Why buy safe fabrics for your children – isn’t organic food enough?

28 11 2012

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering –  a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD –  and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease”[6].

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  It may be that future parents may be just as shocked by the kinds of exposures we’re living with as we are by these Marlboro cigarette ads from the 1950’s:

Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders which affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of  exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including  newborn infants.  Have you seen the slogan that states babies are born pre-polluted?   Of  the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than  adults, and their rapid development makes them more vulnerable to      environmental interference. Pound for pound, children breathe more  air, consume more food, and drink more water than adults, due to their  substantial growth and high metabolism. For example, a resting infant  takes in twice as much air per pound of body weight as an adult. Subject  to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1  million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of  toxic chemicals are released into the nation’s environment each year,  including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for  toxicity. Fewer than 20 percent have been studied for their capacity to  interfere with children’s development. This failure to assess chemicals  for their possible hazards represents a grave lapse of stewardship by the  chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of  them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care      centers and hospitals. The United States has only 1.3% of the world’s  population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into  the environment. Some will persist in the environment for decades and even centuries.

What does the industry say in their defense?  The chief argument they use is that the amounts used in products are so low that they don’t cause harm.  We now know that the old belief that “the dose makes the poison” (i.e.,  the higher the dose, the greater the effect)  is simply wrong.  Studies are finding that even tiny quantities of chemicals – in the parts-per-trillion range – can have significant impacts on our health.  Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.

We also now know that time of exposure is critical – because during gestation and  through early childhood  the body is rapidly growing  under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted –  and so on –  until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life.

There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years.   So one could unwittingly be setting the stage for a devastating disease down the road.

And this is where it gets really interesting (or scary):

Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations –  is called “epigenetics”.

Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great grand-daughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[9]  Another recent study has shown that men who started smoking before  puberty caused their sons to have significantly higher rates of obesity. And  obesity is just the tip of the iceberg—many researchers believe that epigenetics  holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[10]  For those of you who are interested, the book by Richard Francis makes a fascinating read.


[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

Advertisements




How to get rid of chemicals in fabrics. (Hint: trick question.)

10 11 2010

Can you wash or otherwise clean conventional fabrics to remove all the toxic residues so that you’d end up with  a fabric that’s as safe as  an organic fabric?  It seems a reasonable question, and sure would be an easy fix if the answer was yes, wouldn’t it?  But let’s explore this question, because it’s really interesting.

Let’s start by looking at one common type of fabric: a lightweight, 4 ounce cotton printed quilting fabric.  In this case the answer is no (and as you’ll find out, our answers will always be no, but read on to see why).

The toxic chemicals in conventionally produced (versus “organically” produced)  cotton fabric that cannot be washed out come from both:

1.      the pesticides and herbicides applied to the crops when growing the cotton and

2.      from the dyes and printing inks and other chemicals used to turn the fibers into fabric.

Let’s first look at the pesticides used during growing of the fiber.

Conventional cotton cultivation uses copious amounts of chemical inputs.  These pesticides are absorbed by the leaves and the roots of the plants. Most pesticides applied to plants have a half life of less than 4 days before degredation.(1)   So pesticides can be found in the plants, but over time the chemicals are degraded so the amount to be found in any bale of cotton fiber is highly depending on time of harvest and how recently the crop had been sprayed.  

Gas chromatography easily shows that  common pesticides used on cotton crops are found in the fibers, such as:  Hexachlorobenzene,  Aldrin, Dieldrin, DDT and DDT. (2)   Look up the toxicity profiles  of those chemicals if you want encouragement to keep even tiny amounts of them out of your house.   With time, as the cotton fibers degrade, these residual chemicals are released.

We could find no studies which looked at the fibers themselves to see if pesticides could be removed by washing, but we did find a study of laundering pesticide-soiled clothing to see if the pesticide could be removed.  Remember, this study (and others like it) was done only on protective clothing worn by workers who are applying the pesticides – so the pesticides are on the outside of the fibers  –   NOT on the fibers themselves during growth.  The study found that, after six washings in a home washing machine, the percent of pesticide remaining in a textile substrate (cotton)  ranged from 1% to 42%.  (3)

If you’re trying to avoid pesticides which are applied to cotton crops, you’d do better to avoid cottonseed oil than the fiber (if processed conventionally) because we eat more of the cotton crop than we wear.  Most of the damage done by the use of pesticides is to our environment – our groundwater and soils.

Before we go further,  let’s do away with the notion that organic cotton, woven conventionally, is safe to use.  Not so.  There are so many chemicals used during the processing phase of fabric production, including detergents, brighteners, bleaches, softeners, and many others that the final fabric is a chemical smorgasbord, and is by weight at least 10% synthetic chemicals (4), many of which have been proven to cause harm to humans.

The chemicals used in conventionally processed organic cotton fabrics make the concerns about  pesticides used in growing the crop pale in comparison:  If we use the new lower chemical inputs that GMO cotton has introduced, it’s now possible to produce 1 lb. of conventionally grown cotton, using just  2.85 oz of chemical pesticides – that’s down from over 4.5 oz used during the 1990’s – a 58% decrease.   So to produce enough cotton fiber to make 25 lbs of cloth,  it would require  just 4.45 lbs of chemical pesticides, fertilizers and insecticides.  Processing that fiber into cloth, however, requires between 2.5 – 25 lbs. of chemicals.  If we take the midpoint, that’s 12.5 lbs of processing chemicals – almost three times what it took to produce the fiber!

There are over 2,000 different kinds of chemicals regularly used in textile production, many of them so toxic that they’re outlawed in other products.  And this toxic bath is used on both organic fibers as well as non-organic fibers – the fibers are just the first step in the weaving and finishing of a fabric. (Make sure you buy organic fibers that are also organically processed  or you do not have an organic fabric.   An organic fabric is one that is  third party certified  to the Global Organic Textile Standard. )      Fabrics – even those made with  organic fibers like organic cotton IF they are conventionally produced and not produced according to GOTS –  contain chemicals such as formaldehyde, azo dyes, dioxin, and heavy metals.  Some of the chemicals  are there as residues from the production, others are added to give certain characteristics to the fabrics such as color, softness, crispness, wrinkle resistance, etc.    And these chemicals are designed to do a job, and do it well. They are designed to NOT wash out.  The dyes, for instance, are called “fiber reactive” dyes because they chemically bind with the fiber molecules in order to remain color fast.   The chemical components of your fabric dye is there as long as the color is there. Many dyes contain a whole host of toxic chemicals.  The heavy metals are common components of fabric dyes.  They are part of the dye and part of the fabric fiber as long as the color remains.

And these chemicals are found in the fabrics we live with.  Studies have shown that the chemicals are available to our bodies:  dioxins (such as the 75 polychlorinated dibenzo-p-dioxins (PCDDs) and 135 polychlorinated dibenzofurans (PCDFs)) were found in new clothing in concentrations ranging from low pg/g to high 300 ng/g in several studies. (5)

 

How do these chemicals get into our bodies from the textiles?  Your skin is the largest organ of your body, and it’s highly permeable.  So skin absorption is one route; another is through inhalation of the chemicals (if they are the type that evaporate – and if they do evaporate, each chemical has a different rate of evaporation, from minutes or hours to weeks or years) and a third route:  Think of microscopic particles of fabric that abrade each time we use a towel, sit on a sofa, put on our clothes.  These microscopic particles fly into the air and then we breathe them in or ingest them.  Or they  fall into the dust of our homes, where people and pets, especially crawling children and pets, continue to breathe or ingest them.

In the United States, often the standards for exposure to these toxins is limited to  workplace standards (based on limits in water or air) or they’re product specific: the FDA sets a maximum limit of cadmium in bottled water to be 0.005 mg/L for example.  So that leaves lots of avenues for continued contamination!

The bad news is that existing legislation on chemicals fails to prohibit the use of hazardous chemicals in consumer products -–and the textile industry, in particular, has no organized voice to advocate for change.  It’s a complex, highly fragmented industry, and it’s up to consumers to demand companies change their policies.  In the United States we’re waking up to the dangers of industrial chemicals, but rather than banning a certain chemical in ALL products, the United States is taking a piece meal approach:  for example,  certain azo dyes (like Red 2G) are prohibited in foods – but only in foods, not fabrics.  But just because the product is not meant to be eaten doesn’t mean we’re not absorbing that Red 2G.  Phthalates are outlawed in California and Washington state in children’s toys – but not in their clothing or bedding.  A Greenpeace study of a Walt Disney PVC Winne the Pooh raincoat found that it contained an astounding 320,000 mg/kg of total phthalates in the coat – or 32% of the weight of the raincoat! (6)

Concerns continue to mount about the safety of textiles and apparel products used by U.S. consumers.  As reports of potential health threats continue to come to light, “we are quite concerned about potentially toxic materials that U.S. consumers are exposed to everyday in textiles and apparel available in this country,” said David Brookstein, Sc.D., dean of the School of Engineering and Textile and director of Philadelphia University’s Institute for Textile and Apparel Product Safety (ITAPS).

The good news is that there are fabrics that have been produced without resorting to these hazardous chemicals.  Look for GOTS!  Demand safe fabrics!

(1)  “Degradation of Pesiticides on Plant Surfaces amd It’s prediction – a case study of tea leaves”, Zongmao, C and Haibin, W., Tea Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, China.   http://www.springerlink.com/content/vg5w5467743r5p41/

(2) “Extraction of Residual Chlorinated Pesticides from Cotton Matrix, El-Nagar, Schantz et.al, Journal of Textile and Apparel, Technology and management,  Vol 4, Issue 2, Fall 2004

(3)  Archives of Environmental Contamination and Toxicology 1992  (23, 85-90)

(4) Laucasse and Baumann,  Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609.

(5) “Dioxins and Dioxin-Like Persistent Organic Pollutants in Textiles” Krizanec, B and Le marechal, Al, Faculty of Mechanical Engineering, Smetanova 17, SI-2000, Maribor, Slovenia, 2006; hrcak.srce.hr/file/6721

(6)   http://www.greenpeace.org/raw/content/greece/137368/toxic-childrensware-by-disney.pdf