What will nanotechnology mean to you?

2 04 2014

A hot topic in the media right now is the toxicity of chemical flame retardants that are in our furniture and are migrating out into our environment.  Tests have shown that Americans carry much higher levels of these chemicals in their bodies than anyone else in the world, with children in California containing some of the highest levels ever tested.   According to Ronald Hites of Indiana University, these concentrations have been “exponentially increasing, with a doubling time of 4 to 5 years.”[1]  These toxic chemicals are present in nearly every home – packed into couches, chairs and many baby products including (but not limited to) mattresses, nursing pillows, carriers and changing table pads (scary!).  Recent studies have found that most couches in America have over 1 pound of the toxic chemical Chlorinated Tris inside them[2], even though it was banned in children’s pajamas over cancer concerns over a generation ago.[3]

Why the concern?  Fire retardant chemicals, called PBDE’s (polybrominated diphenyl ethers) have been linked to cancer, reproductive problems and impaired fetal brain development, as well as decreased fertility.  And even though they’ve been banned in the U.S. and European Union, they persist in the environment and accumulate in your body – and they’re still being used today.

So its probably no surprise that there is a mad scramble on to produce a fire retardant that does not impact our health or the environment.   The current front runners, touted as being “exceptionally” effective yet safer and more environmentally friendly than the current fire retardants, use nanotechnology – specifically “nanocoatings” and “nanocomposites”[4] .  These composites and coatings are based on what are called “multiwalled carbon nanotubes” or MWCNTs.

Based on a final report published by the U.S. EPA in September 2013 about the assessment of the risks of using these  MWCNTs, the EPA found that there will be releases of these MWCNTs into the environment throughout the life cycle of textiles – to our air and water during production,  in the form of abraded particles of the textiles falling into the dust in our homes, and in the disposal of furniture in municipal landfills or incineration facilities.[5]

While it is reasonable to propose that substituting nanomaterials for polybrominated diphenyl ether (PBDEs)  or chlorinated triss  and calling it “sustainable”, the fact is that no quantitative study has ever been done to support this assertion . [6]

Please don’t misunderstand me – I am all for finding safer alternatives to the current crop of chemical fire retardants (assuming I buy into the argument that we actually need them).  However, I don’t want us to jump from the frying pan into the fire by rushing to use a technology which is still controversial.  But the race is on:  the US patent office published some 4000 patents under “977 – nanotechnology” in 2012, a new record.

patents nanotech

Here’s an interesting video which helps to explain how nano works – and why we will need extensive study to absorb the many implications of this emerging science.

Consider these science fiction type scenarios of how nano can be used to profoundly change our lives:

  • “nanomedicine” offers the promise of diagnosis and treatment of a disease – before you even have the symptoms.  Or it promises to rebuild neurons for people with Alzheimers or Parkinson’s disease – and stem cells for whatever ails you!   Bone regeneration.  [7]
  • Surfaces can be modified to be scratchproof, unwettable, clean or sterile, depending on the application.[8]
  • Quantum computing.
  • Solar cells capturing the sun’s visible spectrum – as well as infrared photons –  doubling the solar energy available to us.  How about zero net carbon emissions.
  • Nanoscale bits of metals can detoxify hazardous wastes.
  • Clothing that recharges your cell phone as you stroll, or an implant that measures blood pressure powered by your own heartbeat.

And yet.  The unknowns are great, and as Eric Drexler has said, the story involves a tangle of science and fiction linked with money, press coverage, Washington politics and sheer confusion.  Scientists and governments agree that the application of nanotechnology to commerce poses important potential risks to human health and the environment, and those risks are unknown. Examples of high level respected reports that express this concern include:

  • Swiss Federation (Precautionary Matrix 2008)[9]
  • Commission on Environmental Pollution (UK 2008)[10];
  • German Governmental Science Commission (“SRU”)[11];
  • Public testimony sought by USA National Institute for Occupational Safety and Health (NIOSH, Feb 2011)[12] ;
  • OECD working group (since 2007)[13];
  • World Trade Organization (WTO)[14]
  • as well as several industrial groups and various non-governmental organizations.

Nanotechnology is already transforming many products – water treatment, pesticides, food packaging and cosmetics to name a few – so the cat is already out of the bag.  Consider this small example of the nano particle  argument:  When ingested the nanoparticles pass into the blood and lymph system, circulate throughout the body and reach potentially sensitive sites such as the spleen, brain, liver and heart.[15]   The ability of nanoparticles to cross the blood brain barrier makes them extremely useful as a way to deliver drugs directly to the brain.  On the other hand, these nanoparticles may be toxic to the brain.  We simply don’t know enough about the size and surface charge of nanoparticles to draw conclusions.[16]  In textiles, silver nano particles are used as antibacterial/antifungal agents to prevent odors.

But there are almost no publications on the effects of engineered nanoparticles on animals and plants in the environment.

So it’s still not clear what nanoscience will grow up to be – if it doesn’t kill us, it might just save us.


[2] Stapleton HM, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol 43(19):7490–7495. (2009); http://dx.doi.org/10.1021/es9014019.

[3] Callahan, P and Hawthorne, M; “Chemicals in the Crib”, Chicago Tribune, December 28, 2012, http://articles.chicagotribune.com/2012-12-28/news/ct-met-flames-test-mattress-20121228_1_tdcpp-heather-stapleton-chlorinated-tris

[5] Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report), Environmental Protection Agency, http://cfpub.epa.gov/ncea/nano/recordisplay.cfm?deid=253010

[6] Gilman,  Jeffrey W., “Sustainable Flame Retardant Nanocomposites”; National Institute of Standards and Technology

[7] Hunziker, Patrick,  “Nanomedicine: The Use of Nano-Scale Science for the Benefit of the Patient” European Foundation for Clinical Nanomedicine (CLINAM) Basel, Switzerland 2010.

[9] Swiss National Science Foundation, Opportunities and Risks of Nanomaterials Implementation Plan of the National Research Programme NRP 64 Berne, 6 October 2009; see also Swiss Precautionary Matrix, and documents explaining and justifying its use, available in English from the Federal Office of Public Health.

[10] Chairman: Sir John Lawton CBE, FRS Royal Commission on Environmental Pollution, Twenty-seventh report: Novel Materials in the Environment: The case of nanotechnology. Presented to Parliament by Command of Her Majesty November 2008.

[11] SRU, German Advisory Council on Environment, Special Report “Precautionary strategies for managing nanomaterials” Sept 2011. The German Advisory Council on the Environment (SRU) is empowered by the German government to make “recommendations for a responsible and precautionary development of this new technology”.

[12] See: Legal basis and justification: Niosh recommendations preventing risk from carbon nanotubes and nanofibers ”post-hearing comments Niosh current intelligence bulletin: occupational exposure to carbon nanotubes and nanofibers Docket NO. NIOSH-161 Revised 18 February 2011; Testimony on behalf of ISRA (International Safety Resources Association) Before NIOSH, USA. Comments prepared by Ilise L Feitshans JD and ScM, Geneva, Switzerland. Testimony presented by Jay Feitshans, Science Policy Analyst; ISRA Draft Document for Public Review and Comment NIOSH Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers, Docket Number NIOSH-161-A.

[13] The OECD Working Party for Manufactured Nanomaterials (WPMN) “OECD Emission Assessment for Identification of Sources of release of Airborne Manufactured Nanomaterials in the Workplace: Compilation of Existing Guidance”, ENV/JM/MONO (2009)16, http://www.oecd.org/dataoecd/15/60/43289645.pdf. “OECD Preliminary Analysis of Exposure Measurement and Exposure Mitigation in Occupational Settings: Manufactured Nanomaterials” OECD ENV/JM/MONO(2009)6, 2009. http://www.oecd.org/dataoecd/36/36/42594202.pdf.
“OECD Comparison of Guidance on selection of skin protective equipment and respirators for use in the workplace: manufactured nanomaterials”, OECD ENV/JM/MONO(2009) 17, 2009. www.oecd.org/dataoecd/15/56/43289781.pdf.

[14] WHO Guidelines on “Protecting Workers from Potential Risks of Manufactured Nanomaterials” (WHO/NANOH), (Background paper) 2011

[15] Dixon, D., “Toxic nanoparticles might be entering human food supply, MU study finds”, August 22, 2013, http://munews.missouri.edu/news-releases/2013/0822-toxic-nanoparticles-might-be-entering-human-food-supply-mu-study-finds/

[16] Scientific Committee on Emerging and Newly Identified health Risks (SCENIHR), The European Commission, 2006

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html

http://www.cnn.com/video/data/2.0/video/health/2013/01/25/sgmd-gupta-flame-retardants.cnn.html

Advertisements




How to avoid toxins in fabrics – and other products

6 12 2013

In response to a post a few weeks back, Susan Lanham wrote to us:  “I initially signed on to get this blog because I thought you would give practical ways to avoid these carcinogens. However, they are so pervasive, and there doesn’t seem to be any practical way to avoid them, so that reading your blog just makes me feel helpless and hopeless. More and more I just delete without reading: it’s like diagnosing a disease early when there is nothing to be done for it.”

Yikes.  We certainly didn’t want to turn people off in despair!  There is much you can do armed with a bit of knowledge.

We have always thought that information is the great motivator – that if people knew what they were buying, then they would demand changes in those products.  Remember that each time you purchase something,  you’re ensuring that the product you bought will keep being produced, in the same  way.  If you support new ideas, find that creative way to use something or insist that what you buy meets certain parameters, then new research will be done to meet consumer demand and new processes will be developed that don’t leave a legacy of destruction.

At least in theory, right?

The reality is that change takes a long time, and we’re living in a toxic soup now – so what can we do to protect ourselves right now?

And after all, just because almost anything can kill you doesn’t mean fabrics should.  So here’s my list of things you can do to begin to protect yourself from toxins in fabrics:

  1. Buy only GOTS or Oeko Tex certified fabrics if you can  – for everything, not just sheets and pajamas – starting now.   If you can’t find GOTS or Oeko Tex certified fabrics, try to use 100% organic natural fibers.  Certifications are a shorthand which allows us to accept that the certified products are safe, but if you want to get granular, you can find out what they’re certifying (i.e., what the certifications are telling you).  Be sure to differentiate between, for example, a GOTS certified fiber and a GOTS certified fabric.  Big difference:  A product which uses GOTS certified fibers only may have been processed conventionally, which means it could be full of chemicals of concern.
  2. If it’s cheap, it probably has hidden costs, like your health or our ecosystem.  It’s expensive to go against the flow, and natural fibers cost way more than synthetics, even though the price of crude is going up.  So pay more, use less.
  3. Never buy anything made of PVC (polyvinyl chloride) or acrylic (which can be used as finishes or backings as well as fibers) and generally avoid other synthetics (such as polyester).  They ALL start with toxic inputs (like ethylene glycol), but the profiles of both PVC and acrylic makes polyester look benign by comparison.  In that same vein, avoid fabrics that are pretending to be something they’re not – polyester can be made to look like practically anything (one of the things we love about it), but it won’t have the characteristics of the natural fibers that make them such good choices for us.
  4. If you must use synthetic fibers, the best choice would be GRS Gold level recycled polyester.  This new certification means that the recycled content really is  95-100%, with the added assurance that chemicals used in the manufacture abide by the GOTS standards (eliminating endocrine disrupting chemicals, heavy metals, and a long list of other chemicals of concern); water is treated and workers are given minimal rights.
  5. Never buy wrinkle-free or permanent-press anything and pass on any stain protection treatments. The wrinkle free finishes are formaldehyde resins, and there simply are no safe stain protection treatments.
  6. Fly less.  (I never said these would be easy, but it’s good to know, right?)  In this case my issue is not with the carbon footprint (which is tremendous) but because the fabrics are so drenched in flame retardants that people who fly often have elevated levels of PBDEs in their blood – and you already know that PBDEs and their ilk are to be avoided as much as possible.  Same is true of fabrics on cruise ships.
  7. Trust your nose.  If a fabric stinks, what does that tell you about it?
  8. Ask questions!  If they can’t tell you what’s in it, you probably don’t want to live with it.
  9. Get involved and become informed! Force the federal government to fulfill its obligation to protect us from harm – join something (like a Stroller Brigade, sponsored by Safer Chemicals, Healthy Families or Washington Toxics Coalition, for example) and urge your representatives to support the Safe Chemicals Act.  And share what you’ve learned.  This is an evolving industry, and we’re all looking for answers. But I know you’re just ONE person – and the problems do seem overwhelming.  Can just ONE person change the world? Margaret Meade said that committed people, banding together, is the only thing that ever has.
  10. Be aware of greenwashing.  This doesn’t mean waiting for the perfect product but it does mean honesty in letting you (the consumer) know exactly what is in the fabric.  If you see a green claim, Google the company name + environment and see what pops up.  If it’s a big company, do they spend a significant portion of their R&D budget on green initiatives?  What percent of their product offerings are “green” vs. “conventional”?

That does it for fabrics, but here are a few more things you can do to protect yourself :

  • Take off your shoes in the house – simple and easy, and it prevents lots of pesticides and other chemicals from being tracked in.
  • Vacuum and/or dust regularly –because the dust in our homes has been proven to contain lots of chemicals – wafted there from the other products in our homes.
  • Filter your water. You’d be surprised to read the list of really bad chemicals found in most tapwater in the United States – if you’re interested, read the series called “Toxic Waters” which was published in the New York Times.
  • Avoid polyurethane (i.e., poly foam, found in cushions and many other products) if you’re in the market for a new sofa or mattress, look for 100% natural – and certified – latex.
  • Read the labels of your grooming products – avoid anything that includes the words “paraben” (often used as a suffix, as in methylparaben) or “phthalate” (listed as dibutyl and diethylhexyl or just “fragrance”). If there isn’t an ingredients list, log on to cosmeticsdatabase.com, a Web site devised by the Environmental Working Group that identifies the toxic ingredients of thousands of personal-care products.
  • About plastics: Never use plastics in the microwave. Avoid “bad plastics” like PVC and anything with “vinyl” in its name. And don’t eat microwave popcorn, because the inside of a microwave popcorn bag is usually coated with a chemical that can migrate into the food when heated. It has been linked to cancer and birth defects in animals.
  • As Michael Pollan says: “Eat food. Not too much. Mostly plants.” I’d add: eat organic as much as possible, support local farmers and don’t eat meat and fish every day. Grow an organic garden – one of the most powerful things you can do! If you can only purchase a few organic foods, there are lots of lists that tell you which are the most pesticide-laden.
  • Replace cleaning products with non toxic alternatives – either commercially available cleaning products (avoiding ammonia, artificial dyes, detergents, aerosol propellants, sodium hypochlorite, lye, fluorescent brighteners, chlorine or artificial fragrances) or homemade. You probably can do most cleaning with a few simple ingredients like baking soda, lemon juice and distilled white vinegar. Lots of web sites offer recipes for different cleaners – I like essential oils (such as lavender, lemongrass, sweet orange, peppermint, cedar wood and ylang-ylang) in a bucket of soap and hot water. It can clean most floors and surfaces and it won’t kill me.
  • And now that we mention it, avoid using any product which lists “fragrance” as an ingredient.

I know that even that is a daunting list – it’s really hard to avoid some products and growing an organic garden just isn’t in the cards for some of us.  But if you do even some of these things your health – and ours! – will benefit.  Not to mention all the living things on Earth which depend on our good stewardship of this planet.





Choosing a fabric for your new sofa

14 10 2013

Design decisions influence our health –so your choice of a sofa fabric could influence you and your family in ways far beyond what you imagined.  Our children start life with umbilical cords infused with chemicals that affect the essence of human life itself  –   the ability to learn, reason and reproduce.  And fabric – which cocoons us most of the time, awake and asleep – is a contributor to this chemical load.  One thing I know for sure is that the textile industry uses lots of chemicals. During manufacturing, it takes from 10% to 100% of the weight of the fabric in chemicals to produce that fabric.(1) And the final fabric, if made of 100% natural fibers (such as cotton or linen), contains about 27% , by weight, chemicals(2) – let’s not even talk about synthetic fabrics.

Since 1999, the Centers for Disease Control (CDC) has tested Americans every two years in order to build a database of what are called “body burdens,”(3) in order to help toxicologists set new standards for exposure and definitively link chemicals to illness, or else decouple them. The study attempts to assess exposure to environmental chemicals in the general U.S. population – and the more chemicals they look for, the more they find: The CDC started with 27 worrisome chemicals in 1999 and now tests for 219. Their findings have shown that no matter whether you’re rich or poor; live in the center of a city or a pristine rural community; east coast, west coast or in between; are elderly or newborn; Republican, Democrat or Socialist – you have BPA in your blood, as well as polybrominated diphenylethers (PBDE)s – which can retard a fetus’s neurological development; perfluorooctanoic acid (PFOA) – which impairs normal development; perchlorate – which can keep the thyroid from making necessary hormones and methyl tert-butyl ethers (now banned in most states) and mercury.

And the correlation between chemicals to illness seems to be on the rise (4) – certainly from studies done linking various chemicals to human disease and illness, but also because the spectrum of both “rare” and “common” illnesses is on the rise. The National Institutes of Health defines a rare disease as one affecting 200,000 or fewer Americans. Yet 25 – 30 million Americans suffer from one of the nearly 6,800 identifiable rare diseases. That compares to the 40 million Americans with one of the three “major” diseases: heart disease, cancer or diabetes.

Specifically with regard to fabrics: The 2010 AATCC (American Association of Textile Chemists and Colorists) Buyer’s Guide  lists about 2,000 chemical specialties in over 100 categories offered for sale by about 66 companies, not including dyes. The types of products offered run the gamut from antimicrobial agents and binders to UV stabilizers and wetting agents. Included are some of the most toxic known (lead, mercury, arsenic, formaldehyde, Bisphenol A, PBDE, PFOA). There are no requirements that manufacturers disclose the chemicals used in processing – chemicals which remain in the finished fabrics. Often the chemicals are used under trade names, or are protected by legislation as “trade secrets” in food and drug articles – but fabrics don’t even have a federal code to define what can/cannot be used because fabrics are totally unregulated in the U.S., except in terms of fire retardancy or intended use. It’s pretty much a free-for-all.

Why does the industry use so many chemicals? What are they used for?

Most fabrics are finished in what is called “wet processing” where the process is accomplished by applying a liquid – which accomplishes some sort of chemical action to the textile – as opposed to “dry processing”, which is a mechanical/physical treatment, such as brushing. It is a series of innumerable steps leading to the finished textile, each one of which also has a complex number of variables, in which a special chemical product is applied, impregnated or soaked with the textile fiber of the fabric. A defined sequence of treatments can then be followed by another sequence of treatments using another chemical substance. Typically, treatments are arranged to permit a continuous mode of sequences.

The chemicals used can be subdivided into:
Textile auxiliaries – this covers a wide range of functions, from cleaning natural fibers and smoothing agents to improving easy care properties. Included are such things as:

  • Complexing agents, which form stable water-soluble complexes
  • Surfactants, which lowers the surface tension of water so grease and oil to be removed more easily
  • Wetting agents, which accelerates the penetration of finishing liquors
  • Sequestering agents
  •  Dispersing agents
  • Emulsifiers

Textile chemicals (basic chemicals such as acids, bases and salts)
      Colorants, such as:

  • Dyes
  •  Dye-protective agents
  • Fixing agents
  • Leveling agents
  • pH regulators
  • Carriers
  • UV absorbers

Finishes
The chemicals used get very specific: for example, Lankem Ltd. is one such manufacturer of a range of textile chemicals. According to their website, their Kemtex AP, for example, is an “anti-precipitant” to be used “where dyes of opposing ionicity may be present in the same bath” and their Kemtex TAL is a levelling agent for wool which is a “highly effective level dyeing assistant for acid, acid milling and prematallised dyes on wool.”

In addition to the branded products supplied by chemical companies, which are made of unknown components because they’re proprietary, we know many chemicals are necessary to achieve certain effects, such as PBDEs for fire retardants, formaldehyde resins for crease resistance or PFOA’s for stain protection.
The chemicals used in these branded products to create the effects above include chemicals which have been proven to be toxic, or to cause cancers or genetic mutations in mammals (i.e., us too). The following is by no means an all-inclusive list of these chemicals:
• Alkylphenolethoxylates (APEOs)
• Pentachlorophenols (PCP)
• Toluene and other aromatic amines
• Dichloromethane (DCM)
• Formaldehyde
• Phthalates
• Polybrominated diphenyl ethers ( PBDE’s)
• Perfluorooctane sulfonates (PFOS)
• Heavy metals – copper, cadmium, lead, antimony, mercury among others

One of the presenters at the 2011 Living Building Challenge, inspired by writer Michael Pollan’s Food Rules,  shared a list of ways to choose products that remove the worst of the chemical contamination that plagues many products.

These rules apply to all products, including fabrics, so I’ve just edited them a bit to be fabric specific:

  • If it is cheap, it probably has hidden costs.
  • If it starts as a toxic input (like ethylene glycol in the manufacture of      polyester), you probably don’t want it in your house or office.
  • Use materials made from substances you can imagine in their raw or natural state.
  • Use carbohydrate-based materials (i.e., natural fibers) when you can.
  • Just because almost anything can kill you doesn’t mean fabrics should.
  • Pay more, use less.
  • Consult your nose – if it stinks, don’t use it.
  • If they can’t tell you what’s in it, you probably don’t want to live with it. (note: his is not just the fibers used to weave the fabric – did the processing  use specific chemicals, like heavy metals in the dyestuff, or formaldehyde in the finish?)
  • Avoid materials that are pretending to be something they are not.
  • Question materials that make health claims.
  • Regard space-age materials with skepticism.

(1)    Environmental Hazards of the Textile Industry, Hazardous Substances Research Centers, South and Southwest Outreach Program, US EPA funded consortium, June 2006.

(2)     Lacasse and Baumann, Textile Chemicals: Environmental Data and Facts; German Environmental Protection Agency, Springer, New York, 2004, page 609.

(3)    What is a “body burden”: Starting before birth, children are exposed to chemicals that impair normal growth and development. Exposures continue throughout our lives and accumulate in our bodies. These chemicals can interact within the body and cause illness. And they get passed on from parent to child for generations.

(4)    World Health Organization; http://www.who.int/healthinfo/global_burden_disease/en/index.html





Fire retardants: the new asbestos

9 05 2013

My toxic couch:

I’d like to nominate flame retardant chemicals used in our furniture, fabrics and baby products – as well as a host of other products – as being in the running for the “new asbestos”. These chemicals (halogenated flame retardants, such as polybrominated diphenyl ethers) are commonly known as PBDE’s. An editorial in the Chicago Tribune, responding to the series published by that paper about flame retardants called “Playing with Fire” (click here to read the series), said the use of flame retardants is a public health debacle.

According to “Playing with Fire”, the average American baby is born with “10 fingers, 10 toes and the highest recorded level of flame retardants among infants in the world.” Many of these chemicals accumulate within the blood, fat, and even breast milk, causing a number of unknown health risks. One common ingredient in flame retardants, BDE-49, has recently been found to damage neural mitochondria, leading to brain damage. The same study also found evidence of autism effects being amplified by environmental factors.(1) The MIND Institute at UC Davis, responsible for the study, summarized it by saying the “chemical, quite literally, reduces brain power,” noting that the findings “bolster the argument that genetics and environment can combine to increase the risk of autism and other neurological disorders.”

These chemicals accumulate in human tissues – and they last a really long time . In addition, we’re being constantly re-exposed because they’re ubiquitous in the environment – they’re used for foam in cushions, but also in such things as baby strollers, carpeting, mattresses and electronics. These chemicals are also found in mother’s milk in every country of the world and in animals – from polar bears in the Arctic to hummingbirds in the Amazon.

In the United States, California has required flame retardants on everything from children’s pajamas to furniture. This standard is called Technical Bulletin 117, or TB 117, which was passed in 1975 and requires that polyurethane foam in upholstered furniture be able to withstand an open flame for 12 seconds without catching fire. Because California is such a large market, and also because there is no other state or federal standard, many manufacturers comply with the California rule, usually by adding flame retardants with the foam.

The startling and disturbing result of a published study in Environmental Health Perspectives is that Latino children born in California have levels of PBDE in their blood seven times higher than do children who were born and raised in Mexico.[2] In general, residents of California have higher rates of PBDE in their blood than do people in other parts of the United States – and people in the United States have levels of PBDE higher than anyone else in the world.

A home can contain a pound or more of fire retardants. These chemicals are similar in structure and action to substances such as PCBs and DDT that are widely banned. They leak out from furniture, settle in dust and are taken in by toddlers when they put their hands into their mouths. A paper published in Environmental Science & Technology [3] also finds high fire retardant levels in pet dogs. Cats, because they lick their fur, have the highest levels of all.

One troubling example is chlorinated Tris, a flame retardant that was removed from children’s pajamas in the 1970s largely based on research done by Dr. Arlene Blum, a biophysical chemist, after it was found to mutate DNA and identified as a probable human carcinogen. In the journal Environmental Science and Technology, new research published in 2011 shows that chlorinated Tris was found in more than a third of the foam samples tested – products such as nursing pillows, highchairs, car seats and changing pads.[4] Tris is now being used again at high levels in furniture being sold in California to meet the California standard.

The benefits of adding flame retardants have not been proved. Since the 1980s, retardants have been added to California furniture, yet from 1980 to 2004, fire deaths in states without such a standard declined at a similar rate as they did in California. And during a fire when the retardants burn, they increase the toxicity of the fire, producing dioxins, as well as additional carbon monoxide, soot and smoke, which are the major causes of fire deaths.

So why are we rolling the dice and exposing our children to substances with the potential to cause serious health problems when there is no proven fire safety benefit?

Under current law, it is difficult for the federal Environmental Protection Agency to ban or restrict chemicals – current federal oversight of chemicals is so weak that manufacturers are not required to label products with flame retardants nor are they required to list what chemicals are used.[5]. Even now, the agency has yet to ban asbestos!

And when a ban does go into effect, it’s usually severely restricted: for example, in the USA, BPA is now banned in baby bottles – but only in baby bottles. Many products tout the fact that they’re “BPA free” but that’s because the chemical has hit a nerve with consumers, who recognize that BPA isn’t a good thing to have in plastic water bottles, for example, so the manufacturers voluntarily restrict its use. Another example is lead, which has been banned in the USA in some products– paint and gasoline come quickly to mind – but is still used in others, such as plastics, printing, and dyes. New legislation restricts the amount of lead that can be present in products designed for children to 100 ppm, despite the fact that research shows that any detectable amount of lead can be harmful to kids.

The Consumer Product Safety Commission has been working on a federal flammability standard for upholstered furniture for 16 years. The current proposal would allow manufacturers to meet the flammability standard without fire retardants. An agency spokesman said that “additional research looking into consumer exposure and the impact of chemical alternatives is needed.”

California State Sen. Mark Leno sponsored California Senate Bill 147, the Consumer Choice Fire Protection Act, introduced in February, 2011. The bill called for an alternative furniture flammability standard that would give consumers the choice to purchase furniture that is fire-safe and nontoxic.

However, aggressive lobbying in the form of multimillion-dollar campaigns from “Citizens for Fire Safety” and other front groups funded by three bromine producers – Albemarle, Chemtura and Israeli Chemicals Ltd. – resulted in a defeat of this bill in March, 2011. Their main argument was that new flame retardants – similar in structure and properties to the old ones and lacking any health information – were safe. This despite opposition which included 30 eloquent firefighters, scientists, physicians and health officers representing thousands of Californians. But new life is again being breathed into this issue, and California has introduced a new TB117-2013 to address the problem by changing the testing parameters so as not to need flame retardants.

But stay tuned – the chemical industry has a lot at stake and they won’t go down without a fight.

Although we stopped most uses of asbestos decades ago, workers and others inadvertently exposed continue to die from its long-term effects. Let’s not add more chemicals to this sad list.

(1) Napoli E, Hung C, Wong S, Giulivi C., “Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background” Toxicol Sci. 2013 Mar;132(1):196-210.
[2] Eskenazi, B., et al., “A Comparison of PBDE Serum Concentrations in Mexican and Mexican-American
Children Living in California”, http://ehp03.niehs.nih.gov/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1289%2Fehp.1002874
[3] Vernier, Marta and Hites, Ronald; “Flame Retardants in the Serum of Pet Dogs and in their Food”, Environmental Science and Technology, 2011, 45 (10), pp4602-4608. http://pubs.acs.org/action/doSearch?action=search&searchText=PBDE+levels+in+pets&qsSearchArea=searchText&type=within&publication=40025991
[4] Martin, Andrew, “Chemical Suspected in Cancer is in Baby products”, The New York Times, May 17, 2011.
[5] Ibid.





Asbestos – and fire retardants.

24 10 2011

A half century ago, asbestos – a ” 100% natural” material by the way –  was hailed as the wonder fiber of the 20th century.   It was principally used for its heat resistant properties and to protect property (and incidentally, human lives) from the ravages of fire. Because of this, asbestos was used in virtually all industrial applications as well as the construction of buildings and sea-going vessels. In the United States, asbestos is still legally used in 3,000 different consumer products, predominantly building insulation (and other building materials), automobile parts such as brake pads, roofing materials, floor tiles. Since asbestos became known to be a potent human health risk, many manufacturers found alternatives to asbestos:  for example, since the mid-1990s, a majority of brake pads, new or replacement, have been manufactured instead with linings made of ceramic, carbon, metallic and aramid fiber( Twaron or Kevlar – the same material used in bulletproof vests).

According to the United States Environmental Protection Agency, three of the major health effects associated with asbestos exposure include:

  • Asbestosis —  a serious, progressive, long-term non-cancer disease of the lungs. It is caused by inhaling asbestos fibers that irritate lung tissues and cause the tissues to scar. The scarring makes it hard for oxygen to get into the blood. The latency period (meaning the time it takes for the disease to develop) is often 10–20 years. There is no effective treatment for asbestosis.
  • CancerCancer of the lung, gastrointestinal tract, kidney and larynx have been linked to asbestos. The latency period for cancer is often 15–30 years.
  •  Mesothelioma — Mesothelioma is a rare form of cancer that is found in the thin lining (membrane) of the lung, chest, abdomen, and heart. Unlike lung, cancer, mesothelioma has no association with smoking. The only established causal factor is exposure to asbesto  fibers. The latency period for mesothelioma may be 20–50 years. The prognosis for mesothelioma is grim, with most patients dying within 12 months of diagnosis.  This is why great efforts are being made to prevent school children from being exposed.

Worldwide, 52 countries (including those in the European Union) have banned the use of asbestos, in whole or in part.  In the United States, only six categories of products can NOT contain asbestos:  flooring felt, rollboard, and corrugated, commercial, or specialty paper. In addition, there is a ban on the use of asbestos in products that have not historically contained asbestos, otherwise referred to as “new uses” of asbestos.   

So today, asbestos remains in millions of structures throughout the country, as many people find out (to their dismay) when they are planning to repaint their home or do other remodeling tasks and must deal with the EPA rules for safe disposal or removal of products which may contain asbestos.   Millions of people are exposed at home or in their workplace by the monumental quantities of asbestos that remain in the built environment — the attic insulation in 30 million American homes, for instance — following decades of heavy use.  It also remains heavily used in brake shoes and other products, directly exposing auto mechanics and others who work with the materials, and indirectly exposing consumers and workers’ families.

No safe level of minimum exposure has ever been established for asbestos. Many of the first cases of mesothelioma were persons who never directly handled asbestos as part of their jobs. An early case in South Africa occurred in a young girl whose job it was to empty the pockets of miners before dry cleaning their clothes. The asbestos dust in the miners’ pockets made her fatally ill.[1]   People who have worked in plumbing, steel, insulation and electrical industries have very high chances of suffering from asbestos-related disease. In fact, they could have passed it on to their family members through the dust that could have clung to their shirts, shoes and other personal belongings.

Today, even though global asbestos use is down, there are more than 10,000 deaths per year due to the legacy of asbestos exposure.[2] Asbestos kills thousands more people each year than skin cancer, and kills almost as many people as are slain in assaults with firearms

With the science to back up the claims that asbestos is a serial killer, and with global use on the downward swing, wouldn’t you think that deaths from asbestos exposure would be going down?  Yet, the U.S. EPA reports that asbestos related deaths are increasing  and, according to the studies cited by the Environmental Working Group, many believe that  the U.S. asbestos disease epidemic may not even peak for another ten years or more.

This ongoing increase in asbestos mortality is due largely to the fact that asbestos-caused cancers and other diseases have a 20 to 50 year latency period, meaning that individuals exposed in the 1960s and 1970s are just now dying from their exposure. Better tracking accounts for the dramatic increase in mesothelioma mortality reported in 1999, but lung cancer deaths from asbestos are not reported at all, and asbestosis is still dramatically underreported even in worker populations where asbestos exposure is well established.

The legacy of asbestos, in the United States as in other countries such as the U.K. and Australia, is that the initial use of asbestos as a miracle fiber quickly gave rise to a burgeoning industry and adoption of asbestos in many products.   This happened long before any detrimental health effects were known, so now,  many years later,  asbestos related disease is killing significant numbers of people.  Environmental Health Perspectives last year published “The Case for a Global Ban on Asbestos”[3]

If you google “new asbestos” you can find many materials that people claim could be the “new asbestos” – nanotechnology, fly ash and climate-change litigation for example – because these are all being widely adopted before being well understood, and may well leave a legacy of death and destruction similar to that of asbestos.  Well, okay, litigation has not been known to kill directly, but you understand the point I’m trying to make.

I’d like to nominate flame retardant chemicals used in our furniture, fabrics and baby products – as well as a host of other products – as being in the running for the new asbestos.  These chemicals are called halogenated flame retardants, such as polybrominated diphenyl ethers – commonly known as PBDE’s.  Women in North America have 10 to 40 times the levels of the PBDEs in their breast milk, as do women in Europe or in Asia. And these chemicals pass through the placenta and are found in infants at birth, making a double dose of toxins for young children when they are most vulnerable.  When tested in animals, fire retardant chemicals, even at very low doses, can cause endocrine disruption, thyroid disorders, cancer, and developmental, reproductive, and neurological problems such as learning impairment and attention deficit disorder.   In humans, these chemicals are associated with reduced IQ in children, reduced fertility, thyroid impacts, undescended testicles in infants (leading to a higher cancer risk), and decreases in sperm quality and function.Ongoing studies are beginning to show a connection between these chemicals and autism in children.(4)  Pregnant women have the biggest cause for concern because animal studies show negative impacts on brain development of offspring when mothers are exposed during pregnancy. And bioaccumulating PBDEs can stay in our bodies for more than a decade.

A study published last week in the Environmental Health Perspectives  points to California’s unique furniture flammability standard called Technical Bulletin 117, or TB117, as the major reason for high fire retardant levels in California. The California standard, passed in 1975, requires that polyurethane foam in upholstered furniture be able to withstand an open flame for 12 seconds without catching fire. Because there is no other state or federal standard, many manufacturers comply with the California rule, usually by adding flame retardants with the foam.

The startling and disturbing result of the published study in Environmental Health Perspectives is that Latino children born in California have levels of PBDE in their blood seven times higher  than do children who were born and raised in Mexico.[5]  In general, residents of California have higher rates of PBDE in their blood than do people in other parts of the United States.

A home can contain a pound or more of fire retardants that are similar in structure and action to substances such as PCBs and DDT that are widely banned. They leak out from furniture, settle in dust and are taken in by toddlers when they put their hands into their mouths. A paper published in Environmental Science & Technology [6] also finds high fire retardant levels in pet dogs. Cats, because they lick their fur, have the highest levels of all.

One troubling example is chlorinated Tris, a flame retardant that was removed from children’s pajamas in the 1970s largely based on research done by Dr. Arlene Blum, a biophysical chemist, after it was found to mutate DNA and identified as a probable human carcinogen.  In the journal Environmental Science and Technology, new research published in 2011 shows that chlorinated Tris was found in more than a third of the foam samples tested – products such as nursing pillows, highchairs, car seats and changing pads.[7]

Tris is now being used at high levels in furniture being sold in California to meet the California standard.

The benefits of adding flame retardants have not been proved. Since the 1980s, retardants have been added to California furniture. From 1980 to 2004, fire deaths in states without such a standard declined at a similar rate as they did in California. And when during a fire the retardants burn, they increase the toxicity of the fire, producing dioxins, as well as additional carbon monoxide, soot and smoke, which are the major causes of fire deaths.

So why are we rolling the dice and exposing our children to substances with the potential to cause serious health problems when there is no proven fire safety benefit?

Under current law, it is difficult for the federal Environmental Protection Agency to ban or restrict chemicals – current federal  oversight of chemicals is so weak that manufacturers are not required to label products with flame retardants nor are they required to list what chemicals are used.[8]. Even now, the agency has yet to ban asbestos!

“We can buy things that are BPA free, or phthalate free or lead free. We don’t have the choice to buy things that are flame-retardant free,” says Dr. Heather Stapleton, an assistant professor of environmental chemistry at Duke University. “The laws protect the chemical industry, not the general public.”

The Consumer Product Safety Commission has been working on a federal flammability standard for upholstered furniture for 16 years. The current proposal would allow manufacturers to meet the flammability standard without fire retardants. An agency spokesman said that “additional research looking into consumer exposure and the impact of chemical alternatives is needed.”

This year, California State Sen. Mark Leno sponsored California Senate Bill 147, the Consumer Choice Fire Protection Act. The bill called for an alternative furniture flammability standard that would give consumers the choice to purchase furniture that is fire-safe and nontoxic.

However, aggressive lobbying in the form of multimillion-dollar campaigns from “Citizens for Fire Safety” and other front groups funded by three bromine producers –  Albemarle, Chemtura and Israeli Chemicals Ltd. –  resulted in a defeat of this bill in March, 2011.  Their main argument was that new flame retardants – similar in structure and properties to the old ones and lacking any health information – were safe.  This despite  opposition which included 30 eloquent firefighters, scientists, physicians and health officers representing thousands of Californians.

Although we stopped most uses of asbestos decades ago, workers and others inadvertently exposed continue to die from its long-term effects.  Let’s not add more chemicals to this sad list.


[5]  Eskenazi, B., et al., “A Comparison of PBDE Serum Concentrations in Mexican and Mexican-American
Children Living in California”,  http://ehp03.niehs.nih.gov/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1289%2Fehp.1002874

[6]  Vernier, Marta and Hites, Ronald; “Flame Retardants in the Serum of Pet Dogs and in their Food”, Environmental Science and Technology, 2011, 45 (10),  pp4602-4608.  http://pubs.acs.org/action/doSearch?action=search&searchText=PBDE+levels+in+pets&qsSearchArea=searchText&type=within&publication=40025991

[7]  Martin, Andrew, “Chemical Suspected in Cancer is in Baby products”, The New York Times, May 17, 2011.

[8]  Ibid.





New LEED Pilot Credits for chemical avoidance

16 03 2011

I can’t begin to tell you how many times I’ve been told:  “I’ve been an interior designer for (insert number of years here) and in all that time, not one person has ever asked for a “green” fabric!” Or the popular variation:  “my clients don’t care about “green”.   The implication, of course, is that I’m barking up the wrong tree in thinking anybody would ever consider “green” as a valid criteria when buying fabric.  Color – check.  Price – check.  Abrasion rating – check.  But “green”?

Well, if you can’t be altruistic about your purchase, then let’s simply look at what your fabric choices are doing to you and your family.  “Green” should really read as “safe”, because conventional fabrics are filled with process chemicals, many of which are outlawed in other products.  Right now the chemicals in your fabrics are contributing to changes that are taking place in your body.  You can’t see those changes, because they are subtle and insidious:  maybe headaches (especially when you draw the drapes at night); maybe sensitization to some new chemicals is giving you a runny nose.  Or maybe a cascading series of changes is taking place in your body and putting a more  dire outcome into play – cancerous tumors, or Parkinsons disease.  And studies are proving that these chemicals affect unborn babies and infants in much more egregious ways.

China exports fabric to the United States that would be outlawed in China – or in Japan or the European Union [1] – because of the chemicals contained in that fabric.  Americans don’t have a safety net protecting them from these chemical incursions.   The Centers for Disease Control and Prevention have found toxic chemicals in the bodies of virtually all Americans:  the most recent report on Americans exposure to environmental chemicals, July 2010 [2], listed 212 chemicals in people’s blood or urine – 75 of which have never before been been measured.   Some of these are linked to increases in prostate and breast cancers, diabetes, heart disease, lowered sperm counts, early puberty and other diseases and disorders – but the really scary thing is that we have no idea what most of the chemicals are doing to us because they’ve never been tested.

In the interest of fairness and letting you make up your own mind, I have seen some articles which refer to this concern about the many industrial chemicals which are seeping into our bodies as “chemophobia”.  “They” say that this so called “chemophobia” is both wrong and counterproductive (see http://www.american.com/archive/2010/february/our-chemophobia-conundrum/) but I think their arguments are the same old saw: “the amount of what is considered toxic is found in such minute quantities that it’s not doing anybody any harm”.   I challenge you to check the rates of increase of certain health issues – even the development of new ones, such as multiple chemical sensitivity (MCS) – and feel confident that we are entirely safe.   Or better yet,  take a look at what happened in Toms River, N.J. where the Ciba Geigy corporation dumped over 4,500 drums of contaminated waste into one farm (now a Superfund site) and, beginning in 1952, dumped effluent directly into the Toms River.  The children of Toms River developed statistically higher averages for cancers – particularly female children – than the rest of the nation.  The Dover Township landfill was declared a public health hazard.  But do the research yourself and see where you stand on the divide.  And if you’re REALLY interested, check out The Body Toxic: An Environmental Memoir by Susanne Antonetta, who happened to grow up in this area (read a review here.)

But before I go entirely off subject onto a diatribe about our toxic ignorance, what I really want to write about are the new LEED pilot credits which reward precautionary action for chemical avoidance:

  • Pilot Credit 2 tries to reduce the use (and hence release) of persistent bioacumulative toxic chemicals, including the use of PVC, Neoprene, and all brominated or halogenated flame retardants, such as PBDEs.
  • Pilot Credit 11 tries to reduce the quantity of indoor contaminants that are “harmful to the comfort and well-being of installers and occupants”, including halogenated flame retardants and phthalates.

Bill Walsh, Executive Director of  the Healthy Building Network, wrote a review of these new pilot credits in January 2011.  His article, quoted below, might give some of the people, who don’t consider “green” and “safe” when buying fabric, something to think about:

Last year the USGBC introduced two new Pilot Credits that reward precautionary action, the avoidance of certain classes of chemicals in the face of mounting evidence that they present significant threats to human health.[3] Industry trade groups fought these measures as they fight all chemical regulation, with the argument that restrictions or disincentives against chemical use must be based upon “sound science” that proves the connection between a specific chemical and a specific health problem beyond a shadow of a doubt. But due to a catch-22 in current US law, the EPA must prove potential risk or widespread exposure before it can get the data it needs to determine the extent of hazard, exposure or risk.[4] If we want to make green buildings healthy buildings, merely following the law will lead us in circles.

To fully appreciate the importance of precautionary measures such as the LEED Pilot Credits, consider the failure of the chemical industry’s voluntary effort to provide EPA with information about High Production Volume (HPV) chemicals – chemicals produced or imported into the US at volumes in excess of 1 million pounds per year. In the early 1980s, the National Academy of Sciences’ National Research Council found that 78% of the chemicals in highest-volume commercial use had not had even “minimal” toxicity testing.[5] Thirteen years later, a comprehensive report by the Environmental Defense Fund (EDF) found no significant improvement: “even the most basic toxicity testing results cannot be found in the public record for nearly 75% of the top-volume chemicals in commercial use.”[6]

In 1998, multiple studies by federal government agencies confirmed that the government lacked basic data needed to understand and characterize the potential hazards associated with HPV chemicals.[7] There are roughly 3,000 such chemicals. “Most Americans would assume that basic toxicity testing is available and that all chemicals in commerce today are safe… This is not a prudent assumption,” said one review. [8] An EPA review could find no safety information for more than half of them, and complete data for only 7 percent. Additionally, EDF reported, there are tens of thousands of non-HPV chemicals that remain to be addressed, which likely have even larger data gaps than were found for HPV chemicals.[9]

These findings prompted the EPA to swing into action – voluntary action. The High Production Volume Chemical Challenge of 1998 invited American industries to “sponsor” HPV chemicals and voluntarily provide health and safety data in lieu of regulatory action. More than 2,200 chemicals were eventually “sponsored,” but ten years later, in 2008, the EPA still had no data on more than half of them. Of the data sets it had received from industry, fewer than half were complete, according to EDF, an original sponsor of the program.

On January 5, 2011, the EPA finally took regulatory action. It will require testing of just “19 of the many hundreds of HPV chemicals on the market today for which even the most basic, ‘screening level’ hazard data are not publicly available.”[10]

The Dow Chemical Company calls the program “a tremendous success.”[11] An investigative report by the Milwaukee Journal deemed it “a failure.”[12] Richard Denison, Senior Scientist at EDF and one of the most knowledgeable independent experts on the program calls it “a perfect poster child for what’s wrong” with federal chemical regulations.[13]

Efforts to reform the major US law regulating chemical production, the Toxic Substances Control Act, are underway but are unlikely to make it through the Republican controlled House of Representatives. In the meantime, despite the data gaps, it is possible to make responsible, healthier choices based upon the best available evidence. The new LEED Pilot Credits help you make those choices and remove tons of toxic chemicals from our buildings, our bodies and our environment. Take your first step toward earning these credits with LEEDuser, and easily find products that qualify for the credits using the Pharos online system.

That will protect us at work – but there is still nothing to protect you at home.


[3] The 1998 Wingspread Statement on the Precautionary Principle summarizes the principle this way: “When an activity raises threats of harm to the environment or human health, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically.” The US Green Building Council Guiding Principle #4 states: The USGBC will be guided by the precautionary principle in utilizing technical and scientific data to protect, preserve and restore the health of the global environment, ecosystems.

[4] Richard Denison, Environmental Defense Fund. “A Near Sisyphusian Task; EPA Soldiers On to Require More Testing Under TSCA.” 1/5/11. http://blogs.edf.org/nanotechnology/2011/01/05/a-near- sisyphusian-task-epa-soldiers-on-to-require-more-testing-under-tsca/

[5] Environmental Defense Fund. “Toxic Ignorance: The Continuing Absence of Basic Health Testing for Top-Selling Chemicals in the United States.” 1997, p.11. http://www.edf.org/documents/243_toxicignorance.pdf

[6]Environmental Defense Fund. “Toxic Ignorance: The Continuing Absence of Basic Health Testing for Top-Selling Chemicals in the United States.” 1997, p.11. http://www.edf.org/documents/243_toxicignorance.pdf

[7] Meg Kissinger and Susanne Rust. “EPA fails to collect chemical safety data.” JS Online. 8/4/08. http://www.jsonline.com/news/milwaukee/32597744.html.

[8] Meg Kissinger and Susanne Rust. “EPA fails to collect chemical safety data.” JS Online. 8/4/08. http://www.jsonline.com/news/milwaukee/32597744.html

[9] Environmental Defense Fund. “High Hopes, Low Marks: A Final Report Card on the High Production Volume Chemical Challenge.” p.30. 2007. http://www.edf.org/documents/6653_HighHopesLowMarks.pdf

[10] Denison, op. cit. Note that EPA has initiated another rulemaking targeting another 29 chemicals.

[12] Meg Kissinger and Susanne Rust. “EPA fails to collect chemical safety data.” JS Online. 8/4/08. http://www.jsonline.com/news/milwaukee/32597744.html

[13] Denison, op. cit.





What effects do fabric choices have on you?

9 03 2011

 

 


 

Let’s look at just three areas in which your fabric choice impacts you directly:

1.      What are residual chemicals in the fabrics doing to you and the planet?

2.      What are the process chemicals expelled in treatment water  doing to us?

3.      Why do certain fiber choices accelerate climate change?

RESIDUAL CHEMICALS IN THE FABRICS:

  • It takes between 10% and 100% of the weight of the fabric in chemicals to produce that fabric.[1] Producing enough fabric to cover ONE sofa uses 4 to 20 lbs. of chemicals – and the final fabric is about 27%  synthetic chemicals by weight.[2]
  • In the mills, textile clippings must be handled like toxic waste, according to OSHA regulations (see Note below).  The fabrics we bring into our homes contain chemicals which are outlawed in other products.   Many fabrics sold in the USA are outlawed in China, Japan and the EU – because of the chemicals found in the fabrics.
  • Chemicals which remain in the fabric are absorbed by our bodies: some chemicals outgas into the air; some are absorbed through our skin.  Another way our bodies absorb these chemicals:   over time, microscopic particles are abraded and fall into the dust in our homes where pets and crawling children breathe them in.
  • Chemicals used routinely in textile processing – and found in the fabrics we live with – include those that bioaccumulate, persist in our environment and contribute to a host of human diseases.  They include, but are not limited to,  formaldehyde, benzene, lead, cadmium, mercury and chlorine, which are all used a lot.[3]
  • Why do we continue to allow fabrics into our lives that contain chemicals which have been demonstrated to affect us in many ways, from subtle to profound?  Chemicals used in textile processing are contributing to the chemical onslaught which many feel has led to increases in a host of health issues:  infertility, asthma, nervous disorders from depression and anxiety to brain tumors, immune system suppression and genetic alterations.  Why are we taking a chance?

PROCESS CHEMICALS EXPELLED IN TREATMENT WATER:

  • The textile industry is the #1 industrial polluter of water in the world.[4]
  • Vast quantities of water are returned to our ecosystem, untreated, filled with process chemicals – chemicals which circulate in the groundwater of our planet.
  • Because these chemicals are released into the environment, they become available to living organisms (like us).  That’s why PBDE’s (a fire retardant chemical widely used in the textile and electronics industries) are found in the blood of every animal in the world, from the Artic to the Amazon –  in the most remote parts of the world, far from any industry.[5] And the rate of increase for PBDE’s is rising exponentially.
  • Disease rates correlated with chemical exposure are on the rise – You can send your children to private schools and provide the best medical care in the world, but you can’t protect them from chemical pollution.

 

CLIMATE CHANGE:

  • The U.S. textile industry is the 5th largest contributor to CO2 emissions, by industry, in the United States.[6] (The production of the U.S. textile industry is mostly synthetics, and these egregious GHG emissions are largely from the production of synthetics.)  Given the size of the U.S. textile industry, it seems a disproportionatly high percentage.  Image what the textile industry contributes globally.
  • Not only is the quantity of greenhouse gas emissions of concern regarding synthetics, but so is the quality:  Nylon, for example, creates emissions of NO2, which is 300 times more damaging than CO2 [7] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  Polyester production generates particulates, CO2, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[8] acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[9]
  • The production of synthetics is heavily dependent on oil – it’s made from oil and it takes a lot to produce the fibers.  The embodied energy in 1 KG of polyester is much greater than the embodied energy in 1 KG of many common building products, including steel, as shown in the chart here:

Data compiled from "LCA: New Zealand Merino Wool Total Energy Use" by Barber and Pellow; EMBODIED ENERGY AND CO2 COEFFICIENTS FOR NZ BUILDING MATERIALS by A Alcorn, 2003

 

 

You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles exist and they give you a greener, healthier, fairtrade alternative.  What will an eco textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.

 


[1] Working Report No. 10,2002 from the Danish EPA.  Danish experience: Best Available Techniques (BAT) in the clothing and textile industry, document prepared for the European IPPC Bureau and the TWG Textile.  See also  Voncina, B and Pintar, M, “Textile Waste Recycling”,  University of Maribor, Slovenia, from the proceedings of the 10th International Conference on Environmental Science and Technology, September 2007

[2] Lacasse and Baumann, Textile Chemicals:,  Environmental Data and Facts, Springer, New York, 2004, page 609.

NOTE: From: http://www.fibre2fashion.com/industry-article/3/297/safety-and-health-issues-in-the-textile-industry2.asp: OSHA requirements based on such studies as these:

A study conducted in USA revealed a correlation between the presence of cancer of the buccal cavity and pharynx and occupation in the textile industry. Another study revealed that textile workers were at high risk for developing cancer of the stomach while another study indicated a low degree of correlation between oesophageal cancer and working in the textile industry. Moreover, a high degree of colorectal cancer, thyroid cancer, testicular cancer and nasal cancer was observed among textile workers. Also, a relationship between the presence of non-Hodgkin’s lymphoma and working in the textile industry was observed.

[3] See, for example:

  • “Killer Couches”, Sara Schedler,  Friends of the Earth, www.foe.org
  • “Dioxins and Dioxin-like Persistent Organic Pollutants in Textiles and Chemicals in the Textile Sector”, Bostjan Krizanec and Alenka Majcen Le Marechal, Faculty of Mechanical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia; January 24, 2006
  • “Potentials for exposure to industrial chemicals suspected of causing developmental neurotoxicity”, Philippe Grandjean, MD, PhD, Adjunct Professor and Marian Perez, MPH, Project Coordinator,
  • “The Chemicals Within” , Anne Underwood, Newsweek, January 26, 2008
  • Williams, Florence, “Toxic Breast Milk”, New York Times Magazine, January 9, 2005

[4] Cooper, Peter, “Clearer Communication”, Ecotextile News, May 2007

[6] Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

[7] “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

[8] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[9] Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.