Plastics – part 1

28 04 2010

Philosopher George Carlin once said,   “Man is only here to give the planet something it didn’t have:   Plastic.”

And man has done well:  plastic is ubiquitous in our world today and the numbers are growing.   We produce 20 times more plastic today than we did 50 years ago.

The production and use of plastics has a range of environmental impacts. Plastics production requires significant quantities of resources:  it uses land and water, but the primary resource is fossil fuels, both as a raw material and to deliver energy for the manufacturing process. It is estimated that 8% of the world’s annual oil production is used as either feedstock or energy for production of plastics.

Plastics production also involves the use of potentially harmful chemicals, which include cadmium, lead, PVC, and other pollutants which are added as stabilizers, plasticizers or colorants. Many of these have not undergone environmental risk assessment and their impact on human health and the environment is currently uncertain.  Finally, plastics manufacture  produces waste and emissions. In the U.S., fourteen percent of airborne toxic emissions come from plastics production.  The average plastics plant can discharge as much as 500 gallons of  wastewater per minute – water contaminated with process chemicals.  (The overall environmental impact varies according to the type of plastic and the production method employed.)

Every second, 200 plastic bottles made of virgin, non-renewable resources are land-filled – and every hour another 2.5 million bottles are thrown away.  And though I can’t get a definitive answer about whether the plastics decompose (because although they don’t biodegrade they do photodegrade – when exposed to UV radiation, over time they break down into smaller and smaller bits, leaching their chemical components), most sources, if they do accept that plastic can degrade, admit that nobody knows how long it really takes because most plastics have only been around for 50 years or so  –  but estimates range into the thousands of years.   (To read how scientists make estimates for plastic decomposition rates, click here. )

How do we cope with this plastic onslaught?

Recycling is the most widely recognized concept in solid waste management – and the environmental benefits of recycling plastic are touted elsewhere.  I’ll just give you the highlights here:

  • It reduces the amount of garbage we send to landfills:  Although plastic accounts for only 8% of the waste by weight, they occupy about 20% of the volume in a landfill due to their low bulk density.
  • It conserves energy:  recycling 1 pound of PET conserves 12,000 BTUs of heat energy; and the production of recycled PET uses 1/3 less energy than is needed to produce virgin PET.
  • It reduces greenhouse gas emissions.
  • It helps conserve natural resources.

But it should be remembered that some items are much better candidates for recycling than others.  Aluminum recycling, for example, uses 95% less energy than producing aluminum from bauxite ore, and aluminum cans can be recycled into new aluminum cans.  There is no limit to the amount of times an aluminum container can be recycled. The PET bottle, which is used for everything from water to wine,  was patented in 1973 – that’s only 27 years ago!  Prior to that most bottles were of glass.  Glass, like aluminum,  is infinitely recyclable.  As late as 1947, virtually 100% of all beverage bottles were returnable; and states with bottle deposit laws have 35 – 40% less litter by volume.  I found this image while looking for Earth Day anniversary images, and think it’s a great example of how corporations will slant anything to their purposes.  (Please note that the company in question is Coca Cola – I’ll have a lot to say about Coke’s recycling efforts in 2010 in upcoming blog posts):

There are different costs and benefits for other recyclable items: plastic, paper, electronics, motor oil… They each have their own individual problems.

With reference to the textile industry, 60% of all the virgin polyethelene terephthalate (PET) produced globally is used to make fibers, while only 30% goes into bottle production.  As I explained in a previous blog,  the textile industry has adopted recycled polyester as the fiber of choice to promote its green agenda.   What I want to do is expose this choice for what it is: a self-serving attempt to convince the public that a choice of a recycled polyester fabric is actually a good eco choice – when the reality is that this is another case of expediency and greed over any authentic attempts to find a sustainable solution.  My biggest complaint with the industry’s position is that there is no attempt made to address the question of water treatment or of chemical use during dyeing and processing of the fibers.

So to begin, let’s look at what plastic recycling means, since there are many misconceptions about recycling plastic – especially plastic bottles from which (some) recycled polyester yarns are made.

In 1970, at the time of the first Earth Day, Gary Anderson won a contest sponsored by Container Corporation of America to present a design which symbolizes the recycling process.  His winning design  was a three-chasing-arrows Mobius loop, with the arrows twisting and turning among themselves.   Because of the symbol’s simplicity and clarity it became widely used worldwide and is a symbol now recognized  by almost everyone.  Today almost all plastic containers have the “chasing arrows” symbol.  We’re bombarded with that symbol – any manufacturer worth his salt slaps it on their products.

But the symbol itself is meaningless.  This symbol is not a government mandated code, and does not imply any particular type or amount of recycled content.  Many people think that the “chasing arrows” symbol means the plastic can be recycled – and that too is untrue.

The only useful information in the “chasing arrows” symbol is the number inside the arrows, which indicates the general class of resin used to make the container. There are thousands of types of plastic used for consumer packaging today. In 1988, the Society of the Plastics Industry devised a numbering system  to aid in sorting plastics for recycling, because in order to be recycled,  each plastic container must be separated by type before it can be used again to make a new product. Of the seven types, only two kinds, polyethelene terephthalate (PET), known as #1, and High Density Polyethelyne (HDPE) – or #2 –  are typically collected and reprocessed.   Some of these resins are not yet recyclable at all (such as #6 or 7), or they’re recyclable only rarely.

In addition, a resin code might indeed indicate #1 (PET) for example, but depending on the use (yogurt cup vs. soda bottle) it will contain different dyes, plasticizers, UV inhibitors, softeners, or other chemicals.
This mix of additives changes the properties of the plastic, so not all #1 resins can be melted together – further complicating the process.  Here’s a list of the seven resin codes and some of the concerns associated with each:

Consumers see the symbol and  – thinking it means the plastic can be recycled – drop bottles into recycling bins, feeling they’ve “done their part” and that the used bottle is now part of the infinite loop, becoming a new and valued product.  But does the bottle actually get “recycled”, returning to a high value product, staying out of the garbage dump?

Well, uh, . . .  not really.  Collecting plastic containers in a recycling bin fosters the belief that, like aluminum and glass, the recovered material is converted into new containers.  In fact, none of the recovered plastic containers are being made into containers again, but rather into new secondary products, like textiles, parking lot bumpers, or plastic lumber – all unrecyclable products.  “Recycled’ in this case merely means “collected.”

A bottle can become a fabric, but a fabric can’t become a bottle – or even another fabric, but we’ll get to that later.  There are far too few exceptions to this rule.

Plastic has what’s called a “heat history”: each time it gets recycled the polymer chains break down, weakening the plastic and making it less suitable for high end use.  PET degrades after about 5 melt cycles.  This phenomenon, known in the industry as “cascading” or “downcycling,” has a troubling consequence.    It means that all plastic – including the tiny proportion that finds its way into another bottle – “will eventually end up in the landfill,” said Jerry Powell, editor of Plastics Recycling Update.

The technology exists to recycle most kinds of plastic, but a lack of infrastructure prevents all but the most widespread kinds of plastic from being recycled.  Collection is expensive because plastic bottles are light yet bulky, making it hard to efficiently gather significant amounts of matching plastic.  For recycling to work, communities must be able to cost effectively collect and sort plastic, and businesses must be willing to accept the material for processing. So no matter whether a particular plastic is in a form which allows it to be melted and reused, something is only recyclable if there is a company out there who is willing to use it to make a new product. If there is no one who will accept the material and make a new product out of it, then it is not recyclable.

Only a few kinds of plastic have the supply and market conditions that make recycling feasible. With plastics in particular, how the plastic particles are put together (molded or extruded) changes their chemical make up and make them non recyclable in certain applications. Some bottles make it to a recycler, who must scramble to find a buyer.  The recycler  often ends up selling the bottles at a loss to an entrepreneur who makes carpeting or traffic strips – anything but new bottles.

Recycling reduces the ecological impact of plastic, but it remains more complicated, more expensive and less effective than other parts of the recycling industry. No matter how many chasing arrows are printed on plastic products, it doesn’t change the fact that plastic is largely a throwaway material.

Next week:   what is the plastic industry doing to create a stronger recycling market for its product?

Advertisements




Does “soy based foam” deliver on its promise?

27 01 2010

In last week’s post I explained that polyurethane foam (polyfoam) has a plethora of problems associated with it:

  • The chemicals used to manufacture the foam have been formally identified as carcinogens; and the flame retardant chemicals added to almost all foams increase the chemical toxicity.  These chemicals evaporate (VOCs)  and pollute our indoor air and dust;
  • It does not decompose in the landfill; the recycling claim only perpetuates the continued use of hazardous chemicals;
  • It is dependent on a non-renewable resource: crude oil.

When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly is the toxic gas produced by burning polyurethane foam – hydrogen cyanide gas.  Hydrogen cyanide itself is so toxic that it was used by the Aum Shinrikyo terrorists who attacked Tokyo’s subway system in 1995, and in Nazi death camps during World War II. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Polyfoam is so flammable (called “solid gasoline” by fire experts) – burning  so hot and emitting such toxic fumes while burning –  that even the National Association of State Fire Marshals (NASFM) recommends that it be placed within Class 9 (an unusual but clearly hazardous material) because they are concerned about the safety of firemen and other first responders.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.

But today – not long after jumping on the bandwagon –  we have concerns about polyurethane:  in addition to all the problems mentioned above there is concern about its carbon footprint.  So now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock, CEO of Upholstery Arts,  says  – who wouldn’t sleep sounder with such promising news?   I have again leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable resource
  2. it reduces our dependence on fossil fuels  by  both reducing the amount of fossil fuel needed for the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

An interesting aside:  There is an article featured on CNNMoney.com about the rise of what they call Soylandia – the enormous swath of soy producing lands in Brazil (almost unknown to Americans) which dominates the global soy trade.  Sure opened my eyes to some associated soy issues.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

While bio-based technologies may offer promise for creating greener, cradle-to-cradle materials, tonight the only people sitting pretty or sleeping well on polyurethane foam that contains soy are the senior executives and shareholders of the companies benefiting from its sale. As for the rest of humankind and all the living things over which we have stewardship, we’ve been soy scammed!”