Why do we offer safe fabrics?

3 10 2016

Why do we say we want to change the textile industry?  Why do we say we want to produce fabrics in ways that are non-toxic, ethical and sustainable?  What could be so bad about the fabrics we live with?

The textile industry is enormous, and because of its size its impacts are profound.  It uses a lot of three ingredients:

  • Water
  • Chemicals
  • Energy

Water was not included in the 1947 UN Universal Declaration of Human Rights because at the time it wasn’t perceived as having a human rights dimension. Yet today, corporate interests are controlling water, and what is known as the global water justice movement is working hard to ensure the right to water as a basic human right.(1) Our global supply of fresh water is diminishing – 2/3 of the world’s population is projected to face water scarcity by 2025, according to the UN. Our global water consumption rose six fold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, and bleaching use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used before moving on to the next step.  The water is usually returned to our ecosystem without treatment – meaning that the wastewater, which is returned to our streams, contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

With no controls in place to speak of to date, there are now 405 dead zones in our oceans.  Drinking water even in industrialized countries, with treatment in place, nevertheless yields a list of toxins when tested – many of them with no toxicological roadmap.  The textile industry is the #1 industrial polluter of fresh water on the planet – the 9 trillion liters of water used annually in textile processing is usually expelled into our rivers without treatment and is a major source of groundwater pollution.  Now that virtual or “embedded” water tracking is becoming necessary in evaluating products, people are beginning to understand when we say it takes 500 gallons of water to make the fabric to cover one sofa.  We want people to become aware that when they buy anything, and fabric especially, they reinforce the manufacturing processes used to produce it.  Just Google “Greenpeace and the textile industry” to find out what Greenpeace is doing to make people aware of this issue.

Over 8,000 chemicals are used in textile processing, some so hazardous that OSHA requires textile scraps be handled as hazardous waste.   The final product is, by weight, about 23% synthetic chemicals – often the same chemicals that are outlawed in other products.  The following is by no means an all-inclusive list of these chemicals:

  • Alkylphenolethoxylates (APEOs), which are endocrine disruptors;
    • o Endocrine disruptors are a wide range of chemicals which interfere with the body’s endocrine system to produce adverse developmental, reproductive, neurological and immune effects in both humans and wildlife; exposure us suspected to be associated with altered reproductive function in both males and females, increased incidence of breast cancer, abnormal growth patterns and neurodevelopmental delays in children.(2)
  • Pentachlorophenols (PCP)
    • o Long-term exposure to low levels can cause damage to the liver, kidneys, blood, and nervous system. Studies in animals also suggest that the endocrine system and immune system can also be damaged following long-term exposure to low levels of pentachlorophenol. All of these effects get worse as the level of exposure increases.(3)
  • Toluene and other aromatic amines
    • carcinogens (4)
  • Dichloromethane (DCM)
    • Exposure leads to decreased motor activity, impaired memory and other neurobehavioral deficits; brain and liver cancer.(5)
  • Formaldehyde
    • The National Toxicology Program named formaldehyde as a known human carcinogen in its 12th Report on Carcinogens.(6)
  • Phthalates –
    • Associated with a range of effects from liver and kidney diseases to developmental and reproductive effects, reduced fetal weight.(7)
  • Polybrominated diphenyl ethers (PBDE’s)
    • A growing body of research in laboratory animals has linked PBDE exposure to an array of adverse health effects including thyroid hormone disruption, permanent learning and memory impairment, behavioral changes, hearing deficits, delayed puberty onset, decreased sperm count, fetal malformations and, possibly, cancer.(8)
  • Perfluorooctane sulfonates (PFOS)
    • To date, associations have been found between PFOS or PFOA levels in the general population and reduced female fertility and sperm quality, reduced birth weight, attention deficit hyperactivity disorder (ADHD), increased total and non-HDL (bad) cholesterol levels, and changes in thyroid hormone levels.(9)
  • Heavy metals – cadmium, lead, antimony, mercury among others
    • Lead is a neurotoxin (affects the brain and cognitive development) and affects the reproductive system; mercury is a neurotoxin and possibly carcinogenic; cadmium damages the kidneys, bones and the International Agency for Research on Cancer has classified it as a human carcinogen; exposure to antimony can cause reproductive disorders and chromosome damage.

The textile industry uses huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.  For example, steam used in the textile manufacturing process is often generated in inefficient and polluting coal-fired boilers.  Based on estimated annual global textile production of 60 billion kilograms (KG) of fabric, the estimated energy needed to produce that fabric boggles the mind:  1,074 billion KWh of electricity (or 132 million metric tons of coal).  It takes 3886 MJ of energy to produce 25 yards of nylon fabric (about the amount needed to cover one sofa).  To put that into perspective, 1 gallon of gasoline equals 131 MJ of energy; driving a Lamborghini from New York to Washington D.C. uses approximately 2266 MJ of energy.(10)

Today’s textile industry is also one of the largest sources of greenhouse gasses on the planet: in the USA alone, it accounts for 5% of the country’s CO2 production annually; China’s textile sector alone would rank as the 24th– largest country in the world.(11)

We succeeded in producing the world’s first collection of organic fabrics that were gorgeous and green – and safe.    In 2007, those fabrics won “Best Merchandise” at Decorex (www.decorex.com).    In 2008, our collection was named one of the Top Green Products of 2008 by BuiltGreen/Environmental Building News. As BuiltGreen/EBN takes no advertising dollars, their extensive research is prized by the green building industry (www.buildinggreen.com).

We are a tiny company with an oversized mission.  We are challenged to be a triple bottom line company, and we want to make an outsized difference through education for change  – so that a sufficiently large number of consumers will know which questions to ask that will force change in an industry.  We believe that a sufficiently large number of people will respond to our message to force profound positive change: by demanding safe fabric, produced safely, our environment and our health will be improved.

The issues that distinguish us from other fabric distributors, in addition to offering fabrics whose green pedigree is second to none:

    1. We manage each step of the production process from fiber to finished fabric, unlike other companies, which buy mill product and choose only the color palette of the production run.    Those production process steps include fiber preparation, spinning, weaving, dyeing, printing and finishing; with many sub-steps such as sizing and de-sizing, bleaching, slashing, etc.
    2. We educate consumers and designers on the issues that are important to them – and to all of us. Our blog on the topic of sustainability in the textile industry has grown from about 2 hits a day to 2,000, and is our largest source of new customers.
    3. We are completely transparent in all aspects of our production and products.    We want our brand to be known not only as the “the greenest”, but for honesty and authenticity in all claims.  This alignment between our values, our claims and our products fuels our passion for the business.
    4. We are the only collection we know of which sells only “safe” fabrics.

We serve multiple communities, but we see ourselves as being especially important to two communities:  those who work to produce our fabric and those who use it, especially children and their parents.

    • By insisting on the use of safe chemicals exclusively, we improve the working conditions for textile workers.  And by insisting on water treatment, we mitigate the effects of even benign chemicals on the environment – and the workers’ homes and agricultural land.  Even salt, used in copious amounts in textile processing, will ruin farmland and destroy local flora and fauna if not neutralized before being returned to the local waters.
    • For those who use our fabric, chemicals retained in the finished fibers do not add to our “body burden “, which is especially important for children, part of our second special community.  A finished fabric is, by weight, approximately 23% synthetic chemicals. Those chemicals are not benign.  Textile processing routinely uses chemicals with known toxic profiles such as lead, mercury, formaldehyde, arsenic and benzene – and many other chemicals, many of which have never been tested for safety.

Another thing we’d like you to know about this business is the increasing number of people who contact us who have been harmed by fabric (of all things!) because we represent what they believe is an honest attempt at throwing light on the subject of fabric processing.   Many are individuals who suffer from what is now being called “Idiopathic Environmental Intolerance” or IEI (formerly called Multiple Chemical Sensitivity), who are looking for safe fabrics.  We’ve also been contacted on behalf of groups, for example,   flight attendants, who were given new uniforms in 2011, which caused allergic reactions in a large number of union members.

These incidences of fabric-induced reactions are on the rise.   As we become more aware of the factors that influence our health, such as we’re seeing currently with increased awareness of the effects of interior air quality, designers and others will begin to see their way to specifying “safe” fabrics  just as their code of ethics demands.(12)  We feel certain that the trajectory for such an important consumer product as fabric, which surrounds us most of every hour of the day, will mimic that of organic food.

We say our fabrics are luxurious – because luxury has become more about your state of mind than the size of your wallet. These days, people define luxury by such things as a long lunch with old friends, the good health to run a 5K, or waking up in the morning and doing exactly what you want all day long.  In the past luxury was often about things.  Today, we think it’s not so much about having as it is about being knowledgeable about what you’re buying – knowing that you’re buying the best and that it’s also good for the world.  It’s also about responsibility: it just doesn’t feel OK to buy unnecessary things when people are starving and the world is becoming overheated.  It’s about products being defined by how they make you feel –  “conscious consumption” – and giving you ways to find personal meaning and satisfaction.

 

(1) Barlow, Maude, Blue Covenant: The Global Water Crisis and the coming Battle for the Right to Water, October 2007

(2)World Health Organization, http://www.who.int/ceh/risks/cehemerging2/en/

(3)Agency for Toxic Substances & Disease Registry 2001, https://www.atsdr.cdc.gov/phs/phs.asp?id=400&tid=70

(4)Centers for Disease Control and Prevention, Publication # 90-101; https://www.cdc.gov/niosh/docs/90-101/

(5)Cooper GS, Scott CS, Bale AS. 2011. Insights from epidemiology into dichloromethane and cancer risk. Int J Environ Res Public Health 8:3380–3398.

(6)National Toxicology Program (June 2011). Report on Carcinogens, Twelfth Edition. Department of Health and Human Services, Public Health Service, National Toxicology Program. Retrieved June 10, 2011, from: http://ntp.niehs.nih.gov/go/roc12.

(7)Hauser, R and Calafat, AM, “Phthalates and Human Health”, Occup Environ Med 2005;62:806–818. doi: 10.1136/oem.2004.017590

(8)Environmental Working Group, http://www.ewg.org/research/mothers-milk/health-risks-pbdes

(9)School of Environmental Health, University of British Columbia; http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf

(10) Annika Carlsson-Kanyama and Mireille Faist, 2001, Stockholm University Dept of Systems Ecology, htp://organic.kysu.edu/EnergySmartFood(2009).pdf

(11)Based on China carbon emissions reporting for 2010 from Energy Information Administration (EIA); see U.S. Department of Energy, Carbon Emissions from Energy Generation by Country, http://www.eia.gov/ cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8 (accessed September 28, 2012). Estimate for China textile sector based on industrial emissions at 74% of total emissions, and textile industry
as 4.3% of total industrial emissions; see EIA, International Energy Outlook 2011, U.S. Department of Energy.

(12)Nussbaumer, L.L, “Multiple Chemical Sensitivity: The Controversy and Relation to Interior Design”, Abstract, South Dakota State University

Advertisements




More about fabric choices for your sofa.

25 06 2015

Our previous blog post we talked about fabric – how to determine the quality of the fabric you’re considering for your new sofa.  But the most important consideration merits a blog all its own, and that is the safety of the fabrics you’ve chosen.  We define “safe” as a fabric that has been processed with none of the many chemicals known to harm human health – and in a perfect world we’d  throw in water treatment and human rights/labor issues too.

It’s a great idea to start with organic fibers, if you can.  By substituting organic natural fibers for conventionally grown fibers you are supporting organic agriculture, which has myriad environmental, social and health benefits. Not only does organic farming take far less energy than conventional farming (largely because it does not use oil based fertilizers)[1], which helps to mitigate climate change, but it also:

  • Eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is an improvement in human health and agrobiodiversity;
  • Conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion);
  • Ensures sustained biodiversity;
  • And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire.

Organic production has a strong social element and includes many Fair Trade and ethical production principles. As such it can be seen as more than a set of agricultural practices, but also as a tool for social change [2]. For example, one of the original goals of the organic movement was to create specialty products for small farmers who could receive a premium for their products and thus be able to compete with large commercial farms.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years) shows conclusively that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [3]

But even if you start with organic natural fibers (a great choice!) but process those fibers conventionally, then you end up with a fabric that is far from safe. Think about making applesauce: if you start with organic apples, then add Red Dye #2, preservatives, emulsifiers, stabilizers and who knows what else – do you end up with organic applesauce? The US Department of Agriculture would not let you sell that mixture as organic applesauce.  There is no similar protection for consumers when buying fabric, even though the same issues apply, because over 2000 chemicals are used routinely in textile processing.[4] Many of the chemicals used in textile processing have unknown toxicity, and many others are known to be harmful to humans (such as formaldehyde, lead, mercury, bisphenol A and other phthalates, benzenes and others). In fact, one yard of fabric made with organic cotton fiber is about 25% by weight synthetic chemicals – many of which are proven toxic to humans [5] and are outlawed in other products.

I know you’re saying that you don’t eat those fabrics, so what’s the danger? Actually, your body is busy ingesting the chemicals, which are evaporating (so we breathe them in), or through skin absorption (after all, the skin is the largest organ of the body). Add to that the fact that each time you brush against the fabric, microscopic pieces of the fabric abrade and fly into the air – so we can breathe them in. Or they fall into the dust in our homes, where pets and crawling babies breathe them in.

Should that be a concern? Well, there is hardly any evidence of the effects of textiles themselves on individuals, but in the US, OSHA does care about workers, so most of the studies have been done on workers in the textile industry:

  • Autoimmune diseases (such as IBD, diabetes, rheumatoid arthritis, for example, which are linked to many of the chemicals used in textile processing) are reaching epidemic rates, and a 14 year study published by the University of Washington and the National Institutes of Health found that people who work with textiles (among other industries) are more likely to die of an autoimmune disease than people who don’t [6];
  • We know formaldehyde is bad for us, but in fabric? A study by The National Institute for Occupational Safety and Health found a link in textile workers between length of exposure to formaldehyde and leukemia deaths. [7] Note: most cotton/poly sheet sets in the U.S. are treated with a formaldehyde resin.
  • Women who work in textile factories which produce acrylic fibers have seven times the risk of developing breast cancer than does the normal population.[8]
  • A study in France revealed a correlation between the presence of cancer of the pharynx and occupation in the textile industry.[9]
  • A high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer has been found among textile workers, and a relationship between non-Hodgkin’s lymphoma and working in the textile industry was observed.[10]

And consider this:

  • The Mt. Sinai Children’s Environmental Health Center published a list of the top 10 chemicals they believe are linked to autism – and of the 10, 6 are used in textile processing and 2 are pesticides used on fiber crops. [11].
  • Phthalates are so toxic that they have been banned in the European Union since 2005. They have recently been banned in the State of California in children’s toys. They are ubiquitous – and are also found in most textile inks.[12] So parents careful not to bring toxic toys into their homes for can be nevertheless unknowingly putting their kids to sleep on cute printed sheets full of phthalates.

Are these rates of disease and the corresponding rise in the use of industrial chemicals a coincidence? Are our increased rates of disease due to better diagnosis? Some argue that we’re confronting fewer natural pathogens. All plausible.  But it’s also true that we’re encountering an endless barrage of artificial pathogens that are taxing our systems to the maximum. And our children are the pawns in this great experiment. And if you think artificial  pathogens  are  not the main culprits, your opinion is not shared by a goodly number of scientists, who believe that this endless barrage of artificial pathogens that is taxing our systems to the max has replaced bacteria and viruses as the major cause of human illness. We don’t have to debate which source is primary; especially because, with the rise of super bugs, it’s a silly debate. The point remains that industrial pollution is a cause of human illness – and it is a cause we can take concrete actions to stem.

Textiles are the elephant in the room – the industry is global, relatively low tech, and decentralized – certainly not the darling of venture capitalists who look for the next big thing. So not many research dollars are going into new ways of producing fabrics. Most of the time people are looking for the lowest price fabric for their projects or products – so the industry is on a race to cut costs in any way possible: in 2007, the Wall Street Journal’s Jane Spencer detailed the pollution caused by Chinese textile industries who were being pushing by their multinational clients to cut costs, resulting in untreated effluent discharge [13].

You can begin to protect yourself by looking for fabrics that have third party certifications:  either Oeko-Tex or The Global Organic Textile Standard (GOTS), which we believe is the gold standard in textiles because though Oeko-Tex assures you of a safe fabric and while GOTS confirms the same assurance, GOTS  also requires water treatment (important because the textile industry is the #1 industrial polluter of water on the planet (14) – and in this era of water shortages we have to start paying attention to our water resources) and prohibits child or slave labor (sadly still an issue) and makes sure workers have safe conditions to work in and are paid fair wages.

[1] Aubert, C. et al., (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers.

[2] Fletcher, Kate, Sustainable Fashion and Textiles, p. 19

[3] http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf Also see: Muller, Adrian, “Benefits of Organic Agriculture as a Climate change Adaptation and Mitigation Strategy for Developing Countries’, Environement for Development, April 2009

[4] See the American Association of Textile Chemists and Colorists’ (AATCC) Buyers Guide, http://www.aatcc.org/

[5] Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609

[6] Nakazawa, Donna Jackson, “Diseases Like Mine are a Growing Hazard”, Washington Post, March 16, 2008

[7] Pinkerton, LE, Hein, MJ and Stayner, LT, “Mortality among a cohort of garment workers exposed to formaldehyde: an update”, Occupational Environmental Medicine, 2004 March, 61(3): 193-200.

[8] Occupational and Environmental Medicine 2010, 67:263-269 doi:

10.1136/oem.2009.049817 SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321

[9] Haguenour, J.M., “Occupational risk factors for upper respiratory tract and upper digestive tract cancers” , Occupational and Environmental Medicine, Vol 47, issue 6 (Br J Ind Med1990;47:380-383 doi:10.1136/oem.47.6.380).

[10] http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp

[11]http://www.mountsinai.org/patient-care/service-areas/children/areas-of-care/childrens-environmental-health-center/cehc-in-the-news/news/mount-sinai-childrens-environmental-health-center-publishes-a-list-of-the-top-ten-toxic-chemicals-suspected-to-cause-autism-and-learning-disabilities

[12] “Textile Inkmaker Tackles Phthalates Ban”, Esther D’Amico, Chemical Week, September 22, 2008 SEE ALSO: Toxic Textiles by Disney, http://archive.greenpeace.org/docs/disney.pdf

[13] Spencer, Jane, “China Pays Steep Price as Textile Exports Boom”, Wall Street Journal, August 22, 2007.

(14)  Cooper, Peter, “Clearer Communication”, Ecotextile News, May 2007





Why are “endocrine disruptors” a concern?

6 03 2015

 

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals. Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often and in vast quantities in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[1] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, his/her pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[2], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

endocrine disruptor

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. They have become a part of our indoor environment, found in cosmetics, cleaning compounds, baby and children’s toys, food storage containers, furniture and carpets, computers, phones, and appliances. We encounter them as plastics and resins every day in our cars, trucks, planes, trains, sporting goods, outdoor equipment, medical equipment, dental sealants, and pharmaceuticals. Without fire retardants we would not be using our computers or lighting our homes. Instead of steel and wood, plastics and resins are now being used to build homes and offices, schools, etc. A large portion of pesticides are endocrine disruptors.

What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development. In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”

  1. Age at time of exposure is critical. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  2. The developmental basis of adult disease also has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. In other words, the consequences of exposure may not be apparent early in life.
  3. Exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[3]
  4. Even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window[4]. Surprisingly, low doses may even exert more potent effects than higher doses.

    Carol Kwiatkowski, director of TEDX

    Carol Kwiatkowski, director of TEDX

  5. EDCs may affect not only the exposed individual but also the children and subsequent generations.[5]

TEDX (The Endocrine Disruption Exchange, Inc.) is the only organization that focuses primarily on the human health and environmental problems caused by low-dose and/or ambient exposure to endocrine disrupting chemicals.

TEDX’s work is prevention driven, and it is the only environmental organization that focuses on the problems associated with endocrine disruption attributable to synthetic chemicals found in the general environment. While there are other national, international, and local organizations that address the public health and environmental consequences of toxic chemicals in the environment, none of them expressly emphasize endocrine disruption. By mainly focusing on substances in the environment that interfere with development and function throughout all life stages, TEDX has one of the most complete databases in the world on this topic, available for those concerned about public health and environmental quality. This database was developed because traditional toxicological protocols have used high doses on fully developed tissues and individuals that heretofore missed the consequences of chemical substances on developing tissues.

TEDX is unique because it focuses on the damaging activity of chemicals on biological systems from an entirely new approach. This new approach focuses on the effects of very low and ambient levels of exposure on developing tissue and resulting function before an individual is born, which can lead to irreversible, chronic disorders expressed at any time throughout the individual’s life.

Endocrine disruption takes into consideration the vulnerability of every individual in the population during their most vulnerable life stages. By providing this unique perspective on the actions of endocrine disruptors, TEDX fills in the very large gap in public health protection that traditional toxicology and government regulatory agencies do not fill. Drawing upon its computerized databases on endocrine disruption and coordination with researchers in the field of endocrine disruption, TEDX provides the very latest summaries of the state of knowledge and its meaning for human health and the environment.

 As the TEDX website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects.. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken. TEDX provides concerned persons and organizations with a science-based foundation for individuals to act and promote responsive public policy-making. Moreover, as federal government resources devoted to research on endocrine disruption have diminished due to budget cuts, TEDX must assume an even more prominent role in developing and disseminating information on the human and environmental impacts of endocrine disruption.”

To date, no chemical in use has been thoroughly tested for its endocrine disrupting effects. Traditional toxicological testing protocols were not designed to test for endocrine disruption and to test at ambient or low exposure levels.

 

 

[1] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[2] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Tyupe 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

[3] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K 2003 Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals. Pure and Applied Chem- istry, SCOPE/IUPAC Project Implications of Endocrine Ac- tive Substances for Humans and Wildlife 75:2305–2320

[4] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D 1999 No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect 107:155–159

[5] Anway MD, Skinner MK 2006 Epigenetic transgenera- tional actions of endocrine disruptors. Endocrinology 147: S43–S49

 





Phthalate concerns for pregnant women

29 01 2015

Three pregnant women

As if we needed something else to worry about, a peer-reviewed study from the Mailman School of Public Health at Columbia University, published in December 2014, found evidence that chemicals called phthalates can impact the children of pregnant women who were exposed to those chemicals. Children of moms who had the highest levels of phthalates during pregnancy had markedly lower IQs at age 7. [1] Phthalates had previously been linked to effects ranging from behavioral disorders and cancers to deformations of the sex organs.

Why are we talking about this in a blog about fabrics?

Because phthalates are in the fabrics we use.  Generally, phthalates are used to make plastic soft: they are the most commonly used plasticizers in the world and are pretty much ubiquitous. They’re found in perfume, hair spray, deodorant, almost anything fragranced (from shampoo to air fresheners to laundry detergent), nail polish, insect repellent, carpeting, vinyl flooring, the coating on wires and cables, shower curtains, raincoats, plastic toys, and your car’s steering wheel, dashboard, and gearshift. (When you smell “new car,” you’re smelling phthalates.) Medical devices are full of phthalates — they make IV drip bags and tubes soft, but unfortunately, DEHP is being pumped directly into the bloodstream of ailing patients. Most plastic sex toys are softened with phthalates.

Phthalates are found in our food and water, too. They are in dairy products, possibly from the plastic tubing used to milk cows. They are in meats (some phthalates are attracted to fat, so meats and cheeses have high levels, although it’s not entirely clear how they are getting in to begin with). You’ll find phthalates in tap water that’s been tainted by industrial waste, and in the pesticides sprayed on conventional fruits and vegetables.

And fabrics. People just don’t think to even mention fabrics, which we continue to identify as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% by weight of the fabric.[2] Phthalates are one of the main components of plastisol screen printing inks used on fabrics. These plasticizers are not chemically bound to the PVC, so they can leach out. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Phthalates are what is termed an “endocrine disruptor” – which means they interfere with the action of hormones. Hormones do a lot more than just make the sexual organs develop. During the development of a fetus, they fire on and off at certain times to affect the brain and other organs.

“The developing brain relies on hormones,” Dr. Factor-Litvak, the lead scientist of the study, said. Thyroid hormones affect the development of neurons, for example. There might be a window of vulnerability during pregnancy when certain key portions of the brain are forming, she said, and kids whose moms take in a lot of the chemicals during those times might be at risk of having the process disrupted somehow.

“These findings further suggest a potential role for phthalates on neurodevelopment,” said Dr. Maida P. Galvez, who did not work on the study but has a specialty in environmental pediatrics. The associate professor is in the Department of Preventive Medicine and Pediatrics at the Icahn School of Medicine at Mount Sinai. “While this requires replication in other study populations for confirmation, it underscores the fact that chemicals used in everyday products need to be rigorously evaluated for their full potential of human health impacts before they are made widely available in the marketplace.”[3]

In the United States, the new Consumer Product Safety Improvement Act of 2008 (CPSIA) banned certain phthalates from use in toys or certain products marketed to children. In order to comply with this law, a product must not contain more than 0.1% of any of six banned phthalates. But just these six – the class of phthalates includes more than 25 different chemicals.

Gwynne Lyons, policy director of the campaign group, CHEM Trust, said: “The number of studies showing that these substances can cause harm is growing, but efforts by Denmark to try and get EU action on some phthalates had run into difficulties, largely because of concerns about the costs to industry.” [4] (our highlight!)

[1] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[2] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[3] Christensen, “Exposure to common household chemicals may cause IQ drop”, CNN, December 11, 2014 http://www.cnn.com/2014/12/11/health/chemical-link-to-lower-iq/

[4] Sample, Ian, “Phthalates risk damaging children’s IQs in the womb, US researchers suggest”, The Guardian, December 10, 2014





Toxic textiles by Walt Disney

27 01 2011

The Walt Disney Corporation,  in a letter to Greenpeace in 2003, said that “the Walt Disney Company is always concerned with quality and safety”.

Greenpeace decided to test that statement, so – as part of their campaign to show how dangerous chemicals are out of control, turning up in house dust, in household products, food, rain water, in our clothes……and ultimately in our bodies – they decided to test Disney’s childrenswear for the presence of toxic chemicals.

Disney garments, including T-shirts, pajamas and underwear, were bought in retail outlets in 19 different countries around the world and  analyzed  by the independent laboratory Eurofins, an international group of companies which provides testing, certification and consulting on the quality and safety of products and one of the largest scientific testing laboratories in the world. 

Greenpeace asked Eurofins to test the Disney childrenswear for:

1.      Phthalates

2.      Alkylphenol ethoxylates

3.      Organotins

4.      Lead

5.      Cadmium

6.      Formaldehyde

We don’t have the space to fill you in on why each of these six chemicals is of grave concern, but please believe us – they’re not good.  Any one of these chemicals can interfere with a child’s neurological development, for example, or can set the path for a cascade of health problems as they age.   

This is what they found:

1.      Phthalates:  Found in all the garments tested, from 1.4 mg/kg to 200,000 mg/kg – or more than 20% of the weight of the sample.

2.      Alkylphenol ethoxylates: Found in all the garments tested, in levels ranging from 34.1 mg/kg to 1,700 mg/kg

3.      Organotins:  found in 9 of the 16 products tested; the Donald Duck T shirt from The Netherlands had 474 micrograms/kg

4.      Lead:  Found in all the products tested, ranging from 0.14 mg/kg to 2,600 mg/kg for a Princess T shirt from Canada.  With Denmark’s new laws on the use, marketing and manufacture of lead   and products containing lead, the Princess T shirt from Canada would be illegal on the Danish market.  Canada has set a limit of 600 mg/kg for children’s jewelry containing lead – why not Disney T shirts?

5.      Cadmiun:  Identified in 14 of the 18 products tested, ranging from 0.0069 mg/kg in the Finding Nemo T shirt bought in the UK to 38 mg/kg in the Belgian Mickey Mouse T shirt.

6.      Formaldehyde:  Found in 8 of the 15 products tested for this chemical in levels ranging from 23 mg/kg to 1,100 mg/kg.

One sample stands out: a German Winnie the Pooh PVC raincoat.  This contained an astounding 320,000 mg/kg of total phthalates, or 32% by weight of the raincoat!  This raincoat also contained 1,129 micrograms/kg organotins.

Greenpeace urged Disney to take responsibility for avoiding or substituting harmful chemicals in their products and to demand that their licensees implement a chemical policy that protects children’s heath.  Disney reacted by stating that their products are in line with the law.    The only action taken was to put labels on some products with a warning that those clothes contain toxic chemicals – but  only in the UK (which has more stringent laws regarding chemical use than does the US), and only on a few items.  Greenpeace Toxics Campaigner Oliver Knowles said, “”Their complete disregard for children’s health smacks of a Mickey Mouse company, and it’s now down to us to let the public know that these pyjamas contain dangerous chemicals.

“Perhaps it would be more apt if Buzz Lightyear’s catchphrase became   “To infertility and beyond!”

SAFbaby.com has asked a variety of children’s clothing companies whether their clothing contained formaldehyde.  Disney responded that they comply with all Consumer Product Safety Commission (CPSC) regulations.   But (as SAFbaby commented): CPSC has NO regulations set for formaldehyde levels, so that reply was not helpful to us in the slightest.  We are not impressed with their follow up response to us.

Disney’s refusal to be pro active in insisting their suppliers phase out hazardous substances demonstrates why voluntary initiatives don’t work.  We support Greenpeace in asking that legislation  to require mandatory substitution of hazardous chemicals with safer alternatives be put in place.

Read the Greenpeace report on Disney’s childrenswear here.





How to get rid of chemicals in fabrics. (Hint: trick question.)

10 11 2010

Can you wash or otherwise clean conventional fabrics to remove all the toxic residues so that you’d end up with  a fabric that’s as safe as  an organic fabric?  It seems a reasonable question, and sure would be an easy fix if the answer was yes, wouldn’t it?  But let’s explore this question, because it’s really interesting.

Let’s start by looking at one common type of fabric: a lightweight, 4 ounce cotton printed quilting fabric.  In this case the answer is no (and as you’ll find out, our answers will always be no, but read on to see why).

The toxic chemicals in conventionally produced (versus “organically” produced)  cotton fabric that cannot be washed out come from both:

1.      the pesticides and herbicides applied to the crops when growing the cotton and

2.      from the dyes and printing inks and other chemicals used to turn the fibers into fabric.

Let’s first look at the pesticides used during growing of the fiber.

Conventional cotton cultivation uses copious amounts of chemical inputs.  These pesticides are absorbed by the leaves and the roots of the plants. Most pesticides applied to plants have a half life of less than 4 days before degredation.(1)   So pesticides can be found in the plants, but over time the chemicals are degraded so the amount to be found in any bale of cotton fiber is highly depending on time of harvest and how recently the crop had been sprayed.  

Gas chromatography easily shows that  common pesticides used on cotton crops are found in the fibers, such as:  Hexachlorobenzene,  Aldrin, Dieldrin, DDT and DDT. (2)   Look up the toxicity profiles  of those chemicals if you want encouragement to keep even tiny amounts of them out of your house.   With time, as the cotton fibers degrade, these residual chemicals are released.

We could find no studies which looked at the fibers themselves to see if pesticides could be removed by washing, but we did find a study of laundering pesticide-soiled clothing to see if the pesticide could be removed.  Remember, this study (and others like it) was done only on protective clothing worn by workers who are applying the pesticides – so the pesticides are on the outside of the fibers  –   NOT on the fibers themselves during growth.  The study found that, after six washings in a home washing machine, the percent of pesticide remaining in a textile substrate (cotton)  ranged from 1% to 42%.  (3)

If you’re trying to avoid pesticides which are applied to cotton crops, you’d do better to avoid cottonseed oil than the fiber (if processed conventionally) because we eat more of the cotton crop than we wear.  Most of the damage done by the use of pesticides is to our environment – our groundwater and soils.

Before we go further,  let’s do away with the notion that organic cotton, woven conventionally, is safe to use.  Not so.  There are so many chemicals used during the processing phase of fabric production, including detergents, brighteners, bleaches, softeners, and many others that the final fabric is a chemical smorgasbord, and is by weight at least 10% synthetic chemicals (4), many of which have been proven to cause harm to humans.

The chemicals used in conventionally processed organic cotton fabrics make the concerns about  pesticides used in growing the crop pale in comparison:  If we use the new lower chemical inputs that GMO cotton has introduced, it’s now possible to produce 1 lb. of conventionally grown cotton, using just  2.85 oz of chemical pesticides – that’s down from over 4.5 oz used during the 1990’s – a 58% decrease.   So to produce enough cotton fiber to make 25 lbs of cloth,  it would require  just 4.45 lbs of chemical pesticides, fertilizers and insecticides.  Processing that fiber into cloth, however, requires between 2.5 – 25 lbs. of chemicals.  If we take the midpoint, that’s 12.5 lbs of processing chemicals – almost three times what it took to produce the fiber!

There are over 2,000 different kinds of chemicals regularly used in textile production, many of them so toxic that they’re outlawed in other products.  And this toxic bath is used on both organic fibers as well as non-organic fibers – the fibers are just the first step in the weaving and finishing of a fabric. (Make sure you buy organic fibers that are also organically processed  or you do not have an organic fabric.   An organic fabric is one that is  third party certified  to the Global Organic Textile Standard. )      Fabrics – even those made with  organic fibers like organic cotton IF they are conventionally produced and not produced according to GOTS –  contain chemicals such as formaldehyde, azo dyes, dioxin, and heavy metals.  Some of the chemicals  are there as residues from the production, others are added to give certain characteristics to the fabrics such as color, softness, crispness, wrinkle resistance, etc.    And these chemicals are designed to do a job, and do it well. They are designed to NOT wash out.  The dyes, for instance, are called “fiber reactive” dyes because they chemically bind with the fiber molecules in order to remain color fast.   The chemical components of your fabric dye is there as long as the color is there. Many dyes contain a whole host of toxic chemicals.  The heavy metals are common components of fabric dyes.  They are part of the dye and part of the fabric fiber as long as the color remains.

And these chemicals are found in the fabrics we live with.  Studies have shown that the chemicals are available to our bodies:  dioxins (such as the 75 polychlorinated dibenzo-p-dioxins (PCDDs) and 135 polychlorinated dibenzofurans (PCDFs)) were found in new clothing in concentrations ranging from low pg/g to high 300 ng/g in several studies. (5)

 

How do these chemicals get into our bodies from the textiles?  Your skin is the largest organ of your body, and it’s highly permeable.  So skin absorption is one route; another is through inhalation of the chemicals (if they are the type that evaporate – and if they do evaporate, each chemical has a different rate of evaporation, from minutes or hours to weeks or years) and a third route:  Think of microscopic particles of fabric that abrade each time we use a towel, sit on a sofa, put on our clothes.  These microscopic particles fly into the air and then we breathe them in or ingest them.  Or they  fall into the dust of our homes, where people and pets, especially crawling children and pets, continue to breathe or ingest them.

In the United States, often the standards for exposure to these toxins is limited to  workplace standards (based on limits in water or air) or they’re product specific: the FDA sets a maximum limit of cadmium in bottled water to be 0.005 mg/L for example.  So that leaves lots of avenues for continued contamination!

The bad news is that existing legislation on chemicals fails to prohibit the use of hazardous chemicals in consumer products -–and the textile industry, in particular, has no organized voice to advocate for change.  It’s a complex, highly fragmented industry, and it’s up to consumers to demand companies change their policies.  In the United States we’re waking up to the dangers of industrial chemicals, but rather than banning a certain chemical in ALL products, the United States is taking a piece meal approach:  for example,  certain azo dyes (like Red 2G) are prohibited in foods – but only in foods, not fabrics.  But just because the product is not meant to be eaten doesn’t mean we’re not absorbing that Red 2G.  Phthalates are outlawed in California and Washington state in children’s toys – but not in their clothing or bedding.  A Greenpeace study of a Walt Disney PVC Winne the Pooh raincoat found that it contained an astounding 320,000 mg/kg of total phthalates in the coat – or 32% of the weight of the raincoat! (6)

Concerns continue to mount about the safety of textiles and apparel products used by U.S. consumers.  As reports of potential health threats continue to come to light, “we are quite concerned about potentially toxic materials that U.S. consumers are exposed to everyday in textiles and apparel available in this country,” said David Brookstein, Sc.D., dean of the School of Engineering and Textile and director of Philadelphia University’s Institute for Textile and Apparel Product Safety (ITAPS).

The good news is that there are fabrics that have been produced without resorting to these hazardous chemicals.  Look for GOTS!  Demand safe fabrics!

(1)  “Degradation of Pesiticides on Plant Surfaces amd It’s prediction – a case study of tea leaves”, Zongmao, C and Haibin, W., Tea Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, China.   http://www.springerlink.com/content/vg5w5467743r5p41/

(2) “Extraction of Residual Chlorinated Pesticides from Cotton Matrix, El-Nagar, Schantz et.al, Journal of Textile and Apparel, Technology and management,  Vol 4, Issue 2, Fall 2004

(3)  Archives of Environmental Contamination and Toxicology 1992  (23, 85-90)

(4) Laucasse and Baumann,  Textile Chemicals: Environmental Data and Facts, Springer, New York, 2004, page 609.

(5) “Dioxins and Dioxin-Like Persistent Organic Pollutants in Textiles” Krizanec, B and Le marechal, Al, Faculty of Mechanical Engineering, Smetanova 17, SI-2000, Maribor, Slovenia, 2006; hrcak.srce.hr/file/6721

(6)   http://www.greenpeace.org/raw/content/greece/137368/toxic-childrensware-by-disney.pdf