Why our children are at risk

18 11 2013

We hear about deaths from cancer – and how the rates are going down  (1). And that’s fabulous – but the sad fact is that the incidence of cancer seems to be going up (2).   The reason is complicated – we’re getting older, true –  but we’re also getting better at fighting it:

Cancer Research UK

Cancer Research UK

The number of new cancer cases have increased 0.6% every year since 1975 – overall, that’s an increase of 21% in the past 36 years (3) . What I find particularly disturbing is the rise in the reported incidence of cancer among young children and adolescents, especially brain cancer, testicular cancer, and acute lymphocytic leukemia. Sadly, after injuries and violence, cancer is the leading cause of death in our children (4).

National Academy of Sciences

National Academy of Sciences

At the risk of showing my bias, in case there are those among you who didn’t already know, I think part of the problem is because our environment contains many chemicals that are known to cause these cancers. But I’m not alone: the New York Times, in a recent editorial, urged the reform of the current law which purports to protect Americans from these chemicals (5), and the 2011 report of the President’s Cancer Panel has said that the “true burden of environmentally induced cancers has been grossly underestimated.” (6)

Besides cosmetics, shampoos, detergents and building products, fabric processing uses a wide variety of synthetic chemicals, many of which remain in the fabrics. A short list of the many chemicals used in textile processing – many of which remain in the fabrics we live with – includes the following chemicals, which are all linked to cancer:

• Formaldehyde is known to cause cancer (and asthma), yet rates of formaldehyde in indoor air have grown from 14 ppb in 1980 to 200 ppb in 2010 – and these rates are increasing.
• Higher rates of chemicals called Polychlorinated Biphenyls, or PCBs, used in the production of plastics – and therefore all synthetic fabrics – also are linked with higher rates of leukemia.
• Benzene, used in the production of nylon and other synthetics, in textile dyestuffs and in the pigment printing process – is linked to leukemia, breast cancer, lymphatic and hematopoietic cancers.
• Chromium Hexavalent compounds, used in leather tanning, and the manufacture of dyes and pigments, are linked to lung, nasal and nasopharyngeal cancers.
• Bisphenol A, used in the production of polyester and other synthetic fibers and as an intermediate in the production of dyestuffs, is an endocrine disruptor linked to breast and prostate cancer.

Children are at greater risk because they are exposed at a higher rate than adults, their behaviors exacerbate exposure and they have increased susceptibility to the chemicals:

Pound for pound, children breathe twice as much air as an adult, drink two and a half times as much water, and eat three to four times more. Also – the typical newborn weighs 1/20th that of an adult male, but the infant’s surface area is just 1/8th as great. This means that the infant’s total skin area is 2.5 times more per unit of body weight than an adult (7).
Their breathing rates, at rest, are higher than those of adults, and greater levels of physical activity can increase their breathing rates even further. Their play is often at ground level, while adults breathe four to six feet above the floor. So children have greater inhalation and dermal exposure to chemicals present on floors, carpets, grass or dirt, where heavier chemicals such as lead and particulates settle.

Children put everything into their mouths when exploring their environment. This increases their ingestion of substances in soil, household dust, floors and carpets, as well as the objects themselves.

Some children will gleefully jump into a lake – even before they could swim! This lack of fear as they grow can further increase their exposure to environmental hazards.

Childhood is characterized by rapid physical and mental growth. Accordingly, certain organs may not be fully developed and may be more vulnerable to injury. Children absorb, metabolize, and excrete compounds differently than adults.
• In some instances, children may be more susceptible than adults due to their increased rates of absorption or decreased rates of elimination of foreign compounds. In other cases, the opposite may be true. Children will absorb about 50 percent of lead ingested, whereas adults will absorb only about 10 to 15 percent(8). Kidneys are the principal pathway for elimination of most chemicals from the body. At birth an infant’s kidney’s filtration rate is a fraction of adult values; by age one the rate is at adult levels. (9)
• Longer lifetimes: many diseases initiated by chemical hazards take decades to develop, so early exposure to toxicants may be more likely to lead to disease than the same exposures experienced later in life.

The fetus is particularly sensitive to environmental toxicants (10). Chemicals can affect the children born to women exposed during pregnancy, while the women remain unaffected. For example, the children of women from Michigan who ate two to three meals of fish contaminated with PCBs per month for six years before pregnancy had lower birth weights, memory deficits at seven months and four years of age, and cognitive deficits persisted at eleven years of age (11). In Iraq, children born to women who during pregnancy inadvertently ate seed grain treated with mercury to prevent fungus had severe developmental and mental deficits  (12).

(1) Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: A Cancer Journal for Clinicians 2009;59(4):225–249.
(2) Data from cancer tracking suggest that childhood cancer is increasing, although the data is not consistent from year to year; the National Cancer Institute reported that for infants less than one year old, the rate of cancer rose by 36% from 1976-84, but some say that these increases are due to improved detection rather than representing true increases in cancer.
(3) Center for Children’s Health and the Environment, Mt. Sinai School of Medicine (http://www.pbs.org/odyssey/odyssey/toxics_brain_cancer.pdf)
(4) Ibid.
(5) http://www.nytimes.com/2013/04/19/opinion/a-toothless-law-on-toxic-chemicals.html?emc=eta1&_r=0
(6) http://www.environmentalhealthnews.org/ehs/news/presidents-cancer-panel/
(7) Our Children at Risk, The Natural Resrouces Defense Council, http://www.nrdc.org/health/kids/ocar/chap2.asp
(8) Royce, S. and H. Needleman, Case Studies in Environmental Medicine: Lead Toxicity, Agency for Toxic Substances and Disease Registry, 1995.
(9) Bearer, C., “How Are Children Different from Adults?” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 7-12.
(10) Birnbaum, L.S., “Endocrine Effects of Prenatal Exposures to PCBs, Dioxins, and Other Xenobiotics: Implications for Policy and Future Research,” Environmental Health Perspectives, vol. 102, no. 8, 1994, pp.676-679. Y.L. Guo et al., “Growth Abnormalities in the Population Exposed in Utero and Early Postnatally to Polychlorinated Biphenyls and Dibenzrofurans,” Environmental Health Perspectives, vol. 105, suppl. 6, September 1995, pp.117-122.
(11) Jacobson, J.L. et al., “The Transfer of Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs) across the Human Placenta and into Maternal Milk,” American Journal of Public Health, vol. 74, 1984, pp.378-9. J. Jacobson et al., “Effects of In Utero Exposure to Polychlorinated Biphenyls and Related Contaminants on Cognitive Functioning in Young Children,” Pediatrics, vol. 116, 1990, pp.38-45. S.W. Jacobson et al., “The Effect of Intrauterine PCB Exposure on Visual Recognition Memory,” Child Dev, vol. 56,1985, pp.853-60. J.L. Jacobson et al., “Effects of Exposure to PCBs and Related Compounds on Growth and Activity in Children,” Neurotoxicol. Teratol., vol.12, 1990, pp. 319-26.
(12) Gilbert, S. G. and K. Grant-Webster, “Neurobehavioral Effects of Developmental Methyl-Mercury Exposure,” Environmental Health Perspectives, vol. 103, supp. 6, September 1995, pp. 135-142.

10 reasons to make sure your sofa choices are upholstered with safely processed fabrics.

28 10 2013

If a fabric is identified as 100%  “cotton” – or even 100% “organic cotton”  —  it’s important to remember that processing the fiber, and then weaving it into fabric, is very chemically intense.  One-quarter of the total weight of the finished fabric is made up of synthetic chemicals, so it’s important to know that the chemicals used in your fabrics are safe! [1]

There have not been a lot of studies which show the effects that chemicals contained in a fabric have on humans as a result of using that fabric, perhaps because there are no interested parties other than universities and government entities.   But there are numerous studies which document the effects which the individual chemicals have on humans – perhaps because the textile industry is so fragmented that the few really large corporations with the resources to do this kind of research tend to finance research which supports  new products (such as DuPont’s PLA fibers or Teijin’s recycling efforts).  But there have been some, and we found the following:

  1. Formaldehyde is used often in finishing textiles to give the fabrics easy care properties (like wrinkle resistance, anti cling, stain resistance, etc.).  Formaldehyde resins are used on almost all cotton/poly sheet sets in the USA.
    1. Formaldehyde is a listed human carcinogen.  Besides being associated with watery eyes, burning sensations in the eyes and throat, nausea, difficulty in breathing, coughing, some pulmonary edema (fluid in the lungs), asthma attacks, chest tightness, headaches, and general fatigue, as well as well documented skin rashes, formaldehyde is associated with more severe health issues:  For example, it could cause nervous system damage by its known ability to react with and form cross-linking with proteins, DNA and unsaturated fatty acids.13 These same mechanisms could cause damage to virtually any cell in the body, since all cells contain these substances. Formaldehyde can react with the nerve protein (neuroamines) and nerve transmitters (e.g., catecholamines), which could impair normal nervous system function and cause endocrine disruption. [3]
      1. In January 2009, new blue uniforms issued to Transportation Security Administration officers gave them skin rashes, bloody noses, lightheadedness, red eyes, and swollen and cracked lips, according to the American Federation of Government Employees, the union representing the officers.
      2. In 2008, more than 600 people joined a class action suit against Victoria’s Secret, claiming horrific skin reactions (and permanent scarring for some) as a result of wearing Victoria Secret’s bras.   Lawsuits were filed in Florida and New York – after the lawyers found formaldehyde in the bras.
      3. Contact dermatitis is a well-known condition, and there are many websites which feature ways to get help.
      4. A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths.[2]
    2. Dioxins:  Main uses of dioxin in relation to textiles is as a preservative for cotton and other fibers during sea transit,  and in cotton bleaching. It is also found in some dyestuffs.  Dioxin is known as one of the strongest poisons which man is able to produce. It causes cancer of the liver and lung, and interferes with the immune system, resulting in a predisposition to infectious diseases and embrional misgrowth.
      1. Studies have found dioxin leached from clothing  onto  the skin of participants:[3]  It was shown that these contaminants are transferred from textiles to human skin during wearing. They were also present in shower water and were washed out of textiles during washing. Extensive evidence was found indicating that contaminated textiles are a major source of chlorinated dioxins and furans in non-industrial sewage sludge, dry cleaning residues and house dust.
    3. Perfluorocarbons (PFC’s)  break down within the body and in the environment to PFOA, PFOS and similar chemicals. (Note: the chemistry here is quite dense; I’ve tried to differentiate between the groups. Please let me know if I’ve made a mistake!) They are the most persistent synthetic chemicals known to man. Once they are in the body, it takes decades to get them out – assuming you are exposed to no more. They are toxic in humans with health effects from increased chloesterol to stroke and cancer. Although little PFOA can be found in the finished product, the breakdown of the fluorotelomers used on paper products and fabric treatments might explain how more than 90% of all Americans have these hyper-persistent, toxic chemicals in their blood. A growing number of researchers believe that fabric-based, stain-resistant coatings, which are ubiquitous, may be the largest environmental source of this  controversial chemical family of PFCs.

PFC’s are used in stain resistant finishes/fabrics such as Scotchgard, GoreTex, Crypton, Crypton Green, GreenShield, Teflon:

  1. PFC’s cause developmental and other adverse effects in animals.[4]
  2. According to a study published in the Journal of the American Medical Association, the more exposure children have to PFC’s (perfluorinated compounds), the less likely they are to have a good immune response to vaccinations (click here to read the study).[5]

According to the U.S. Environmental Protection Agency, PFC’s:

  • Are very persistent in the environment.
  • Are found at very low levels both in the environment and in the blood of the U.S. population.
  • Remain in people for a very long time.
  • Cause developmental and other adverse effects in laboratory animals.

The levels of PFC’s globally are not going down – and in fact there are places (such as China) where the PFC level is going up. And as there is not a “no peeing” part of the pool, the exposure problem deserves international attention.

4. Tributylphosphate – or TBP – is used in the production of synthetic resins and as a flame-retarding plasticizer. It is also used as a primary plasticizer in the manufacture of plastics and as a pasting agent for pigment pastes used in printing. Because it is a strong wetting agent, it is used often in the textile industry.  In addition to being a known skin irritant (click here to see the MSDS with a warning that it causes eye and skin irritation), TBP also causes bladder cancer in rats. (2)

  1. Alaska Airlines flight attendants were given new uniforms in 2010; shortly thereafter many reported “dermal symptoms” (e.g., hives, rash, blisters, skin irritation), while some also referenced respiratory symptoms and eye irritation; some have more recently been diagnosed with abnormal thyroid function. The symptoms apparently occurred only while wearing the new uniforms. (To read the report filed with the Consumer Product Safety Commission by the Association of Flight Attendants, click here. )

The only fact which can be agreed upon between the union, the CPSC and the manufacturer is that some unknown percent of the fabric used to make the uniforms was “contaminated” with TBP, tributylphosphate, as reported by the manufacturer – but since not all the fabric was tested, it is unknown the final percentage of contaminated fabric.

5.  Acrylic fibers are made from acrolynitrile  (also called vinyl cyanide), which is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system. According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  It is not easily recycled nor is it biodegradeable.

  1. Women who work in factories which produce acrylic fibers have seven times the rate of breast cancer as the normal population [6] – those working with nylon have double the risk.

6.  Chemicals used in textile processing which are associated with the immune system include formaldehyde, benzenes, toluene, phthalates. In 2007, The National Institutes of Health and the University of Washington released the findings of a 14 year study that demonstrates those who work with textiles were significantly more likely to die from an autoimmune disease than people who didn’t [7].

  1. Allergies and asthma are both thought to be associated with impaired immune systems.   Twice as many Americans (not just children) have asthma now as 20 yrs ago[8] and 10% of American children now have asthma.[9]
  2. As well as allergies and asthma, there are numerous other ‘chronic inflammatory diseases’ (CIDs) such as Type 1 diabetes and multiple sclerosis which seem to stem from impaired regulation of our immune systems.[10]

7.  Chemicals commonly used in textiles which contribute to developmental disorders (such as (ADD, ADHA, autism, Dyslexia): Bisphenol A, flame retardants, heavy metals (lead, mercury, cadmium), phthalates, PCB’s:

  1. Currently one of every six American children has a developmental disorder of some kind.[11]
  2. Bisphenol A  – used as a finish in the production of synthetic fibers: It mimics estrogens (is an endocrine disruptor) and can cause infertility and cancer.[12] 

8.  PCB’s :  used in flame retardants on fabrics; they are neurotoxins, endocrine disruptors and carcinogenic

  1. The Environmental Protection Agency (EPA) commissioned psychologists to study children whose mothers were exposed to PCB’s during pregnancy. The researchers found  that the more PCBs  found in the mother’s cord blood, the worse the child did on tests for things such as short-term memory. By age eleven, the most highly exposed kids had an average IQ deficit of 6.2 [13].

9.  Cancer – chemicals used in textile processing which are linked to cancer include formaldehyde, lead, cadmium, pesticides, benzene, vinyl chloride – as well as pesticides on crops: 

  1. all childhood cancers have grown at about 1% per year for the past two decades[14]
  2.  brain cancer in children increased nearly 40% from 1973 to 1994[15]
  3. the environmental attributable fraction of childhood cancer can be between 5% and 90%, depending on the type of cancer[16]

10.  Lead – used in the textile industry in a variety of ways and as a component in dyestuffs –  is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage  caused by lead are not reversible.        Specifically, it affects reading and reasoning abilities in  children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies.[17]     Children are uniquely susceptible to lead exposure over time,  and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware  that lead available from tested products would not be the only source of  exposure in a child’s environment.        Lead is used in the textile industry in a variety of ways and under a variety of names:

    1. Lead acetate:                        dyeing of textiles
    2. Lead  chloride                      preparation of lead salts
    3. Lead molybdate                   pigments used in dyestuffs
    4. Lead nitrate                         mordant in dyeing; oxidizer in dyeing(4)

Studies have shown that if children are exposed to lead, either in the womb or in early childhood, their brains are likely to be smaller.[18]

Lead is a uniquely cumulative poison: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.


[1] Lacasse and Baumann, Textile Chemicals, Springer, New York, 2004,  page 609; on behalf of the German Environmental Protection Agency.

[2] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment
workers exposed to formaldehyde: an update”, Occupational Environmental
Medicine, 2004 March, 61(3): 193-200.

[3] Horstmann, M and McLachlan, M; “Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurrans (PCDD/F) in human skin and sewage sludge”, Environmental Science and Pollution Research, Vol 1, Number 1, 15-20, DOI: 10.1007/BF02986918  SEE ALSO:  Klasmeier, K, et al; “PCDD/F’s in textiles – part II: transfer from clothing to human skin”, Ecological Chemistry and Geochemistry, University of Bayreuth,  CHEMOSPHERE, 1.1999 38(1):97-108 See Also:  Hansen,E and Hansen, C; “Substance Flow Analysis for Dioxin 2002”, Danish Environmental Protection Agency, Environmental Project No.811 2003

[4] Philippe Grandjean, et al, “Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds”, Journal of the American Medical Association,  january 25, 2012

[6] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817 (abstract: http://oem.bmj.com/content/67/4/263.abstract)
SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp
AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[7] Nakazawa, Donna Jackson, “Diseases Like Mine Are a Growing Hazard”, Washington
, March 16, 2008.

[11] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[12] Grant, Christine; Hauser, Peter; Oxenham, William, “Improving the Thermal Stability of Textile Processing Aids”, www.ntcresearch.org/pdf-rpts/AnRp04/C01-NS08-A4.pdf

[13] Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 7, 2011.

[15] New York Times, “New Toxins Suspected as Cancer Rate Rises in children”, September 29, 1997

[16] Gouveia-Vigeant, Tami and Tickner, Joel, “Toxic Chemicals and Childhood Cancer: a review of the evidence”, U of Massachusetts, May 2003

[17] ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

[18] Dietrich, KN et al, “Decreased Brain Volume in Adults with Childhood Lead
Exposure”, PLoS Med 2008 5(5): e112.