furnishings, and cleaning products.
  • The government should categorize building products to identify those that contain hazardous compounds; those that have been tested and found to be safe; and those that have been insufficiently tested making a determination of hazard or safety impossible. This database should be freely available on the Internet.
  • Distinctive “high performance” environmental health standards should be adopted to guide the construction and renovation of schools and surrounding lands.
  • The federal government should create incentives for companies to research and create new chemicals that meet the health, safety, and environmental standards described above. Funding for “green chemistry” initiatives should be significantly increased and focused on benign substitutes for the most widely used and well-recognized toxic substances.
  • The federal government should take responsibility for codifying these requirements to protect human health in buildings and communities.

The U.S. Green Building Council (USGBC) developed LEED parameters through a “consensus based” process led by LEED committees, and introduced the LEED rating system in 2000.  The USGBC does extraordinary and essential work – and as Howard Williams suggests in a comment on Environment 360, “wanting to add healthy building products onto that effective and successful machine is natural; we always ask more of the high achievers”.  He goes on to suggest that “a clear and supportive endorsement from the USGBC of the need to protect people from the effect of hazardous chemicals in building materials would set in motion the free market forces for accelerating change. Although this is implicitly evident by the very nature of the USGBC work, some things just need to be explicit.”[2]

However, at the time of the publication of the study in 2010, the U.S. Green Building Council (USGBC)  took exception with the conclusions that were drawn.    Brendan Owens, P.E., vice president for LEED technical development at USGBC, criticized the report for “singling out the Indoor Environmental Quality section as the only place that LEED deals with public health.” Arguing that all LEED credits are built and evaluated for multiple environmental and health benefits, Owens said, “the report’s authors would have benefited from a better understanding of the philosophy that underpins the rating system.”

There is an ongoing and emotional debate about LEED, in which it has been criticized by other environmental groups such as the Healthy Building Network, for lacking leadership in addressing chemical hazards. Indeed, the Living Building Challenge may have been introduced as a result of LEED moving too slowly in many areas.

On the one side, the argument is that LEED is an action plan for environmental work through buildings and neighborhoods. It is not a report or even a statement of a perfect world. It is a way to define what green means. LEED, according to these proponents,  is constantly updating and moving the market, pushing it and incentivizing it to be better. And they say that LEED’s explicit purpose has never been human health.  It has always been about minimizing resource use and carbon footprint.   To announce that it “fails” to account for human health is like making the exposé that ballet is not satisfying the tastes of hip hop dancers.

On the other hand, there are those who say that though LEED should be applauded for the things it does well (new energy efficiency standards, building siting standards, water conservation for example), it should also define a “green” building, and this definition should include minimizing the use of known carcinogens, suspected endocrine disruptors, and other harmful chemicals.   It should do this because it is not just the health of the building’s inhabitants that is at stake. Throughout their life from cradle to grave, chemicals of concern in building products effect people, plants and animals–the whole environment.

Bill Walsh, executive director of the Healthy Building Network, told BuildingGreen.com that in his experience, the tone of the report represents a typical response to LEED from people in the human health community.  For example, the Green Guide for Healthcare asks that we “Imagine: Cancer treatment centers built without materials linked to cancer; Pediatric clinics free of chemicals that trigger asthma.” [3] “Their first encounter with LEED is usually highly negative—they react just like this,” he said. “People just can’t believe that you get credit for using all manner of vile material in a green building. So no, they’re not really stepping back to assess the whole thing.”   Walsh added that he hoped USGBC would use the report as an opportunity to build a broader constituency for developing its materials credits.

A pivotal issue is that there needs to be regulatory standards for the toxicity of building materials, because there cannot be a truly “green” building which compromises people’s health.  A comment posted on the Environment 360 web site suggests a new twist: Perhaps  LEED could have DEMERITS as well as credits.  This is based on the commentor’s knowledge of a LEED project in which the project removed toxic soil from a site and sent it to a landfill in someone else’s backyard. He asks the question:   “Can a LEED gold project actually send toxic soil that could be stored onsite to a location in another state? That doesn’t seem like a fully credible environmental leadership to me.” [4]