Polyester and our health

13 10 2011

Polyester is a very popular fabric choice – it is, in fact, the most popular of all the synthetics.  Because it can often have a synthetic feel, it is often blended with natural fibers, to get the benefit of natural fibers which breathe and feel good next to the skin, coupled with polyester’s durability, water repellence and wrinkle resistance.  Most sheets sold in the United States, for instance, are cotton/poly blends.

It is also used in the manufacture of all kinds of clothing and sportswear – not to mention diapers, sanitary pads, mattresses, upholstery, curtains  and carpet. If you look at labels, you might be surprised just how many products in your life are made from polyester fibers.

So what is this polyester that we live intimately with each day?

At this point, I think it would be good to have a basic primer on polyester production, and I’ve unabashedly lifted a great discussion from Marc Pehkonen and Lori Taylor, writing in their website diaperpin.com:

Basic polymer chemistry isn’t too complicated, but for most people the manufacture of the plastics that surround us is a mystery, which no doubt suits the chemical producers very well. A working knowledge of the principles involved here will
make us more informed users.

Polyester is only one compound in a class of petroleum-derived substances known as polymers. Thus, polyester (in common with most polymers) begins its life in our time as crude oil. Crude oil is a cocktail of components that can be separated by industrial distillation. Gasoline is one of these components, and the precursors of polymers such as polyethylene are also present.

Polymers are made by chemically reacting a lot of little molecules together to make one long molecule, like a string of beads. The little molecules are called monomers and the long molecules are called polymers.

Like this:

O + O + O + . . . makes OOOOOOOOOOOOOOOO

Depending on which polymer is required, different monomers are chosen. Ethylene, the monomer for polyethylene, is obtained directly from the distillation of crude oil; other monomers have to be synthesized from more complex petroleum derivatives, and the path to these monomers can be several steps long. The path for polyester, which is made by reacting ethylene glycol and terephthalic acid, is shown below. Key properties of the intermediate materials are also shown.

The polymers themselves are theoretically quite unreactive and therefore not particularly harmful, but this is most certainly not true of the monomers. Chemical companies usually make a big deal of how stable and unreactive the polymers are, but that’s not what we should be interested in. We need to ask, what about the monomers? How unreactive are they?

We need to ask these questions because a small proportion of the monomer will never be converted into polymer. It just gets trapped in between the polymer chains, like peas in spaghetti. Over time this unreacted monomer can escape, either by off-gassing into the atmosphere if the initial monomers were volatile, or by dissolving into water if the monomers were soluble. Because these monomers are so toxic, it takes very small quantities to be harmful to humans, so it is important to know about the monomers before you put the polymers next to your skin or in your home. Since your skin is usually moist,
any water-borne monomers will find an easy route into your body.

Polyester is the terminal product in a chain of very reactive and toxic precursors. Most are carcinogens; all are poisonous. And even if none of these chemicals remain entrapped in the final polyester structure (which they most likely do), the manufacturing process requires workers and our environment to be exposed to some or all of the chemicals shown in the flowchart above. There is no doubt that the manufacture of polyester is an environmental and public health burden
that we would be better off without.

What does all of that mean in terms of our health?  Just by looking at one type of cancer, we can see how our lives are being changed by plastic use:

  • The connection between plastic and breast cancer was first discovered in 1987 at Tufts Medical School in Boston by
    research scientists Dr. Ana Soto and Dr. Carlos Sonnenschein. In the midst of their experiments on cancer cell growth, endocrine-disrupting chemicals leached from plastic test tubes into the researcher’s laboratory experiment, causing a rampant proliferation of breast cancer cells. Their findings were published in Environmental Health Perspectives (1991)[1].
  • Spanish researchers, Fatima and Nicolas Olea, tested metal food cans that were lined with plastic. The cans were also found to be leaching hormone disrupting chemicals in 50% of the cans tested. The levels of contamination were twenty-seven times more than the amount a Stanford team reported was enough to make breast cancer cells proliferate. Reportedly, 85% of the food cans in the United States are lined with plastic. The Oleas reported their findings in Environmental Health Perspectives (1995).[2]
  • Commentary published in Environmental Health Perspectives in April 2010 suggested that PET might yield endocrine disruptors under conditions of common use and recommended research on this topic. [3]

These studies support claims that plastics are simply not good for us – prior to 1940, breast cancer was relatively rare; today it affects 1 in 11 women.  We’re not saying that plastics alone are responsible for this increase, but to think that they don’t contribute to it is, we think, willful denial.  After all, gravity existed before Newton’s father planted the apple tree and the world was just as round before Columbus was born.

Polyester fabric is soft, smooth, supple – yet still a plastic.  It contributes to our body burden in ways that we are just beginning to understand.  And because polyester is highly flammable, it is often treated with a flame retardant, increasing the toxic load.  So if you think that you’ve lived this long being exposed to these chemicals and haven’t had a problem, remember that the human body can only withstand so much toxic load – and that the endocrine disrupting chemicals which don’t seem to bother you may be affecting generations to come.

Agin, this is a blog which is supposed to cover topics in textiles:   polyester is by far the most popular fabric in the United States.  Even if made of recycled yarns, the toxic monomers are still the building blocks of the fibers.  And no mention is ever made of the processing chemicals used to dye and finish the polyester fabrics, which as we know contain some of the chemicals which are most damaging to human health.

Why does a specifier make the decision to use polyester – or another synthetic –  when all the data points to this fiber as being detrimental to the health and well being of the occupants?  Why is there not a concerted cry for safe processing chemicals at the very least?


[2] http://www.prnewswire.com/news-releases/zwa-reports-are-plastic-products-causing-breast-cancer-epidemic-76957597.html

[3]  Sax, Leonard, “Polyethylene Terephthalate may Yield Endocrine Disruptors”,
Environmental Health Perspectives, April 2010, 118 (4): 445-448

Advertisements




Issues with using recycled polyester

31 03 2010

It looks like the plastic bottle is here to stay, despite publicity about bisphenol A  and other chemicals that may leach into liquids inside the bottle.   Plastic bottles (which had been used for some kind of consumer product) are the feedstock for what is known as “post consumer recycled polyester”.  Recycled polyester, also called rPET, is now accepted as a “sustainable” product in the textile market.   In textiles, most of what passes for “sustainable” claims by manufacturers have some sort of recycled polyester in the mix, because it’s a message that can be easily understood by consumers – and polyester is much cheaper than natural fibers.

The recycled market today has lots of unused capacity – as well as great potential for growth, because the recycling rates in many high consumption areas (like Europe and the USA) are low but growing.   In Europe, collection rates for bottles rose to 46% of all PET bottles on the market, while in the US the rate is 27%.   Factories are investing in technology and increasing their capacity – so the demand is huge.  According to Ecotextile News, beggars in China will literally stand watching people drink so that they can ask for the empty bottle.

As the size of the recycled polyester market grows, we think the integrity of the sustainability claims for polyesters will become increasingly important.  There has not been the same level of traceability for polyesters as there is for organically labelled products.  According to Ecotextile News, this is due (at least in part) to lack of import legislation for recycled goods.

When you buy a fabric that claims it’s made of 100% post consumer polyester – how do you know that the fibers are 100% post consumer?  Is there a certification which assures us that the fibers really are what the manufacturer says they are?  And it’s widely touted that recycling polyester uses just 30 – 50% the energy needed to make virgin polyester – but is that true in every case?  And what about water use – it’s widely thought that water use needed to recycle polyester is low, but who’s looking to see that this is true?

Recycled post consumer polyester is made from bottles – which have been collected, sorted by hand, and then melted down and formed into chips (sometimes called flakes).  These chips or flakes are then sent to the yarn spinning mills, where they’re melted down and (if not used at 100% rates) mixed with virgin polyester.   A fabric made of “recycled polyester” has a designated percentage of those chips in the polymer.  The technology has gotten so sophisticated that it’s now difficult to verify if something is really recycled.

First, let’s look at how the recycled polyester is used in textiles, beyond the issue of whether the recycled PET yarns actually ARE spun from recycled feedstock,  because there are several issues with using recycled PET which are unique to the textile industry:

  • The base color of the recyled chips varies from white to creamy yellow.  This makes it difficult to get consistent dyelots, especially for pale shades.
  • In order to get a consistently white base, some dyers use chlorine-based bleaches.
  • Dye uptake can be inconsistent, so the dyer would need to re-dye the batch.  There are high levels of redyeing, leading to increased energy use.
  • PVC is often used in PET labels and wrappers and adhesives.  If the wrappers and labels from the bottles used in the post consumer chips had not been properly removed and washed, PVC may be introduced into the polymer.
  • Some fabrics are forgiving in terms of appearance and lend themselves to variability in yarns,  such as fleece and carpets; fine gauge plain fabrics are much more difficult to achieve.

And of course, the chemicals used to dye the polymers as well as the processing methods used during weaving of the fabric may – or may not – be optimized to be environmentally benign.  Water used during weaving of the fabric may – or may not –  be treated.  And the workers may – or may not – be paid a fair wage.

One solution, suggested by Ecotextile News, is to create a tracking system that follows the raw material through to the final product.  This would be very labor intensive and would require a lot of monitoring (all of which adds to the cost of production – and don’t forget, recycled polyester now is fashion’s darling because it’s so cheap!).  There are also private standards which have begun to pop up, in an effort to differentiate their brands.  One fiber supplier which has gone the private standard route is Unifi.   Repreve is the name of Unifi’s recycled polyester – the company produces recycled polyester yarns, and (at least for the filament yarns) they have Scientific Certification Systems certify that Repreve yarns are made with 100% recycled content.  Unifi’s  “fiberprint” technology audits orders across the supply chain  to verify that if Repreve is in a product it’s present in the right amounts.  But there are still  many unanswered questions (because they’re  considered “proprietary information” by Unifi)  so the process is not transparent.

But now there is a new, third party certification which is addressing these issues.  The Global Recycle Standard, issued by Control Union, is intended to establish independently verified claims as to the amount of recycled content in a yarn.  In addition to the certification of the recycled content, this new standard holds the weaver to similar standards as found in the Global Organic Textile Standard:

  • companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge
  • all wastewater must be treated for pH, temperature, COD and BOD before disposal;
  • there is an extensive section related to worker’s health and safety.

In the end, polyester – whether recycled or virgin – is plastic.

I came across the work of a photographer living in Seattle, Chris Jordan, who published photographs of albatross chicks which he made in September, 2009, on Midway Atoll, a tiny stretch of sand and coral near the middle of the North Pacific.   As he says, “The nesting babies are fed bellies-full of plastic by their parents, who soar out over the vast polluted ocean collecting what looks to them like food to bring back to their young. On this diet of human trash, every year tens of thousands of albatross chicks die on Midway from starvation, toxicity, and choking.

To document this phenomenon as faithfully as possible, not a single piece of plastic in any of these photographs was moved, placed, manipulated, arranged, or altered in any way. These images depict the actual stomach contents of baby birds in one of the world’s most remote marine sanctuaries, more than 2000 miles from the nearest continent.”  See more at Chris Jordan’s website here.

To make thing worse, these tiny pieces of plastic are extremely powerful chemical accumulators for organic persistent pollutants present in ambient sea water such as DDE’s and PCB’s. The whole food chain,  from invertebrates to fish, turtles and mammals … are eating plastic and /or other animals who have plastic in them.

If you’re shocked by this picture, remember that this was brought to our attention years ago by National Geographic Magazine and in reports by scientists from many organizations.  One of the things they warned us of is the Great Pacific Garbage Patch, which has doubled in size while we have done nothing.  I am shocked that we have done nothing while the cascading effects of our disposable society continue to accumulate.





Fabric structures for the new millenium

10 03 2010

Here we are in  the 21st century, with its acute global issues of over-population, loss of natural habitat, carbon emissions and pollution of all kinds — in a nutshell the specter of diminishing resources and climate change.   What’s a good architect to do?  Some are saying that fabric structures – that ancient way of providing shelter – is in a unique position to contribute significantly to a more sustainable built environment.  Fabric structures  have a modest carbon footprint, minimal post-construction refuse, daylighting and water-harvesting capabilities,  and are relatively  easy and inexpensive to replace.     According to Thomas Fisher, Dean of the College of Design at the University of Minnestoa, “Living lightly on the land is a key principle of sustainability, and fabric allows for that more effectively than almost any other material.”

Architects are finding new and unique ways of using fabric because there is a not so new polymer in their tool kit:  ETFE (ethylene tetrafluoroethylene).  This – some say- is the building material of the future.  It’s a transparent plastic, related to Teflon, and is just 1% the weight of glass, but it transmits more light, is a better insulator and costs 24% to 70% less to install.  It’s also resilient (able to bear 400 times its own weight, with an estimated 50 year life span), is self cleaning (dirt slides off its nonstick surface) and it’s recyclable.

Architects started working with ETFE about 15 years ago, but the material got a boost by being used in the 2008 Beijing Olympics, where it’s an integral part of the distinctive designs of both the Beijing National Stadium (called the Bird’s Nest – see photo on right)  and the Aquatics Center (the Watercube, at the left).

ETFE has been described as a sturdier version of plastic cling wrap.  It can be used in sheets or inflated into pillows.  The 750,000 square foot Watercube is the largest ETFE project ever.  It is clad entirely in blue ETFE cushions.  It’s interesting to note that the Watercube is the first time the Sydney, Australia based PTW Architects, who designed the building, had ever used the fabric.  They were that confident.  Some bubbles in the design span 30 feet without any internal framing – a distance that wouldn’t be possible with other materials.

On an aesthetic level, the cushions reinforce the building’s theme. Their pillowy shapes evoke a bubble’s roundness, and their triple-layered construction, which mixes layers of blue film with transparent film, gives the façade a sense of depth and shifting color. And there’s  the fun factor:  ETFE comes in different finishes and colors, and can be lit from within using LED lights or decorated with light projections like a giant movie screen as in the picture.   Once the Olympics  started officials were able to transform the Watercube walls into a giant TV screen showing simultaneous projections of the swimming activities taking place inside.  It can take myriad shapes too: strips can be heat-welded together like fabric squares in a quilt.

But what is ETFE – and what does it mean that it’s related to Teflon?

ETFE was developed by DuPont, working with NASA, as a thermo plastic version of Teflon.  It was designed to have high corrosion resistance and durability to hold up under oppressive cosmic radiation that NASA would expose it to.

But Dr. Stefan Lehnert, a mechanical engineering student at the time, was looking for better foils for the sails on  his sailboat.  He experimented with ETFE and found a transparent, self cleaning, durable and very flexible material with just 1% weight of glass.  It also expands to three times its normal length without losing elasticity and offers shade and insulation control. Dr. Lehnert founded Vector Foiltec in Germany in 1982, where they sold ETFE as the Texlon Foil System.

Today it’s being touted as the new green alternative.  Why?

Affiliates of Brunel University in Middlesex and Buro Happold Consulting Engineers in London did a study of the environmental effects of ETFE manufacture and use for building cladding (it’s primary use).  The study compares ETFE foil cushions to 6 mm glass and concluded the following:

“ETFE foils can improve the environmental performance of a building from two points of view:  there is the opportunity to reduce the overall environmental burden incurred by the construction process itself; and there is also the opportunity to reduce the burden of the building during its lifetime.  This is all dependent, however, on the ability of the architects and engineers to take advantage of both the flexibility and limitations of ETFE foil cushions.”

Using ETFE can accrue LEED points by giving you opportunities for daylighting a structure, reduction of steel for support structures, and it can save on transport costs because of its light weight.  If you reduce the tonnage of steel, and reduce the raw building materials you have a real capacity to lighten up a building.  The Texlon Foil System, according to the company, has low energy consumption during its manufacturing process ,  much of which includes recycled materials.  The film itself is recyclable – the recycling is aided by the absence of additives in the manufacturing process, requiring only the ETFE and heat.    It can also be a tensile structure for renewable energy sources such as photovoltaic panels and provide shade to keep buildings cool in hot climates.

Larry Medlin, professor and director of the School of architecture at the University of Arizona, says:  “Fabric’s multiple capabilities from catching water, trellising plants, daylighting, and providing shade for cooling, are being looked at seriously,” he says. “Fabric can contribute to a regenerative landscape. This is important. It can’t be overlooked.” Medlin also explains that using fabric structures is one way to bring the indoor outside, as in the Edith Ball Center (shown at right), a project that required re-conceptualizing with a more innovative approach. Instead of being enclosed, the Center’s three community pools — lap, therapy and swimming — are under a dynamic, open fabric system that can be adjusted to season and climate.

But what about the material itself?  And is it really recyclable?  There are no life cycle analyses of ETFE that I know of  (please let me know if you’re aware of one and I’ll post it here) so until we know the carbon footprint issues of this product I’m still a bit skeptical, although there seem to be many points in its favor.

ETFE – ethylene tetrafluoroethylene – is a fluorocarbon based polymer, aka “fluoropolymer” – a type of plastic.  We did a blog posting on flurocarbons a few weeks back which can be accessed here. So the material is of the chemical family consisting of a carbon backbone surrounded by fluorine – part of the “Teflon” family of chemicals.  These chemicals as a group are highly suspect, since PTFE (which is the building block for Teflon) has been found to produce PFOA as a by product.  From our blog post:  ” They (perflurocarbons) are the most persistent synthetic chemicals known to man. Once they are in the body, it takes decades to get them out – assuming you are exposed to no more. They are toxic in humans with health effects from  increased chloesterol to stroke and cancer. Alarmed by the findings from toxicity studies, the EPA announced on December 30, 2009, that PFC’s (long-chain perfluorinated chemicals)would be on a “chemicals of concern” list and action plans could prompt restrictions on PFC’s and the other three chemicals on the list.”  The Stockholm Convention on Persistent Organic Pollutants states that PFOS is used in some  ETFE production.

ETFE is not a derivative of a petrochemical.   It is  manufactured from fluorspar (CaF2), trichloromethane (CHCl3) – called chlorodifluoromethane (CHF2CL) –  and hydrogen sulfate (HSO4).  Chlorodifluoromethane is a raw material classified as a class II substance under the Montreal Treaty on ozone depleting substances.   Class II substances are scheduled to be phased out but have a later timeline than Class I substances.

The by products formed during ETFE manufacture  are calcium sulfate (CaSO4), hydrogen fluoride (HF) and hydrochloric acid (HCl).  The calcium sulfate and hydrogen fluoride are reused to produce more fluorspar which can be used again as in input into the manufacturing process.

The manufactured ETFE is sold as pellets, which are then heated and extruded into sheets 50 – 200 microns thick.

As one pundit has said: if this is a recyclable product, what chemicals are running off into our water supply?  Do we know what those ETFE chemicals do to humans – not to mention cows, tree frogs or trees –  if ingested?

One thing we DO know about ETFE is that fumes given off at 300 degrees Centigrade cause flu like symptoms in humans, and above 400 degrees C – they’re toxic.  (1)  I have seen articles which say it is combustible and others that say ETFE is considered self extinguishing.  What everyone agrees on is that in the event of a fire, the foil will then shrink  from the fire source, thereby self-venting,   and letting  smoke out of the building.

I can’t make up my mind on ETFE as a sustainable building material.  What do you think?

(1)  .   http://www.buildnova.com/buildnovav3/buildingsystems/TensileFabric/tensilefabric.htm





Does “soy based foam” deliver on its promise?

27 01 2010

In last week’s post I explained that polyurethane foam (polyfoam) has a plethora of problems associated with it:

  • The chemicals used to manufacture the foam have been formally identified as carcinogens; and the flame retardant chemicals added to almost all foams increase the chemical toxicity.  These chemicals evaporate (VOCs)  and pollute our indoor air and dust;
  • It does not decompose in the landfill; the recycling claim only perpetuates the continued use of hazardous chemicals;
  • It is dependent on a non-renewable resource: crude oil.

When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly is the toxic gas produced by burning polyurethane foam – hydrogen cyanide gas.  Hydrogen cyanide itself is so toxic that it was used by the Aum Shinrikyo terrorists who attacked Tokyo’s subway system in 1995, and in Nazi death camps during World War II. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Polyfoam is so flammable (called “solid gasoline” by fire experts) – burning  so hot and emitting such toxic fumes while burning –  that even the National Association of State Fire Marshals (NASFM) recommends that it be placed within Class 9 (an unusual but clearly hazardous material) because they are concerned about the safety of firemen and other first responders.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.

But today – not long after jumping on the bandwagon –  we have concerns about polyurethane:  in addition to all the problems mentioned above there is concern about its carbon footprint.  So now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock, CEO of Upholstery Arts,  says  – who wouldn’t sleep sounder with such promising news?   I have again leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable resource
  2. it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale. As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”