Our response to the Flint water crisis

22 06 2016

 

An editorial by Nicholas Kristof was published in the February 13, 2016, issue of the New York Times entitled: “Are you a Toxic Waste Disposal Site?” We think Mr. Kristof makes some great points, so we’ve published the entire editorial below:

EVEN if you’re not in Flint, Mich., there are toxic chemicals in your home. For that matter, in you.

Scientists have identified more than 200 industrial chemicals — from pesticides, flame retardants, jet fuel — as well as neurotoxins like lead in the blood or breast milk – of Americans, indeed, in people all over our planet.

These have been linked to cancer, genital deformities, lower sperm count, obesity and diminished I.Q. Medical organizations from the President’s Cancer Panel to the International Federation of Gynecology and Obstetrics have demanded tougher regulations or warned people to avoid them, and the cancer panel has warned that “to a disturbing extent, babies are born ‘pre-polluted.’”

They have all been drowned out by chemical industry lobbyists.

So we have a remarkable state of affairs:

■ Politicians are (belatedly!) condemning the catastrophe of lead poisoning in Flint. But few acknowledge that lead poisoning in many places in America is even worse than in Flint. Kids are more likely to suffer lead poisoning in Pennsylvania or Illinois or even most of New York State than in Flint. More on that later.

■ Americans are panicking about the mosquito-borne Zika virus and the prospect that widespread infection may reach the United States. That’s a legitimate concern, but public health experts say that toxic substances around us seem to pose an even greater threat.

“I cannot imagine that the Zika virus will damage any more than a small fraction of the total number of children who are damaged by lead in deteriorated, poor housing in the United States,” says Dr. Philip Landrigan, a prominent pediatrician and the dean for global health at the Icahn School of Medicine at Mount Sinai. “Lead, mercury, PCBs, flame retardants and pesticides cause prenatal brain damage to tens of thousands of children in this country every year,” he noted.

Yet one measure of our broken political system is that chemical companies, by spending vast sums on lobbying— $100,000 per member of Congress last year — block serious oversight.[1] Almost none of the chemicals in products we use daily have been tested for safety.

Maybe, just maybe, the crisis in Flint can be used to galvanize a public health revolution.

In 1854, a British doctor named John Snow started such a revolution. Thousands were dying of cholera at the time, but doctors were resigned to the idea that all they could do was treat sick patients. Then Snow figured out that a water pump on Broad Street in London was the source of the cholera[2]. The water company furiously rejected that conclusion, but Snow blocked use of the water pump, and the cholera outbreak pretty much ended. This revelation led to the germ theory of disease and to investments in sanitation and clean water. Millions of lives were saved.

Now we need a similar public health revolution focusing on the early roots of many pathologies.

For example, it’s scandalous that 535,000 American children ages 1 to 5 still suffer lead poisoning, according to the Centers for Disease Control and Prevention[3]. The poisoning is mostly a result of chipped lead paint in old houses or of lead-contaminated soil being tracked into homes, although some areas like Flint also have tainted tap water. (Note:  fabrics often contain lead in the dyes used and as a catalyst in the dyeing process.)

lead paint

While the data sets are weak, many parts of America have even higher rates of child lead poisoning than Flint, where 4.9 percent of children tested have had elevated lead levels in their blood. In New York State outside New York City, it’s 6.7 percent. In Pennsylvania, 8.5 percent. In parts of Detroit, it’s 20 percent. The victims are often poor or black.[4]

Infants who absorb lead are more likely to grow up with shrunken brains and diminished I.Q.[5] They are more likely as young adults to engage in risky sexual behavior, to disrupt school and to commit violent crimes. Many researchers believe that the worldwide decline in violent crime beginning in the 1990s is partly a result of lead being taken out of gasoline in the late 1970s. The stakes are enormous, for individual opportunity and for social cohesion.

Fortunately, we have some new Dr. Snows for the 21st century.

A group of scholars, led by David L. Shern of Mental Health America, argues that the world today needs a new public health revolution focused on young children, parallel to the one mounted for sanitation after Snow’s revelations about cholera in 1854. Once again, we have information about how to prevent pathologies, not just treat them — if we will act.

The reason for a new effort is a vast amount of recent research showing that brain development at the beginning of life affects physical and mental health decades later. That means protecting the developing brain from dangerous substances and also from “toxic stress”— often a byproduct of poverty — to prevent high levels of the stress hormone cortisol, which impairs brain development.

A starting point of this public health revolution should be to protect infants and fetuses from toxic substances, which means taking on the companies that buy lawmakers to prevent regulation. Just as water companies tried to obstruct the 19th-century efforts, industry has tried to block recent progress.

Back in 1786, Benjamin Franklin commented extensively on the perils of lead poisoning, but industry ignored the dangers and marketed lead aggressively. In the 1920s, an advertisement for the National Lead Company declared, “Lead helps to guard your health,” praising the use of lead pipes for plumbing and lead paint for homes. And what the lead companies did for decades, and the tobacco companies did, too, the chemical companies do today.

lead

Lead poisoning is just “the tip of the iceberg,” says Tracey Woodruff, an environmental health specialist at the University of California at San Francisco. Flame-retardant chemicals have very similar effects, she says, and they’re in the couches we sit on.

The challenge is that the casualties aren’t obvious, as they are with cholera, but stealthy and long term. These are silent epidemics, so they don’t generate as much public alarm as they should.

“Industrial chemicals that injure the developing brain” have been linked to conditions like autism and attention deficit hyperactivity disorder, noted The Lancet Neurology, a peer-reviewed medical journal. Yet we still don’t have a clear enough sense of what is safe, because many industrial chemicals aren’t safety tested before they are put on the market. Meanwhile, Congress has dragged out efforts to strengthen the Toxic Substances Control Act and test more chemicals for safety.

The President’s Cancer Panel recommended that people eat organic if possible, filter water and avoid microwaving food in plastic containers. All good advice, but that’s like telling people to avoid cholera without providing clean water.

And that’s why we need another public health revolution in the 21st century.

 

[1] http://www.opensecrets.org/lobby/indusclient.php?id=N13&year=2015

[2] http://www.bbc.co.uk/history/historic_figures/snow_john.shtml

[3] http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6213a3.htm

[4] http://www.nytimes.com/2016/02/07/opinion/sunday/america-is-flint.html

[5] http://journalistsresource.org/studies/society/public-health/lead-poisoning-exposure-health-policy?utm_source=JR-email&utm_medium=email&utm_campaign=JR-email&utm_source=Journalist%27s+Resource&utm_campaign=63b82f94eb-2015_Sept_1_A_B_split3_24_2015&utm_medium=email&utm_term=0_12d86b1d6a-63b82f94eb-79637481

Advertisements




Textile chemicals – beginning with the one used the most

16 01 2013

saltLet’s begin our review of chemicals used in textile processing with the one chemical that is used most often and in far greater quantity than any other: salt. That’s right. Common table salt, the kind you probably use every day. But in the quantities used by this industry it becomes a monster – we’ll get to that in a minute.

Salt is used in the dye process. The way the dyestuff bonds to the fibers is very important – and the most permanent, colorfast dyes are the ones that are most tightly attached to the fiber molecules (called reactive dyes). Here’s how salt comes into the picture:

When fabrics made of cellulosic (i.e., cotton, linen, hemp or viscose) are dyed, they’re immersed in water which contains dyes which have been dissolved in the water. The surface of the fabric gets covered in negative ionic charges. The reactive dyes used most often to dye cellulosic fabrics also develop a negative charge, so the fibers actually repel the dye – like two magnets repelling each other. If we try to dye a cellulosic fabric without using salt, the dye molecules just roll off the surface of the fibers and the fabric does not show much color change. So these reactive dyes need the addition of salt to “push” the dyes out of solution and into the cloth by neutralizing the negative charge.

The salt acts like a glue to hold the dye molecules in place, and with the addition of alkali, a certain percentage of the dyestuff (called the “fixation rate”) will permanently grab hold of the fiber and become a part of the fiber molecule rather than remaining as an independent chemical entity. For conventional reactive dyes, the fixation rate is often less than 80%, resulting in waste of dyestuff, and also the need to remove that 20% (which is not fixed) from the fabric.(1) But this is incredibly difficult when the “unreacted” dyes are still “glued” onto the fabric by salt. So vast amounts of water are required to simply dilute the salt concentrations to a point where it no longer acts as glue.

That means the textile effluent contains both dyestuff and salt (lots of salt!) The concentrations of salt in the dye bath can be as high as 100 gm per liter. In the worst cases, equal weights of salt to fabric is used to apply reactive dye (i.e., if dyeing 10 lbs of fabric, you need 10 lbs of salt). Think of the billions of yards of fabric that’s produced each year: In Europe alone, 1 million tons of salt is discharged into waterways each year.(2) In areas where salt is discharged into the ecosystem, it takes a long, long time for affected areas to recover, especially in areas of sparse rainfall – such as Tirupur, India.

Tirupur is one of the world’s centers for clothing production , home of 765 dyeing and bleaching industries. These dyehouses had been dumping untreated effluent into the Noyyal River for years, rendering the water unsuitable or irrigation – or drinking. In 2005, the government shut down 571 dyehouses because of the effluent being discharged into the Noyyal. The mill owners said they simply couldn’t afford to put pollution measures into place. The industry is too important to India to keep the mills closed for long, so the government banned the discharge of salt and asked for an advance from the mills before allowing them to re-open. But … on February 4, 2011, the Madras high court ordered 700 dye plants to be shut down because of the damage the effluent was doing to the local environment. Sigh. (Read more about Tirupur here.)

Unfortunately, the salt in textile effluent is not made harmless by treatment plants and can pass straight through to our rivers even if it has been treated. The salt expelled into waterways (untreated) coupled with salt from roadway de-icing has led to the increase in salt in our waters in the United States – salt levels in Lake George have nearly tripled since 1980,(3) which mirrors many other parts of the U.S. Highest levels occur during the annual ice-out and snowmelt where high salt concentrations in streams flowing into Lake George have been linked to die offs of fish, and is known as “spring shock”. A study in Toronto found that half the wells tested exceeded the limit of 20mg of salt per liter of water, 20% exceeded 100mg/liter and 6% exceeded 250mg/liter. (4) It becomes a public health concern for people who drink this water, because it can exacerbate high blood pressure and hypertension in humans. This increase in our drinking water can also cause problems with water balance in the human body. Salt in water is also responsible for the release of mercury into the water system.

Recycling the salt used during the dye process is possible, and this has been used by many of the dyers in Tirupur, and elsewhere, who operate zero discharge facilities. The effluent is cleaned and then the salt is recovered using an energy intensive process to evaporate the water and leave the solid, re-useable salt. This sounds like a good idea – it reduces the pollution levels – but the carbon footprint goes through the roof, so salt recovery isn’t necessarily the best option. In fact, in some areas of the world where water is plentiful and the salt can be diluted in the rivers adequately, it may be better to simply discharge salt than to recover it.

There are some new “low salt” dyes that require only half the amount of “glue”: Ciba Specialty Chemicals, a Swiss manufacturer of textile dyes (now part of BASF) produces a dyestuff which requires less salt. As the company brochure puts it: “Textile companies using the new dyes are able to reduce their costs for salt by up to 2 percent of revenues, a significant drop in an industry with razor-thin profit margins” but these dyes are not widely used because they’re expensive – and manufacturers are following our lead in demanding ever cheaper costs. There are also new low-liquor-ratio (LLR) jet dyeing machines – but that doesn’t mean zero salt, so there is still salt infused effluent which must be treated. And these new ultra low liquor ratio machines are very expensive.

The best option is to avoid salt altogether. Though the salt itself is not expensive, using less salt delivers substantial benefits to the mill because the fabric requires less rinsing in hot water (and hence reductions in energy and water) as well as cost savings of up to 10% of the total process costs.(5) So what about using no salt at all?

There are two ways to dye fabrics without salt: “continuous dyeing” and “cold pad batch dyeing”. Continuous dyeing means that the dye is applied with alkali to activate the dye fixation; the fabric is then steamed for a few minutes to completely fix the dyestuff. Cold pad batch dyeing applies the dyestuff with alkali and the fabric is simply left at room temperature for 24 hours to fix the dye.

Both of these methods don’t use salt, so the unfixed dye chemicals are easier to remove because there is no salt acting as the “glue” – and therefore less water is used. An additional benefit is having a lower salt content in the effluent. So why don’t companies use this method? Continuous dyeing requires investment in big, expensive machines that only make environmental sense if they can be filled with large orders – because they use lots of energy even during downtime.

Cold pad batch machines are relatively inexpensive to buy and run, they are highly productive and can be used for a wide range of fabrics. Yet only 3% of knitted cotton fabric is dyed in Asia using cold pad batch machines.
Why on earth don’t these mills use cold pad batch dyeing? I would love to hear from any mill owners who might let us know more about the economics of dyeing operations.

(1) http://lifestylemonitor.cottoninc.com/Supply-Chain-Insights/Sustainable-Dyeing-Solutions-02-10/
(2) Dyeing for a change: Current Conventions and New Futures in the Textile Color Industry (2006, July) http://www.betterthinking.co.uk
(3) http://www.fundforlakegeorge.org/assets/pdf_files/Fact%20Sheet%2011%20Salt.pdf
(4) http://www.digitaltermpapers.com/a2206.htm
(5) “A Practical Guide For Responsible Sourcing”, The National Resources Defense Council (NRDC), February 2010.





Why buy safe fabrics for your children – isn’t organic food enough?

28 11 2012

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering –  a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD –  and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease”[6].

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  It may be that future parents may be just as shocked by the kinds of exposures we’re living with as we are by these Marlboro cigarette ads from the 1950’s:

Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders which affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of  exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including  newborn infants.  Have you seen the slogan that states babies are born pre-polluted?   Of  the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than  adults, and their rapid development makes them more vulnerable to      environmental interference. Pound for pound, children breathe more  air, consume more food, and drink more water than adults, due to their  substantial growth and high metabolism. For example, a resting infant  takes in twice as much air per pound of body weight as an adult. Subject  to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1  million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of  toxic chemicals are released into the nation’s environment each year,  including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for  toxicity. Fewer than 20 percent have been studied for their capacity to  interfere with children’s development. This failure to assess chemicals  for their possible hazards represents a grave lapse of stewardship by the  chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of  them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care      centers and hospitals. The United States has only 1.3% of the world’s  population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into  the environment. Some will persist in the environment for decades and even centuries.

What does the industry say in their defense?  The chief argument they use is that the amounts used in products are so low that they don’t cause harm.  We now know that the old belief that “the dose makes the poison” (i.e.,  the higher the dose, the greater the effect)  is simply wrong.  Studies are finding that even tiny quantities of chemicals – in the parts-per-trillion range – can have significant impacts on our health.  Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.

We also now know that time of exposure is critical – because during gestation and  through early childhood  the body is rapidly growing  under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted –  and so on –  until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life.

There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years.   So one could unwittingly be setting the stage for a devastating disease down the road.

And this is where it gets really interesting (or scary):

Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations –  is called “epigenetics”.

Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great grand-daughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[9]  Another recent study has shown that men who started smoking before  puberty caused their sons to have significantly higher rates of obesity. And  obesity is just the tip of the iceberg—many researchers believe that epigenetics  holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[10]  For those of you who are interested, the book by Richard Francis makes a fascinating read.


[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607





The President’s Cancer Panel and fabric choices

6 10 2010

Ever wonder why you buy those organic foods that cost more?  It’s always a bit of sticker shock when you see the organic and conventional side by side.   The organic strawberries may taste better, but this economy means we have to pinch every penny.  As my husband says, an apple is an apple, so why pay more for one when you can get the other cheaper?  It’s not going to do anything to me – at least not today.

Turns out you might want to re-think those – and lots of other –  choices you make every day.  The President’s Cancer Panel issued a 240-page report in May, 2010, called “Reducing Environmental Cancer Risk: What We Can Do Now” This year’s report is the first time the panel has emphasized the environmental causes of cancer. It warns of “grievous harm” from chemicals and other hazards, and “a growing body of evidence linking environmental exposures to cancer.” Children are especially vulnerable.

The report is based on testimony from a series of meetings held between September 08 and January 09 which  included 45 invited experts from academia, government, industry, the environmental and cancer advocacy communities, and the public. The report urged President Obama to “use the power of your office to remove the carcinogens and other toxins from our food, water, and air that needlessly increase health care costs, cripple our nation’s productivity, and devastate American lives.”  Because industrial chemicals are so ubiquitous and exposure to these potential environmental carcinogens so widespread, “the Panel was particularly concerned to find that the true burden of environmentally induced cancers has been grossly underestimated,”

The report said previous estimates that environmental pollutants and occupational exposures cause 6% of all cancers are low and “woefully out of date.”  In fact, the National Institutes of Health estimates that environmental factors contribute to 75-80% of all cancers: from tobacco smoke, ultraviolet light, radiation, obesity and certain viruses and sexually-transmitted diseases – in addition to environmental carcinogens. One excerpt reads, “With nearly 80,000 chemicals on the market. … many of which are used by millions of Americans in their daily lives and are. … largely unregulated, exposure to potential environmental carcinogens is widespread.”

The President’s Panel report clearly states that much work has to be done to better characterize environmental determinants of cancer—including better research methods, standardized measurements, and more realistic models that can help estimate the cumulative risks associated with multiple environmental toxins.  But scientists have been scrambling for decades for scarce funding  – and the work was given a low priority.  The fundamental problem is that research into environmental causes of cancer has little potential for yielding profits—at least in the short-term. In fact, it is more likely to cost industry through stronger regulation and removal of products from the market, litigation and the added expense of developing new products based on “green chemistry.” So it’s not a stretch to understand why the government and the pharmaceutical industry would rather spend billions of dollars promoting screening and developing profitable new cancer drugs.  Peter Montague, a long-time environmental advocate puts it this way: “To be blunt about it, there’s no money in prevention, and once you’ve got cancer you’ll pay anything to try to stay alive.”

Environmental toxins are rarely considered in health policy initiatives (except for tobacco and sunlight), despite the findings that people who live in polluted areas and work with toxic substances (most often the poor and minorities) have higher rates of cancer incidence.  The Cancer Panel  pointed out  “Cancer Alley“, the stretch along the Mississippi between Baton Rouge and New Orleans, as an example.  Louisiana ranked second in the nation for on-site toxic releases, and many studies exist which demonstrate the cancer rate is above the average for the rest of the United States.  In one small Louisiana town in Cancer Alley, 3 cases of rhabdomyosarcoma were reported in a 14 month period.  Rhabdomyosarcoma is an extremely rare and devastating childhood cancer, with a national average of one child in a million.  Five years ago a group of residents of Mossville, Louisiana, filed a human rights complaint against the US government, alleging it was not protecting their right to live in a healthy environment.  The Inter-American Commission on Human Rights agreed this year to hear their complaint.

In a consensus statement,  the Collaborative on Health and the Environment, an international partnership of some 3,000 individuals and organizations, says that the net result of this inadequate funding is a body of research that is in danger of being irrelevant:

“The methods that have been used to attribute cancer risk to environmental exposures are outdated and flawed, and should no longer be used to determine policy or set research priorities.”

So it’s not just organic foods that we should be concerned about, but the whole phalanx of products which are made using harmful chemistry, and the manufacturers that don’t capture emissions or treat their waste products, thereby polluting our entire ecosystem.  That’s why O Ecotextiles has made a commitment to sell only fabrics which are safe for both you and the Earth.

I found it interesting that there is a new branch of science that is also studying how these environmental factors can influence us.  Called epigenetics, it is the study of changes in gene activity that don’t involve changes to the genetic code but still get passed down to at least one successive generation.   These patterns of gene expression are governed by the cellular material — the epigenome — that sits on top of the genome, just outside it (hence the prefix epi-, which means above). It is these epigenetic “marks” that tell your genes to switch on or off, to speak loudly or whisper. It is through epigenetic marks that environmental factors like diet, stress and prenatal nutrition can make an imprint on genes that is passed from one generation to the next.

One could think of the genome as a book of blueprints,  laying out a number of options in the form of genes. The epigenome is like the contractor who goes through the book, deciding which options to include in a house. Two different contractors can build radically different houses from the same book of blueprints, in the same way that two organisms with identical DNA can look very different.

This field of study, some believe, might hold the key to understanding how environmental toxins cause serious, and often life-threatening diseases, such as obesity, diabetes and cancer.  For quite some time scientists have been trying to determine how exposure to environmental toxins can result in serious disease years or even decades later. Epigenetics may provide the mechanism. An exposure to an environmental toxin at one point in a person’s life (and most critically during gestation) can trigger the epigenome to turn on or turn off a key gene. Years later, because of that epigenetic change, a disease may appear.

“We can no longer argue whether genes or environment has a greater impact on our health and development, because both are inextricably linked,” said Randy Jirtle,  Ph.D., a genetics researcher in Duke’s Department of Radiation Oncology. “Each nutrient, each interaction, each experience can manifest itself through biochemical changes that ultimately dictate gene expression, whether at birth or 40 years down the road.”

Exposures to pesticides, toxins and synthetic compounds can give rise to a host of diseases – such as cancer and asthma — whose prevalence has soared in recent decades, says H. Kim Lyerly, M.D., director of the Duke Comprehensive Cancer Center.  Pesticides encountered in utero might be dormant in the fetus, only to cause cancer ten, 20 or 50 years later, he said.

Even the lowest detectable limits of a chemical can have dire effects on a living organism, added William Schlesinger, Ph.D., Dean of the Nicholas School of the Environment and Earth Sciences at Duke. Atrizine is a prime example. Less than one part per billion of this widely used corn herbicide de-masculinizes developing frogs or causes dual male-female genitalia. Yet often the Environmental Protection Agency’s instrumentation doesn’t record such minute levels of chemical exposure, he said.

What does the Cancer Panel suggest we do in the meantime?  Here is their list, with a few of additions of our own:

  • Remove your shoes before entering your home to avoid tracking in toxic chemicals such as pesticides.
  • Filter tap water.
  • Use stainless steel, glass or BPA-free plastic water bottles.
  • Microwave in ceramic or glass instead of plastic containers.
  • Become aware of what you’re eating:  minimize consumption of food grown with pesticides, and meat raised with antibiotics and growth hormone.
  • Minimize consumption of processed, charred or well-done meats, which contain carcinogenic heterocyclic amines and polyaromatic hydrocarbons.
  • Reduce radiation from X-rays and other medical sources.
  • Be aware of the products you use, especially those that come in contact with your skin, such as:  lotions, cosmetics, wipes, sheets, clothing, hair dyes.  Check ingredient labels, look for third party certifications where appropriate.
  • And finally:  use sunscreen, stop smoking and lose weight if necessary.




What is “body burden” – and why is it important to you?

28 07 2010

I just found a website that threw me for a loop:  It’s called Sailhome (www.sailhome.org).

It was started by a regular guy – a physicist living in San Francisco who was the VP of marketing for a semiconductor intellectual property company – named Ron.   Ron’s son, born almost 10 years ago, began to show signs of being developmentally off track by age 2.  By age 3, Ron and his wife had three separate diagnoses trying to label his condition – Asperger’s, PDD-NOS, Autism.

Before age 4, he began receiving treatment guided by the DAN! Protocol.  DAN! doctors feel that autism is a disorder caused by a combination of lowered immune response, external toxins from vaccines and other sources, and problems caused by certain foods. It includes treatment to reduce toxic loads and pathogens, boost immunity, and heal from the complexities of toxic injury.  Some of the major interventions suggested by DAN! practitioners include:

  • Nutritional supplements, including certain vitamins, minerals, amino acids, and essential fatty acids
  • Special diets totally free of gluten (from wheat, barley, rye, and possibly oats) and free of dairy (milk, ice cream, yogurt, etc.)
  • Testing for hidden food allergies, and avoidance of allergenic foods
  • Treatment of intestinal bacterial/yeast overgrowth (with pro-biotics, supplements and other non-pharmaceutical medications)
  • Detoxification of heavy metals through chelation (a potentially hazardous medical procedure)

There are some who debate about whether this approach is safe, proven, or even “quackery”.
But it’s working for Ron’s son –  who is 9 years old in 2010, and largely recovered. Ron says that most people who meet him have no inkling he’s ever been “on the spectrum” – but that successfully navigating through each day’s toxic insults will probably remain a life-long challenge for him.

Sailhome was started by this regular guy, who says he  “parked my career for 6+ years in order to help my son recover, make sure my family stayed intact during the ordeal, and to develop this web site.”

The website is an attempt to “connect the dots”, so that we have a better understanding about how easily toxic exposures occur, the types of illness that results, and how to prevail.

It’s divided into three parts under “Concerns”:

  • Body Burden
  • Excitotoxins
  • Vaccines

I want to concentrate on the “Body Burden” section, because among the chemicals often found in our bodies (contributing to our body burden) are those used most often in textile processing.

Body burden refers to the accumulation of synthetic chemicals – found in substances like household cleaners, fabrics, cosmetics, pest repellants, computers, cell phones – which helped “modernize” our lives in the post World War II chemical age and which are now found in our own bodies. When we hear that some chemicals can damage the environment, we have forgotten that we ARE the environment, as David Suzuki reminds us.  Whatever is “out there” is also inside us.  We live , breathe and eat the products of our modern industrial era, for better or for worse.  Think of it as “the pollution inside people”.

You can get tons of information about body burden on Google, and studies litter the landscape with results showing the effects this chemical onslaught is having on us. The Centers for Disease Control (CDC) is running the National Biomonitoring Program (NBP) started in 1998. Every two years the NBP attempts to assess exposure to environmental chemicals in the general U.S. population.   Data covering 2001-2002 found that the average adult American body carried 116 toxic synthetic compounds. In other studies, similar chemicals have been detected in the placenta, umbilical cord blood, bloodstream, and body fat of infants as well as in the human breast milk they drink. In a study sponsored by the Environmental Working Group (EWG), researchers at two major laboratories found an average of 200 industrial chemicals and pollutants in the umbilical cord of newborn babies,  indicating that babies are born “pre polluted”. 

Yet many people are not terribly concerned, because the industry and their government tells them that the chemicals found in products are present in such low quantities as to have no effect.  And scientists are trained to believe that “the dose makes the poison” – in other words, it’s commonly thought that a little bit won’t hurt you; that large doses always have greater effects than small doses.  But that simplistic approach overlooks greater harm that is being found at extremely small doses.  If all toxins behaved exactly the same way that might hold true.   But the effect of high doses cannot always be extrapolated to predict what happens at extremely low doses.

The effect of a ‘dose’ is not that simple.  Factors that must be considered include

• Size of dose

• Length of exposure

• Rate of absorption

• Timing

• Individual metabolism

• State of health and nutrition when exposed

• Concurrent exposure to other toxicants — including order of exposures and any  synergies

Here are some of the problems with the assumption that a low dose translates into low risk:

New research is demonstrating that harm can occur at much lower thresholds than previously considered possible.  Hormones, for example, play specific roles, at specific moments in time, throughtout a person’s life.  If the actions of hormones are prevented, interrupted, or increased then the effects can range from subtle to dramatic.

For example, exposure occurring at a young age can cause a subtle change in how a gene expresses itself. This can set up a low-level progression of conditions that eventually leads to some form of cancer.

In other cases the original disruption might occur at a key moment during development in the womb. The dramatic result might be a birth defect, mental retardation or miscarriage.

The amount of chemical necessary to cause these disruptions does not have to be large. A vanishingly small amount is all it takes — “just enough” to alter an event.   The mouse on the left is normal. The mouse on the right was exposed to 1 ppb DES while in the womb.   For years it was assumed that such low exposure would have no effect — until someone checked.

Toxins are often regulated based on finding the level of exposure that causes no harm. This is known as the ‘no observable adverse effects level’ (NOAEL).  But a NOAEL is derived by starting with a high dose and then reducing subsequent doses until no affect is observed misses other harm that can take place (from synergistic reactions with other chemicals in the body) at even lower doses.

These chemicals do not act in a vacuum and the effects cannot be isolated from other variables.  Harm can be amplified when chemicals are combined –  in other words, toxins can make each other more toxic.  For example, a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed!  This is called synergistic toxicity.

The timing – and order –  of toxic exposure plays a much more significant role than previously recognized.  Exposures can happen one after the other, or all at once. Combinations of chemicals can produce:

  • Consequences that are significantly different than would be expected from individual exposures.
  • A range of combined acute and chronic effects.
  • Effects that can appear immediately  –  or sometime later.
  • Increased or unexpected harmful effects — including entirely new kinds of effects.

The possible combinations of exposure are huge and knowledge is limited about the effects of mixed exposures. Individual susceptibility adds to the complexity of exposure and resulting outcomes.   As a result, current safety standards based on high dose experiments don’t guarantee shelter from toxic levels of exposure.

Genetic susceptibility plays a role in body burden.  For instance, a large part of the population, possibly more than 20%, are unable to effectively excrete heavy metals. Their burden accumulates faster. Their illnesses are more obvious. They are the “canaries in a coal mine” in an environment that is increasingly toxic.  It’s becoming abundantly clear that both “rare” and “common” illnesses are on the rise, and research is making a connection with body burden. The National Institutes of Health defines a rare disease as one affecting 200,000 or fewer Americans yet:

  • 25 million Americans suffer from one of the nearly 6,000 identified rare diseases.  That rivals the 40 million Americans with one or more of the three “major” diseases: heart disease, cancer or diabetes.

Viruses, bacteria, yeasts, parasites, and mold aggravate body burden at any stage of life. New research demonstrates that viruses can increase susceptibility to heavy metals; or that they increase the uptake of PBDEs.  Beyond the better understood mechanisms of infection, research is revealing that some microorganisms interact directly with chemicals to enhance susceptibility to infection.

A common misconception is that “inactive ingredients will not interact”.
In fact many ingredients do interact, and it is possible for ingredients to change into different chemicals that also interact. A manufacturer may claim a product has been tested and proven to be 100% safe when used as directed. This might be true — there is no requirement to test for synergies.

These are just the highlights of Ron’s eye opening discussion.  Please take a few minutes exploring his web site and others, some of which I’ve listed below:

Resources:

www.sailhome.org

For presentation on PBS and hosted by Bill Moyers on our body burden, see http://www.pbs.org/tradesecrets/problem/bodyburden.html


For the Centers for Disease Control report: www.cdc.gov/exposurereport


For the EWG/Mount Sinai body burden report: www.ewg.org/reports/bodyburden/index.php


For the EPA study on extent of testing for modern chemicals: www.epa.gov/opptintr/chemtest/hazchem.htm


For ideas on what you can do: “Everybody’s Chemical Burden” by Shayna Cohen in The Green Guide #96 May/June 2003, www.thegreenguide.com





Plastics – part 3: even more about why recycling is not working

12 05 2010

I was going to go on to other subjects, but just saw in the Seattle Times that the whale that washed up on a West Seattle beach last month was discovered to have 3.2 lbs. of garbage in its belly – including 20 plastic bags and 37 other  kinds of plastic (read entire article here.)

If you’ve been reading my posts for the past two weeks (On 5.5.10 and 4.28.10), it has hopefully dawned on you that we have a dilemma with regard to plastic:   Recycling presents problems, yet not recycling hardly seems an option.  Whether you see plastic as a boon or a bane, plastic is the fastest-growing portion of our waste stream and now makes up the second-largest category by volume (next to paper) of trash going into our landfills, according to a draft report prepared for the California Integrated Waste Management Board called the “Plastics White Paper.”

Eco Nature Care did a post on plastic recycling, and highlighted many of the reasons recycling isn’t catching on in this country.  I’ve copied the post below (and you can read it here):

Plastics make up 17.8 % by volume  of what’s thrown into California landfills. While consumers are increasingly snapping those Evian bottles off the shelves, they toss the empties into the trash bin more often than the recycling bin. The recycling rate for plastic bottles is only 16 percent — miserably low compared to glass and aluminum — even though consumers can redeem their used plastic bottles for the same CRV (California Refund Value) rate as other containers.

California cities and counties have an incentive to recycle as much material as possible. A 1989 law requires that municipalities reduce the trash they send to landfills by 50%  or face hefty fines.

Diversion, then, becomes the magic word. But from the point of view of recyclers, accepting some types of plastic is more trouble than it’s worth. For example, plastics coded 3 through 7 — cottage cheese, tofu, salsa and yogurt containers — are particularly difficult to recycle profitably. So why take these additional containers at all, especially when their volume is low? According to Mark Loughmiller, executive director of the Arcata Community Recycling Center, the answer is public pressure.

“I fought it. There are no domestic markets for it. At a point you get tired of being harangued by people coming in trying to quote unquote “do the right thing.’”  They don’t want to throw anything away, he said, and that’s all well and good. But a more appropriate position might be, “I shouldn’t buy it in the first place,” he suggested.

The plastics trail

The plastics collected at the Arcata sites are baled and stored for about a month until they fill a 12-ton truckload, Loughmiller said. The truck typically contains 5 tons of milk bottles (the number 2s), 7 tons of soda and water bottles (the number 1s), and about three-quarters of a ton of the so-called “mixed plastics,” the 3s through 7s, which are baled together.

They then make their way to Ming’s Recycling in Sacramento (which also takes all of the plastics from Humboldt Sanitation in McKinleyville). Kenny Luong, president of Ming’s, said his center has 40 or 50 suppliers in California and another 30 to 40 elsewhere in the United States and Canada. Almost all of the plastics that come into Ming’s are sold to brokers in Hong Kong, who pay to transport it via container ship from the Port of Oakland to China. The transport is cheap because China exports far more to the United States than we do to them; the ships traveling back to China have plenty of room.

The mixed plastics don’t make Luong very much money, he said, which explains why the cities of Arcata and Eureka get nothing for their mixed plastic bales. (A ton of milk jugs, by contrast, pays about $200; a ton of soda bottles, $160.)

“It’s enough to cover the transport to the harbor, that’s pretty much it,” Luong said of the mixed plastics. He would prefer not to take those at all. But a change to state law in 2000 expanded the list of beverages included in the California Redemption Value program. And if the bottle has a “CRV” on it — even if it’s a number 3 or 4 plastic — a certified recycling center must accept it and pay the refund to the consumer.

“It’s really a pain in the butt,” Luong said. “There aren’t a whole lot, but we are required to purchase them by law. It prompted us to find a market for it.”

That market, it turns out, consists of recyclers in Shanghai and Guangdong province. Luong said he has never seen the China facilities and knows little about them. “Once it’s loaded on the ship, it’s out of my hands.”

Recycling in Guangdong

One of his brokers has visited some of the locations in China where plastics from Humboldt end up. Doug Spitzer is the owner of Monarch Enterprises of Santa Cruz, which is affiliated with the gargantuan paper company Boise Cascade. He sells plastics to Chinese recyclers and ran a plastic film-recycling factory himself outside of Guangdong in the early 1990s.

“Most of our material goes through Hong Kong into that closest province [to Hong Kong], which is Guangdong,” Spitzer said. One factory will typically limit itself to one type of plastic, and one village might have most of its residents involved in that type of recycling, he said.

“Within this one town outside of Guangzhou [in Guangdong province], when I was there, my partners were telling me there were at least 3,000 plastic film processors there, and they’re right next door to each other. It’s a small village; they all process it.” The facilities range from a mom-and-pop operation that takes one container-load per month to very large, comparatively modern factories.

One Spitzer saw when he visited four years ago involved soda bottles: The workers would break open the bales, women would sort the bottles by color, a “guy with a machete” cut the tops off, two other men scraped labels off, then the bottles were ground into pellets and melted down. 

It was not the kind of place that would be approved by the U.S. Occupational Safety and Health Administration, Spitzer said.

“OSHA would go nuts. The place is noisy, it’s crowded, it’s just amazing. Not that they’re killing people off. They’re safe, and all the time we were running the factory there were no major accidents,” he said. “Do people engage in unsafe practices to try to make a living? Yeah, all over the world.”

He said his current business provides a valuable service. “What I’m doing is I’m supplying a raw material that can go to a Third World country.”

There are some facilities in the United States that recycle soda bottles and milk jugs “if the material is clean enough,” said Luong of Ming’s Recycling. But the market for recycled plastic makes it difficult, if not impossible, for recyclers to make any money. The reasons are many. Since plastic is made from petroleum, virgin plastic makers have a large supply of raw material available to them. When manufacturers can buy virgin plastic pellets or flakes for about the same amount of money as recycled plastic, there is little incentive to use recycled (the italics are mine!).

There are also limits to the products that can be made from recycled plastic. The U.S. Food and Drug Administration does not allow food containers to be made into new food containers because they can’t be heated at temperatures high enough to sterilize them. (The FDA has said it will allow a layer of recycled plastic sandwiched between layers of virgin plastic in soda bottles.)

A numbers game

Plastic recyclers must also face the issue of contamination. Recycling the number 1 (PET) plastics — the soda bottles — could work economically were it not for the number 3s that enter the mix, said Peter Anderson, a recycling consultant in Madison, Wis., who has worked with state and federal agencies, including the U.S. Environmental Protection Agency and the state of California. Number 3 plastics are polyvinyl chloride, or PVC for short.

“PVC presents enormous problems because it looks just like PET physically,” Anderson said. “A single bottle of PVC will contaminate the entire [10,000-bottle] load” aesthetically, causing the new PET bottles made with the material to be yellowed or, with more contamination, to have black streaks, he said. There are X-ray scanning machines that can detect the PVC intruders, but those are too expensive for many recyclers.

“You can’t make plastics recycling work with PVC in the mix,” Anderson said. So, he argued, taking the 3 through 7 plastics makes no economic sense. “Who the hell knows what China’s doing with them? I don’t think anyone can make a case without a smirk on their face that they’re recycling 3 through 7s.”

He called the idea of recycling all plastics “a serious mistake.”

Some recyclers take the 3 through 7 plastics because, they reason, they’ll get more of the “good stuff” — the soda bottles and milk bottles — if they advertise that they accept a wider range of recyclables. Eel River Disposal in Fortuna, for example, accepts numbers 1, 2 and 3, which they send to Smurfit Recycling in Oakland.

Eel River owner Harry Hardin said he doesn’t collect enough of the number 3s to make a separate bale with it, so he bales it with the number 2s. “I even put some 4s in there,” he said.

Asked about the PVC contamination problem, Hardin said, “It depends what market you send it into. Smurfit’s — I’m not quite sure what they do with theirs. But they will allow some number 3 and 2 together.”

Not so, said Don Kurtz, plant manager for Smurfit in Oakland. “If we identify that there are 3s in there, we reject the bale,” he said. Eel River was recently told to come and get one of their bales that was turned away for that very reason. “We really don’t want number 3s. It really doesn’t make sense for us to mess with it.” (Unlike Ming’s, Smurfit is not legally bound to take any particular recyclables because the company is classified as a “processor,” not a recycling facility.)

Another Humboldt County recycler sells his material to a middleman in a different part of the state. The man, who did not want to be identified, said he does not collect enough 3 through 7 numbered plastics to bale them separately, so he mixes them with the bales for the numbers 1 and 2. “Don’t advertise that,” he said. “It’s garbage plastic, but a lot of people like to recycle it.” His company then sells it to a broker who sends it overseas.

“If they’re putting it in with the PET [number 1s], I guarantee they’re getting thrown out,” said the broker, Patty Moore of the Sonoma-based Moore Recycling Associates.

Destination landfill

All in all, plastic recycling appears to fall far short of its promise. Even if recycled under the best of conditions, a plastic bottle or margarine tub will probably have only one additional life. Since it can’t be made into another food container, your Snapple bottle will become a “durable good,” such as carpet or fiberfill for a jacket. Your milk bottle will become a plastic toy or the outer casing on a cell phone. Those things, in turn, will eventually be thrown away.

“With plastics recycling, we’re just extending the life of a material. We’re not creating a perpetual loop for that material,” like we do with glass and aluminum recycling, said Loughmiller, the Arcata recycling director.

“I think people really need to have a reality check on plastics,” said Puckett of the Basel Action Network. “The mantra has been, `divert from the landfill.’ What we’ve been saying is, divert to what? Dump it on the Chinese? Plastics recycling needs to be looked at with a jaundiced eye,” he said. “It’s not what it’s touted to be.”

If you’ve ever looked on the bottom of your plastic juice bottle,  detergent bottle or tofu tub, you’ve seen the little triangle of arrows with a number inside. That symbol — contrary to popular belief — does not indicate that a container is recyclable.

Back in 1988, “the trade groups managed to get into law the resin [type of plastic] identification,” said Mark Loughmiller, executive director of the Arcata Community Recycling Center. The numbers indicate which category of plastic the container is made from.

“The triangled arrows imply recyclability,” Loughmiller said. “The plastic industry denied it was trying to mislead the public and cause confusion.” But that’s what happened, he said. People regularly come to his center and demand to know why their plastic lawn chair with a number on the bottom can’t be recycled.

And why can’t it? Because, even in one category, such as plastics labeled with a number 2 (high density polyethylene or HDPE), there are many variations. Milk jugs and yogurt containers, for example, may both be made with HDPE, but because the recycling process requires melting of the old containers, and they melt at different temperatures, they may be incompatible.





Plastics – part 2: Why recycling is not the answer

5 05 2010

In Plastics, Part 1 (last week’s post; click here to read it) I tried to give a summary of why plastics are not such a good thing.  The Plastic Pollution coalition has a list of basic concepts about plastic.  Click here to read the expanded version:

  • Plastic is forever
  • Plastic is poisoning our food chain
  • Plastic affects human health
  • Recycling is not a sustainable solution

Yet there seems to be no end to our demand for plastics.   In one year alone, from 1995 – 96, plastic packaging increased by 1,000,000,000 lbs.  And despite recycling efforts, for every 1 ton increase in plastic recycling, there was a 14 ton increase in new plastic production.

I tried to explain some of the roadblocks to plastic recycling efforts.   We have all heard that recycling is good for the environment,  and it’s hard to argue with the intuitively correct reasoning that if we recycle we reduce our dependence on foreign oil, we conserve energy and emissions and we keep bottles out of the landfills.

And what about the lighter weight of plastic bottles?  Surely there are benefits in shipping lighter weight bottles  – giving plastic bottles a lower overall carbon footprint?  Well, here’s the thing:  there are environmental trade offs, just like in life.  Even if we accept that plastics are more carbon efficient than alternative materials (glass) in transportation, we’re still talking about vast amounts of carbon emissions.  Plastics use releases at least 100 million tons of CO2 – some say as much as 500 million tons – into the atmosphere each year.  That’s the equivalent of the annual emissions from 10 – 45% of all U.S. drivers.  Plastic manufacturing also contributes 14% of the national total of toxic (i.e., other than CO2) releases to our atmosphere; producing a 16 oz PET bottle generates more than 100 times the amount of toxic emissions than does making the same size in glass.  But the critical point is that it’s definitely cheaper to ship liquids in plastic rather than in glass.  And it’s also cheaper for manufacturers to use virgin plastic than a recycled plastic.

These rather alarming CO2 numbers could be much lower, we understand, if only Americans recycled more than the paltry 7% of plastic which is recycled today.  We could cut our usage of virgin material by one third – and that means an annual savings of 30 to 150 million tons of CO2.

So why aren’t Americans recycling more?  Although our plastic consumption has grown by a factor of 30 since the 1960s, recycling has grown by a factor of just two.  Is this just because we don’t take the time to separate recyclable plastics from general waste, or because we don’t take the time to throw the bottle into the proper recycling bin?  What about companies that use the plastic – they are not clamoring to spend more to use recycled plastic (again that bugaboo “cost”) so they continue to demand virgin plastic.

When Rhode Island enacted comprehensive recycling legislation in 1986, including bans on plastic bottles – the plastic industry responded by introducing their resin codes, in part (some say) to deflect attention from the virgin polyester production and encourage an environmental spin on the plastics.  The plastics industry’s  “chasing arrows” symbol surrounding a number (those resin codes) were “deliberately misleading” according to Daniel Knapp, director of Berkeley’s Urban Ore.  “The plastics industry has wrought intentional confusion with that symbol”, said Bill Sheehan, director of GrassRoots Recycling Network.  Unlike glass and aluminum, plastic has no system for recycling – no infrastructure to sell it, no markets to buy it, no facilities to make it.  “In short, the arrows led nowhere.”(1)

According to many, these codes just gave plastic an environmental patina, which the industry was quick to use.  “Several states have postponed or backed off from restrictive packaging legislation as a result of the voluntary coding system” – this gleeful statement from a 1988 newsletter of the Council on Plastics and Packaging in the Environment.

The industry’s critics say that it won’t do anything to support recycling.  Mel Weiss, an independent plastics broker, sees the industry focused on PR and not at all interested in recycling.  He says:  “the American Plastics Council (APC), a trade group representing virgin-resin producers, won’t do anything to support recycling. If they had a choice between selling one pound of virgin and 22 tons of recycled, they’d sell the virgin. All they’re doing is masking what they’re doing with an expensive ad campaign.”

Here’s the irony:  it was the veneer of recyclability – cultivated by the plastics industry – that led to this explosion of plastic use.

The plastics industry, spearheaded by the American Plastics Council (APC), has sponsored campaigns to convince the public that recycling is easy, economical and a big success.  They are a “responsible choice in a more environmentally conscious world”, according to the APC.  Between November 1992 and July 1993, the APC spent $18 million in a national advertising campaign to “Take Another Look at Plastics.” (Environmental Defense Fund, October 21, 1997, “Something to hide: The sorry state of plastics recycling.”)  Examples of how plastics “leave a lighter footprint on the planet” include the argument that plastic grocery bags are lighter and create less waste by volume than paper sacks, the industry said. And the fact that plastics are so lightweight and durable enables manufacturers to use less energy and generate less waste in production processes, plastic promoters said.

In addition to the American Plastics Council, the American Chemical Council (ACC) also spends millions to defend the chemicals produced by their members to make plastics. – including lobbying against any bills that would add a few cents to each bag or bottle to encourage returns and recycling efforts.    According to Lisa Kaas Boyle, Board Member of Heal the Bay, the ACC has hired the same advisors who defended the tobacco industry to formulate a strategy to promote and defend the petrochemical industry.  That strategy is based on preventing legislation to curtail single use plastics  (SUPs – i.e., soda bottles etc.) and to generate positive press on the promotion of recycling as the solution to plastic pollution.  This approach makes the industry look environmental while continuing with business as usual.

Because most manufacturers don’t take back their products, there’s often little opportunity to sell collected plastic. It is true that the West Coast  is blessed with domestic and overseas markets that have made recycling of #1 and #2 plastics – soda bottles and milk jugs – somewhat easier. But even here, metals and paper are the real money-makers.

“Plastics is the least profitable part of the business,” said Kevin McCarthy, regional recycling manager at Waste Management Inc.,  “and it may not even be fair to say that it is profitable at all.”

Like McCarthy’s operation, many recyclers will collect plastic only to meet contractual requirements from government agencies. The impetus to collect certain types of plastic comes from residents. But these plastics often have no market for reuse. Recyclers call it “junk plastic,”  – stuff that gets collected only “because residents wanted it collected because they watched the commercials on TV extolling the recyclability of plastic,” said one recycling official who insisted on anonymity.

In Europe, plastic recycling rates hover around 16.5%, largely because there are strict regulations from Europe’s “End of Life Directive”, in which manufacturers must take more responsibility for the processing of waste from their products.  In the U.S., efforts come largely from voluntary programs within companies, such as Wal Mart’s campaign to reduce the size of packages and increase their use of recycled materials.   The  U.S. government is highly unlikely to enact recycling legislation.  We in Seattle  voted last summer on a citizen sponsored plastic bag tax (we called it a fee)  of $0.20 per disposable bag coupled with a ban on Styrofoam.  The American Chemistry Council spent more than $1.4 million to defeat the bill – and they succeeded.

One aspect of recycling which is little known to consumers is the fact that almost all of the plastics we recycle, regardless of type, end up in China, where worker safety standards are virtually nonexistent and materials are sorted and processed under dirty, primitive conditions. The economics surrounding plastic recycling — unlike those for glass and aluminum — make it a dubious venture for U.S. companies.

(1)  Dan Rademacher, “Manufacturing a Myth: The plastics recycling ploy”, Terrain Magazine, Winter 1999