Phthalate concerns for pregnant women

29 01 2015

Three pregnant women

As if we needed something else to worry about, a peer-reviewed study from the Mailman School of Public Health at Columbia University, published in December 2014, found evidence that chemicals called phthalates can impact the children of pregnant women who were exposed to those chemicals. Children of moms who had the highest levels of phthalates during pregnancy had markedly lower IQs at age 7. [1] Phthalates had previously been linked to effects ranging from behavioral disorders and cancers to deformations of the sex organs.

Why are we talking about this in a blog about fabrics?

Because phthalates are in the fabrics we use.  Generally, phthalates are used to make plastic soft: they are the most commonly used plasticizers in the world and are pretty much ubiquitous. They’re found in perfume, hair spray, deodorant, almost anything fragranced (from shampoo to air fresheners to laundry detergent), nail polish, insect repellent, carpeting, vinyl flooring, the coating on wires and cables, shower curtains, raincoats, plastic toys, and your car’s steering wheel, dashboard, and gearshift. (When you smell “new car,” you’re smelling phthalates.) Medical devices are full of phthalates — they make IV drip bags and tubes soft, but unfortunately, DEHP is being pumped directly into the bloodstream of ailing patients. Most plastic sex toys are softened with phthalates.

Phthalates are found in our food and water, too. They are in dairy products, possibly from the plastic tubing used to milk cows. They are in meats (some phthalates are attracted to fat, so meats and cheeses have high levels, although it’s not entirely clear how they are getting in to begin with). You’ll find phthalates in tap water that’s been tainted by industrial waste, and in the pesticides sprayed on conventional fruits and vegetables.

And fabrics. People just don’t think to even mention fabrics, which we continue to identify as the elephant in the room. Greenpeace did a study of fabrics produced by the Walt Disney Company in 2004 and found phthalates in all samples tested, at up to 20% by weight of the fabric.[2] Phthalates are one of the main components of plastisol screen printing inks used on fabrics. These plasticizers are not chemically bound to the PVC, so they can leach out. They’re also used in the production of synthetic fibers, as a finish for synthetic fibers to prevent static cling and as an intermediary in the production of dyes.

Phthalates are what is termed an “endocrine disruptor” – which means they interfere with the action of hormones. Hormones do a lot more than just make the sexual organs develop. During the development of a fetus, they fire on and off at certain times to affect the brain and other organs.

“The developing brain relies on hormones,” Dr. Factor-Litvak, the lead scientist of the study, said. Thyroid hormones affect the development of neurons, for example. There might be a window of vulnerability during pregnancy when certain key portions of the brain are forming, she said, and kids whose moms take in a lot of the chemicals during those times might be at risk of having the process disrupted somehow.

“These findings further suggest a potential role for phthalates on neurodevelopment,” said Dr. Maida P. Galvez, who did not work on the study but has a specialty in environmental pediatrics. The associate professor is in the Department of Preventive Medicine and Pediatrics at the Icahn School of Medicine at Mount Sinai. “While this requires replication in other study populations for confirmation, it underscores the fact that chemicals used in everyday products need to be rigorously evaluated for their full potential of human health impacts before they are made widely available in the marketplace.”[3]

In the United States, the new Consumer Product Safety Improvement Act of 2008 (CPSIA) banned certain phthalates from use in toys or certain products marketed to children. In order to comply with this law, a product must not contain more than 0.1% of any of six banned phthalates. But just these six – the class of phthalates includes more than 25 different chemicals.

Gwynne Lyons, policy director of the campaign group, CHEM Trust, said: “The number of studies showing that these substances can cause harm is growing, but efforts by Denmark to try and get EU action on some phthalates had run into difficulties, largely because of concerns about the costs to industry.” [4] (our highlight!)

[1] Factor-Litvak, Pam, et al., “Persistent Associations Between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years”, PLOS One, December 10, 2014; DOI: 10.1371/journal.pone.0114003

[2] Pedersen, H and Hartmann, J; “Toxic Textiles by Disney”, Greenpeace, Brussels, April 2004

[3] Christensen, “Exposure to common household chemicals may cause IQ drop”, CNN, December 11, 2014 http://www.cnn.com/2014/12/11/health/chemical-link-to-lower-iq/

[4] Sample, Ian, “Phthalates risk damaging children’s IQs in the womb, US researchers suggest”, The Guardian, December 10, 2014

Advertisements




What’s pleather?

16 07 2014

Leather has become the sign of a luxurious – and durable – choice for practically any product you can think of.  As the ads say, “the rich scent, luxurious texture and easygoing attitude” makes it a popular choice.

Leather has been around as long as  people  –  ancient peoples used materials that were available, like bark and plant tannins, alum, earth minerals, fish oils, animal brains, lime and smoke to preserve animal skins.  The process took a long time – from 1 to 12 months.  But today’s leather is a far cry from  early leathers because horribly toxic synthetic chemicals have replaced the older tanning chemicals (usually in the interest of time – chrome tanning takes only a fraction of the time as does “natural” tanning); modern leather tanneries are frighteningly toxic and the animal husbandry aspect is sad and sickening. There are a very few ethical tanneries, but so far I can count them on one hand. [1]

But leather –  the skin of a dead animal – is meant to decompose.  What do you think has to be done to that skin so it doesn’t decompose? We covered this topic in a former post ( click here to read that), but basically the tanning of leather is in the top 10 of the world’s worst pollution threats –  at #5 – directly affecting more than 1.8 milllion people. [2] More than 90 percent of Bangladeshi tannery workers suffer from some kind of disease — from asthma to cancer — due to chemical exposure, according to a 2008 survey by SEHD, a local charity, with local residents being almost as badly affected. [3]

What chemicals are used to create such terrible pollution? In all, around 250 chemicals are used in tanning. Skins are transferred from vat to vat, soaked and treated and dyed.   Chemicals include alcohol, coal tar , sodium sulfate, sulfuric acid, chlorinated phenols (e.g. 3,5-dichlorophenol), chromium (trivalent and hexavalent), azo dyes, cadmium, cobalt, copper, antimony, cyanide, barium, lead, selenium, mercury, zinc,  polychlorinated biphenyels (PCBs), nickel, formaldehyde and pesticide residues.[4]  At the same time, toxic gases like ammonia, hydrogen sulfide, and carcinogenic arylamines are emitted into the air. The smell of a tannery is the most horrifyingly putrid smell on earth.

But people really want leather – so what’s an industry to do?

Enter Pleather, made from oil in the form of plastic – either PVC or polyurethane. Pleather is simply a slang term for “plastic leather”, made by bonding the plastic to a fabric backing.   It’s often used as an inexpensive substitute for leather, but the fashion industry has adopted it big time. It is lighter than leather, and it does not decompose as quickly as leather. It’s also supposed to be much more durable than leather.

The PVC version does not breathe and can be very hard to clean – it’s not often used for surfaces that come in contact with the skin.   The polyurethane version is usually machine washable and can be dry cleaned. It’s also slightly breathable, softer, and more flexible.

Is this a good alternative? Given that every manufactured product has an unavoidable environmental cost, neither leather nor pleather is particularly green. The PVC version of pleather is made from polyvinyl chloride, which is loathed by Greenpeace, calling it the “most damaging plastic on the planet,” because its production releases dioxins and persistent organic pollutants. The polyurethane version doesn’t have quite the same toxicity problems as PVC, but plenty of CO2 is emitted during the production. According to the Association of Plastics Manufacturers in Europe, producing a pound of polyurethane emits 3.7 lbs. of CO2 – slightly less than burning a gallon of gas.[5]

YouTube’s version (shown below) shows the production of PVC pleather: Pleather is made by coating a paper backing (embossed to look like leather) with PVC (polyvinyl chloride). First, a petroleum based plasticizer; a UV stabalizer and a fire retardant are mixed in solution, then powdered vinyl is added. Dyes are put into a different tub, then they pour in the liquid vinyl. Next the large roll of paper with a leather like texture is coated with the liquid vinyl. It is baked in an oven to harden the vinyl, which takes on the paper’s texture. A second batch of vinyl is prepared which contains a thickening agent, and it is poured onto the first layer. Then the double layered vinyl goes through the oven again. Fabric (from cotton to polyester) is adhered to the back, and the paper is peeled off to reveal the leather pattern. Here is the visual production from YouTube:

Properly manufactured pleather should be calendered – which means passing the material between two rollers to make the surface shiny.   If it is not calendered, it is considered “cheap” pleather and its durability is compromised.

But maybe if we wait just a bit there will be even better alternatives: Richard Wool, a professor of chemical and biomolecular engineering at the University of Delaware, has been working on a leather alternative which is entirely non-plastic, and bio-based: it’s made from flax or cotton fibers, which are laminated together in layers using palm, corn, soybean or other plant oils to create a leather-like material.   And unlike pleather – it’s breathable. Wool plans to call his product Green Engineered Material or GEM. But he’s looking for muscle and money to get the product moving forward.[6]

[1] Organic Leather, in California, is trying to create high-quality and stylish leather while working to transform the industry and educate consumers.  See their white paper: http://www.organicleather.com/organic_leather_white_paper.pdf

[2] http://www.globe-net.com/articles/2011/november/11/world’s-10-worst-toxic-pollution-problems/

[3] Barton, Cat, “Workers pay high price at Bangladesh tanneries”, AFP, Feb. 2011

[4] Ibid.

[5] Koerner, Brendan, “Wheather the Leather be Pleather”, Slate online, http://www.slate.com/articles/health_and_science/the_green_lantern/2007/12/whether_the_leather_be_pleather.html

[6] http://www.newarkpostonline.com/news/article_c67d7f46-8747-5bb0-abfe-d50ce305f767.html





What does “eco friendly” vinyl mean?

28 01 2014

Polyvinyl chloride – PVC – is the most toxic plastic for our health and it’s not so good for the environment either.  First, it’s made from petroleum, one of our scarce natural resources.   Globally, over 50% of PVC manufactured is used in construction, in products such as pipelines, wiring, siding, flooring and wallpaper – as well as a host of other products, including fabrics.   As a building material PVC is cheap, easy to install and easy to replace. PVC is replacing ‘traditional’ building materials such as wood, concrete and clay in many areas. Although it appears to be the ideal building material, PVC has high environmental and human health costs that its manufacturers fail to tell consumers.

From its manufacture to its disposal, PVC emits toxic compounds. During the manufacture of the building block ingredients of PVC (such as the vinyl chloride monomer) dioxin and other persistent pollutants are emitted into the air, water and land, which present both acute and chronic health hazards. During use, PVC products can leach toxic additives, for example flooring can release softeners called phthalates. When PVC reaches the end of its useful life,  it cannot be recycled, so it must either  be landfilled, where it leaches toxic additives, or incinerated, again emitting dioxin and heavy metals. When PVC burns in accidental fires, hydrogen chloride gas and dioxin are formed.

No other plastic contains or releases as many dangerous chemicals. There’s no safe way to manufacture, use or dispose of PVC products.

eco-friendly_vinyl-459x459 copyAnd yet we see the advertisement of “eco friendly” vinyl.  What does it mean?

Vinyl is commonly used as a shorthand name for PVC.  Usually, when a product is referred to as “vinyl,” it is comprised primarily of PVC. Occasionally it also may refer to polyvinylidene chloride (PVDC) a closely related compound, which is used in food wraps (‘Saran’) and other films.  This product shares most of the same environmental health problems with PVC.

In chemistry, however, the term “vinyl’ actually has a broader meaning, encompassing a range of different thermoplastic chemical compounds derived from ethylene. In addition to PVC, “vinyls” in building materials also include:

  1. ethylene vinyl acetate (EVA), used in films, wire coating and adhesives
  2. polyethylene vinyl acetate (PEVA) a copolymer of polyethylene and EVA used in shower curtains, body bags
  3. polyvinyl acetate (PVA), used in paints and adhesives, such as white glue, and
  4. polyvinyl butyral (PVB), used in safety glass films.

What makes PVC different from the other vinyls is the addition of a chlorine molecule (The “C” in PVC and PVDC stands for chlorine).  Chlorine is the source of many of the concerns with PVC, such as the generation of dioxin, a highly carcinogenic chemical produced in both the manufacture and disposal of PVC. Due to its persistent and bioaccumulative nature (it travels long distances without breaking down and concentrates as it moves up the food chain to humans) dioxin has become a global problem and an international treaty – the Stockholm Convention on persistent organic pollutants (POPs) – now prioritizes the elimination of processes that produce dioxin.

Some of the non-chlorinated vinyls (EVA, PEVA, PVA and PVB) are now beginning to be used as direct substitutes for PVC. EVA has been in use for several years as a chlorine free substitute for PVC – primarily in non building materials like toys and athletic shoes, but occasionally as a protective film or binder. In the building industry, post-consumer recycled PVB is now beginning to be used to replace PVC in carpet backing. Absence of chlorine alone does not make these other vinyls the final answer in the search for green polymers. There are still plenty of toxic challenges and untested chemicals in the life cycle of any petrochemical product. As is the case with most other polymers competing with PVC, however, the weight of available evidence indicates that the absence of chlorine in the formula will generally render the lifecycle environmental health impacts of PVB and the other vinyls less harmful than PVC – and initial study is bearing this out. Like the polyolefin plastics, the use of PVB and the other non-chlorinated vinyls represents a step forward in the search for alternatives to PVC.

In summary, with the exception of paints, glues and certain films, “vinyl” as a product description almost always means made of PVC. The term vinyl in ethylene vinyl acetate (EVA), polyethylene vinyl acetate (PEVA), polyvinyl acetate (PVA), and polyvinyl butyral (PVB), however, does not refer to PVC and does not raise the same concerns associated with chlorinated molecules like PVC.

When in doubt about the use of the term “vinyl”, ask if it is PVC.

For virtually all PVC applications, safer alternatives exist, using more sustainable, traditional materials – such as paper, wood or local materials. PVC can also be replaced by a variety of other, less environmentally damaging plastics, although most plastics pose some risk to the environment and contribute to the global waste crisis.





How to avoid toxins in fabrics – and other products

6 12 2013

In response to a post a few weeks back, Susan Lanham wrote to us:  “I initially signed on to get this blog because I thought you would give practical ways to avoid these carcinogens. However, they are so pervasive, and there doesn’t seem to be any practical way to avoid them, so that reading your blog just makes me feel helpless and hopeless. More and more I just delete without reading: it’s like diagnosing a disease early when there is nothing to be done for it.”

Yikes.  We certainly didn’t want to turn people off in despair!  There is much you can do armed with a bit of knowledge.

We have always thought that information is the great motivator – that if people knew what they were buying, then they would demand changes in those products.  Remember that each time you purchase something,  you’re ensuring that the product you bought will keep being produced, in the same  way.  If you support new ideas, find that creative way to use something or insist that what you buy meets certain parameters, then new research will be done to meet consumer demand and new processes will be developed that don’t leave a legacy of destruction.

At least in theory, right?

The reality is that change takes a long time, and we’re living in a toxic soup now – so what can we do to protect ourselves right now?

And after all, just because almost anything can kill you doesn’t mean fabrics should.  So here’s my list of things you can do to begin to protect yourself from toxins in fabrics:

  1. Buy only GOTS or Oeko Tex certified fabrics if you can  – for everything, not just sheets and pajamas – starting now.   If you can’t find GOTS or Oeko Tex certified fabrics, try to use 100% organic natural fibers.  Certifications are a shorthand which allows us to accept that the certified products are safe, but if you want to get granular, you can find out what they’re certifying (i.e., what the certifications are telling you).  Be sure to differentiate between, for example, a GOTS certified fiber and a GOTS certified fabric.  Big difference:  A product which uses GOTS certified fibers only may have been processed conventionally, which means it could be full of chemicals of concern.
  2. If it’s cheap, it probably has hidden costs, like your health or our ecosystem.  It’s expensive to go against the flow, and natural fibers cost way more than synthetics, even though the price of crude is going up.  So pay more, use less.
  3. Never buy anything made of PVC (polyvinyl chloride) or acrylic (which can be used as finishes or backings as well as fibers) and generally avoid other synthetics (such as polyester).  They ALL start with toxic inputs (like ethylene glycol), but the profiles of both PVC and acrylic makes polyester look benign by comparison.  In that same vein, avoid fabrics that are pretending to be something they’re not – polyester can be made to look like practically anything (one of the things we love about it), but it won’t have the characteristics of the natural fibers that make them such good choices for us.
  4. If you must use synthetic fibers, the best choice would be GRS Gold level recycled polyester.  This new certification means that the recycled content really is  95-100%, with the added assurance that chemicals used in the manufacture abide by the GOTS standards (eliminating endocrine disrupting chemicals, heavy metals, and a long list of other chemicals of concern); water is treated and workers are given minimal rights.
  5. Never buy wrinkle-free or permanent-press anything and pass on any stain protection treatments. The wrinkle free finishes are formaldehyde resins, and there simply are no safe stain protection treatments.
  6. Fly less.  (I never said these would be easy, but it’s good to know, right?)  In this case my issue is not with the carbon footprint (which is tremendous) but because the fabrics are so drenched in flame retardants that people who fly often have elevated levels of PBDEs in their blood – and you already know that PBDEs and their ilk are to be avoided as much as possible.  Same is true of fabrics on cruise ships.
  7. Trust your nose.  If a fabric stinks, what does that tell you about it?
  8. Ask questions!  If they can’t tell you what’s in it, you probably don’t want to live with it.
  9. Get involved and become informed! Force the federal government to fulfill its obligation to protect us from harm – join something (like a Stroller Brigade, sponsored by Safer Chemicals, Healthy Families or Washington Toxics Coalition, for example) and urge your representatives to support the Safe Chemicals Act.  And share what you’ve learned.  This is an evolving industry, and we’re all looking for answers. But I know you’re just ONE person – and the problems do seem overwhelming.  Can just ONE person change the world? Margaret Meade said that committed people, banding together, is the only thing that ever has.
  10. Be aware of greenwashing.  This doesn’t mean waiting for the perfect product but it does mean honesty in letting you (the consumer) know exactly what is in the fabric.  If you see a green claim, Google the company name + environment and see what pops up.  If it’s a big company, do they spend a significant portion of their R&D budget on green initiatives?  What percent of their product offerings are “green” vs. “conventional”?

That does it for fabrics, but here are a few more things you can do to protect yourself :

  • Take off your shoes in the house – simple and easy, and it prevents lots of pesticides and other chemicals from being tracked in.
  • Vacuum and/or dust regularly –because the dust in our homes has been proven to contain lots of chemicals – wafted there from the other products in our homes.
  • Filter your water. You’d be surprised to read the list of really bad chemicals found in most tapwater in the United States – if you’re interested, read the series called “Toxic Waters” which was published in the New York Times.
  • Avoid polyurethane (i.e., poly foam, found in cushions and many other products) if you’re in the market for a new sofa or mattress, look for 100% natural – and certified – latex.
  • Read the labels of your grooming products – avoid anything that includes the words “paraben” (often used as a suffix, as in methylparaben) or “phthalate” (listed as dibutyl and diethylhexyl or just “fragrance”). If there isn’t an ingredients list, log on to cosmeticsdatabase.com, a Web site devised by the Environmental Working Group that identifies the toxic ingredients of thousands of personal-care products.
  • About plastics: Never use plastics in the microwave. Avoid “bad plastics” like PVC and anything with “vinyl” in its name. And don’t eat microwave popcorn, because the inside of a microwave popcorn bag is usually coated with a chemical that can migrate into the food when heated. It has been linked to cancer and birth defects in animals.
  • As Michael Pollan says: “Eat food. Not too much. Mostly plants.” I’d add: eat organic as much as possible, support local farmers and don’t eat meat and fish every day. Grow an organic garden – one of the most powerful things you can do! If you can only purchase a few organic foods, there are lots of lists that tell you which are the most pesticide-laden.
  • Replace cleaning products with non toxic alternatives – either commercially available cleaning products (avoiding ammonia, artificial dyes, detergents, aerosol propellants, sodium hypochlorite, lye, fluorescent brighteners, chlorine or artificial fragrances) or homemade. You probably can do most cleaning with a few simple ingredients like baking soda, lemon juice and distilled white vinegar. Lots of web sites offer recipes for different cleaners – I like essential oils (such as lavender, lemongrass, sweet orange, peppermint, cedar wood and ylang-ylang) in a bucket of soap and hot water. It can clean most floors and surfaces and it won’t kill me.
  • And now that we mention it, avoid using any product which lists “fragrance” as an ingredient.

I know that even that is a daunting list – it’s really hard to avoid some products and growing an organic garden just isn’t in the cards for some of us.  But if you do even some of these things your health – and ours! – will benefit.  Not to mention all the living things on Earth which depend on our good stewardship of this planet.





Beyond natural fibers

11 07 2012

It looks like the plastic bottle is here to stay, despite publicity about bisphenol A and other chemicals that may leach into liquids inside the bottle. The amount of plastic used to make the bottles is so enormous that estimates of total amount of plastic used is staggering. Earth911.com says that over 2,456 million pounds of PET was available for recycling in the United States in 2009. Any way you look at it, that’s a lot of bottles.
Those bottles exist – they’re not going away, except perhaps to the landfill. So shouldn’t we be able to use them somehow?
We have already posted blogs about plastics (especially recycled plastics) last year ( to read them, click here, here, and here ) so you know where we stand on the use of plastics in fabrics. All in all, plastic recycling is not what it’s touted to be. Even if recycled under the best of conditions, a plastic bottle or margarine tub will probably have only one additional life. Since it can’t be made into another food container, your Snapple bottle will become a “durable good,” such as carpet or fiberfill for a jacket. Your milk bottle will become a plastic toy or the outer casing on a cell phone. Those things, in turn, will eventually be thrown away.
So the reality is that polyester bottles exist, and using them any way we can before sending them to the landfill will prevent the use of more crude oil, which we’re trying to wean ourselves from, right? Recycling some of them into fiber seems to be a better use for the bottles than land filling them.
Plastic bottles (the kind that had been used for some kind of consumer product) are the feedstock for what is known as “post-consumer recycled polyester”. Even though plastic recycling appears to fall far short of its promise, recycled polyester, also called rPET, is now accepted as a “sustainable” product in the textile market, because it’s a message that can be easily understood by consumers – and polyester is much cheaper than natural fibers. So manufacturers, in their own best interest, have promoted “recycled polyester” as the sustainable wonder fabric, which has achieved pride of place as a green textile option in interiors.
Recycled post consumer polyester is made from bottles – which have been collected, sorted by hand, and then melted down and formed into chips, sometimes called flakes. These chips or flakes are then sent to the yarn spinning mills, where they’re melted down, often mixed with virgin polyester, and and spun into yarn, which is why you’ll often see a fabric that claims it’s made of 30% post consumer polyester and 70% virgin polyester, for example.

But today the supply chains for recycled polyester are not transparent, and if we are told that the resin chips we’re using to spin fibers are made from bottles – or from industrial scrap or old fleece jackets – we have no way to verify that. Once the polymers are at the melt stage, it’s impossible to tell where they came from. So the yarn/fabric could be virgin polyester or it could be recycled. Many so called “recycled” polyester yarns may not really be from recycled sources at all because – you guessed it! – the process of recycling is much more expensive than using virgin polyester. Unfortunately not all companies are willing to pay the price to offer a real green product, but they sure do want to take advantage of the perception of green. So when you see a label that says a fabric is made from 50% polyester and 50% recycled polyester – well, (until now) there was absolutely no way to tell if that was true.
Along with the fact that whether what you’re buying is really made from recycled yarns – or not – most people don’t pay any attention to the processing of the fibers. Let’s just assume, for argument’s sake, that the fabric (which is identified as being made of 100% recycled polyester) is really made from recycled polyester. But unless they tell you specifically otherwise, it is processed conventionally.
What does that mean? It can be assumed that the chemicals used in processing – the optical brighteners, texturizers, dyes, softeners, detergents, bleaches and all others – probably contain some of the chemicals which have been found to be harmful to living things. In fact the chemicals used, if not optimized, may very well contain the same heavy metals, AZO dyestuffs and/or finish chemicals that have been proven to cause much human suffering.
It’s widely thought that water use needed to recycle polyester is low, but who’s looking to see that this is true? The weaving, however, uses the same amount of water (about 500 gallons to produce 25 yards of upholstery weight fabric) – so the wastewater is probably expelled without treatment, adding to our pollution burden. And it’s widely touted that recycling polyester uses just 30 – 50% of the energy needed to make virgin polyester – but is that true in every case? There is no guarantee that the workers who produce the fabric are being paid a fair wage – or even that they are working in safe conditions. And finally there are issues specific to the textile industry:

  • The base color of the recyled chips varies from white to creamy yellow. This makes it difficult to get consistent dyelots, especially for pale shades, necessitating more dyestuffs.
  • In order to get a consistently white base, some dyers use chlorine-based bleaches.
  • Dye uptake can be inconsistent, so the dyer would need to re-dye the batch. There are high levels of redyeing, leading to increased energy use.
  • PVC is often used in PET labels and wrappers and adhesives. If the wrappers and labels from the bottles used in the post-consumer chips had not been properly removed and washed, PVC may be introduced into the polymer.
  • Some fabrics are forgiving in terms of appearance and lend themselves to variability in yarns, such as fleece and carpets; fine gauge plain fabrics are much more difficult to achieve.

As the size of the recycled polyester market grows, we think the integrity of the sustainability claims for polyesters will become increasingly important. There has not been the same level of traceability for polyesters as there is for organically labeled products.

But now there is now a new, third party certification which is addressing these issues. The Global Recycle Standard (GRS), originated by Control Union and now administered by Textile Exchange (formerly Organic Exchange), is intended to establish independently verified claims as to the amount of recycled content in a yarn, with the important added dimension of prohibiting certain chemicals, requiring water treatment and upholding workers rights, holding the weaver to standards similar to those found in the Global Organic Textile Standard:

  • Companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • All prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • All wastewater must be treated for pH, temperature, COD and BOD before disposal;
  • There is an extensive section related to worker’s rights.

The GRS provides a track and trace certification system that ensures that the claims you make about a product can be officially backed up. It consists of a three-tiered system: Gold standard – products contain between 95 percent to 100 percent recycled material;Silver standard – products contain between 70 percent to 95 percent recycled product;Bronze standard – products have a minimum of 30 percent recycled content.

I have long been concerned about the rampant acceptance of recycled polyester as a green choice when no mention has been made of processing chemicals, water treatment or workers rights, so we welcome this new GRS certification, which allows us to be more aware of what we’re really buying when we try to “do good”.





Do we need a national plastics control law?

20 10 2010

John Wargo wears at least three hats:  he is a professor of environmental policy, risk analysis, and political science at the Yale School of Forestry & Environmental Studies, he chairs the Environmental Studies Major at Yale College, and is an advisor to the U.S. Centers for Disease Control and Prevention.  He published this opinion on plastics in the United States last year – and I couldn’t have said it better myself:

Since 1950, plastics have quickly and quietly entered the lives and bodies of most people and ecosystems on the planet. In the United States alone, more than 100 billion pounds of resins are formed each year into food and beverage packaging, electronics, building products, furnishings, vehicles, toys, and medical devices. In 2007, the average American purchased more than 220 pounds of plastic, creating nearly $400 billion in sales.

It is now impossible to avoid exposure to plastics. They surround and pervade our homes, bodies, foods, and water supplies, from the plastic diapers and polyester pajamas worn by our children as well as our own sheets, clothing and upholstery,  to the cars we drive and the frying pans in which we cook our food.

The ubiquitous nature of plastics is a significant factor in an unexpected side effect of 20th century prosperity — a change in the chemistry of the human body. Today, most individuals carry in their bodies a mixture of metals, pesticides, solvents, fire retardants, waterproofing agents, and by-products of fuel combustion, according to studies of human tissues conducted across the U.S. by the Centers for Disease Control and Prevention. Children often carry higher concentrations than adults, with the amounts also varying according to gender and ethnicity. Many of these substances are recognized by the governments of the United States and the European Union to be carcinogens, neurotoxins, reproductive and developmental toxins, or endocrine disruptors that mimic or block human hormones.

Significantly, these chemicals were once thought to be safe at doses now known to be hazardous; as with other substances, the perception of danger grew as governments tested chemicals more thoroughly. Such is the case with Bisphenol-A (BPA), the primary component of hard and clear polycarbonate plastics, which people are exposed to daily through water bottles, baby bottles, and the linings of canned foods.

Given the proven health threat posed by some plastics, the scatter shot and weak regulation of the plastics industry, and the enormous environmental costs of plastics — the plastics industry accounts for 5 percent of the nation’s consumption of petroleum and natural gas, and more than 1 trillion pounds of plastic wastes now sit in U.S. garbage dumps — the time has come to pass a comprehensive national plastics control law.

One might assume the United States already has such a law. Indeed, Congress adopted the Toxic Substances Control Act (TSCA) in 1976 intending to manage chemicals such as those polymers used to form plastics. Yet TSCA was and is fundamentally flawed for several reasons that have long been obvious. Nearly 80,000 chemicals are now traded in global markets, and Congress exempted nearly 60,000 of them from TSCA testing requirements. Among 20,000 new compounds introduced since the law’s passage, the U.S. Environmental Protection Agency (EPA) has issued permits for all except five, but has required intensive reviews for only 200. This means that nearly all chemicals in commerce have been poorly tested to determine their environmental behavior or effects on human health. The statute’s ineffectiveness has been recognized for decades, yet Congress, the EPA, and manufacturers all share blame for the failure to do anything about it.

In contrast, the European Union in 2007 adopted a new directive known as “REACH” that requires the testing of both older and newly introduced chemicals. Importantly the new regulations create a burden on manufacturers to prove safety; under TSCA the burden rests on EPA to prove danger, and the agency has never taken up the challenge. Unless the U.S. chooses to adopt similar restrictions, U.S. chemical manufacturers will face barriers to their untested exports intended for European markets. Thus the chemical industry itself recognizes the need to harmonize U.S. and EU chemical safety law.

The most promising proposal for reform in the U.S. is the “Kid-Safe Chemical Act,” a bill first introduced in 2008 that would require industry to show that chemicals are safe for children before they are added to consumer products. Such a law is needed because there is little doubt that the growing burden of synthetic chemicals has been accompanied by an increase in the prevalence of many illnesses during the past half-century. These include respiratory diseases (such as childhood asthma), neurological impairments, declining sperm counts, fertility failure, immune dysfunction, breast and prostate cancers, and developmental disorders among the young. Some of these illnesses are now known to be caused or exacerbated by exposure to commercial chemicals and pollutants.

Few people realize how pervasive plastics have become. Most homes constructed since 1985 are wrapped in plastic film such as Tyvek, and many exterior shells are made from polyvinyl chloride (PVC) siding. Some modern buildings receive water and transport wastes via PVC pipes. Wooden floors are coated with polyurethane finishes and polyvinyl chloride tiles.

Foods and beverages are normally packaged in plastic, including milk bottles made from high-density polyethylene. Most families have at least one “non-stick” pan, often made from Teflon, a soft polymer that can scratch and hitchhike on foods to the dinner table. Between 1997 and 2005, annual sales of small bottles of water — those holding less than one liter — increased from 4 billion to nearly 30 billion bottles.

The billions of video games, computers, MP3 players, cameras, and cell phones purchased each year in the United States use a wide variety of plastic resins. And the almost 7.5 million new vehicles sold in the United States each year contain 2.5 billion pounds of plastic components, which have little hope of being recycled, especially if made from polyvinyl chloride or polycarbonate.  The American Plastics Council now estimates that only about 5 percent of all plastics manufactured are recycled; 95 billion pounds are discarded on average yearly.

The chemical contents of plastics have always been a mystery to consumers. Under federal law, ingredients need not be labeled, and most manufacturers are unwilling or unable to disclose these contents or their sources. Indeed, often the only clue consumers have to the chemical identity of the plastics they use is the voluntary resin code designed to identify products that should and should not be recycled — but it offers little usable information.

The true costs of plastics — including the energy required to manufacture them, the environmental contamination caused by their disposal, their health impacts, and the recycling and eventual disposal costs — are not reflected in product prices.  Adding to the environmental toll, most plastic is produced from natural gas and petroleum products, exacerbating global warming.

Plastics and Human Health

The controversy over BPA — the primary component of hard and clear plastics — and its potential role in human hormone disruption provides the most recent example of the need for a national plastics control law.

Normal growth and development among fetuses, infants, children, and adolescents is regulated in the body by a diverse set of hormones that promote or inhibit cell division. More than a thousand chemicals are now suspected of affecting normal human hormonal activity. These include many pharmaceuticals, pesticides, plasticizers, solvents, metals, and flame retardants.

Scientists’ growing interest in hormone disruption coincided with a consensus within the National Academy of Sciences that children are often at greater risk of health effects than adults because of their rapidly growing but immature organ systems, hormone pathways, and metabolic systems. And many forms of human illness associated with abnormal hormonal activity have become more commonplace during the past several decades, including infertility, breast and prostate cancer, and various neurological problems.

BPA illustrates well the endocrine disruption problem. Each year several billion pounds of BPA are produced in the United States. The Centers for Disease Control and Prevention has found, in results consistent with those found in other countries, that 95 percent of human urine samples tested have measurable BPA levels. BPA has also been detected in human serum, breast milk, and maternal and fetal plasma. BPA travels easily across the placenta, and levels in many pregnant women and their fetuses were similar to those found in animal studies to be toxic to the reproductive organs of the animals’ male and female offspring.

Government scientists believe that the primary source of human BPA exposure is foods, especially those that are canned, as BPA-based epoxy resins can migrate from the resins into the foods. In 1997, the FDA found that BPA migrated from polycarbonate water containers — such as the five-gallon water jugs found in offices — into water at room temperature and that concentrations increased over time. Another study reported that boiling water in polycarbonate bottles increased the rate of migration by up to 55-fold, suggesting that it would be wise to avoid filling polycarbonate baby bottles with boiling water to make infant formula from powders.

Scientists have reported BPA detected in nonstick-coated cookware, PVC stretch film used for food packaging, recycled paperboard food boxes, and clothing treated with fire retardants.

Since 1995 numerous scientists have reported that BPA caused health effects in animals that were similar to diseases becoming more prevalent in humans, abnormal penile or urethra development in males, obesity and type 2 diabetes, and immune system disorders. BPA can bind with estrogen receptors in cell membranes following part-per-trillion doses — exposures nearly 1,000 times lower than the EPA’s recommended acceptable limit.

In 2007, the National Institutes of Health convened a panel of 38 scientists to review the state of research on BPA-induced health effects. The panel, selected for its independence from the plastics industry, issued a strong warning about the chemical’s hazards:

“There is chronic, low level exposure of virtually everyone in developed countries to BPA… The wide range of adverse effects of low doses of BPA in laboratory animals exposed both during development and in adulthood is a great cause for concern with regard to the potential for similar adverse effects in humans.”

The American Chemistry Council, which advocates for the plastics industry, has criticized most scientific research that has reported an association between BPA and adverse health effects. The council’s complaints have included claims that sample sizes are too small, that animals are poor models for understanding hazards to humans, that doses administered in animal studies are normally far higher than those experienced by humans, that the mechanism of chemical action is poorly understood, and that health effects among those exposed are not necessarily “adverse.”

Research on plastics, however, now comprises a large and robust literature reporting adverse health effects in laboratory animals and wildlife at even low doses. Claims of associations between BPA and hormonal activity in humans are strengthened by consensus that everyone is routinely exposed and by the rising incidence of many human diseases similar to those induced in animals dosed with the chemical. Two competing narratives — one forwarded by independent scientists and the other promoted by industry representatives — have delayed government action to protect the health of citizens through bans or restrictions.

Action Needed

How has the plastics industry escaped serious regulation by the federal government, especially since other federally regulated sectors that create environmental or health risks such as pharmaceuticals, pesticides, motor vehicles, and tobacco have their own statutes? In the case of plastics, Congress instead has been content with limited federal regulatory responsibility, now fractured among at least four agencies: the EPA, the Food and Drug Administration, the Consumer Product Safety Commission, and the Occupational Safety and Health Administration. None of these agencies has demanded pre-market testing of plastic ingredients, none has required ingredient labeling or warnings on plastic products, and none has limited production, environmental release, or human exposure. As a result, the entire U.S. population continues to be exposed to hormonally active chemicals from plastics without their knowledge or consent.

What should be done? The Kids Safe Chemical Act represents a comprehensive solution that would apply to all commercial chemicals including plastic ingredients. Yet the nation’s chemical companies, with their enormous political power, are not likely to agree to assume the testing costs, nor are they likely to accept a health protective standard. Rather than pass another weak statute, Congress should consider a stronger alternative.

The nation needs a comprehensive plastics control law, just as we have national laws to control firms that produce other risky products, such as pesticides. Key elements of a national plastics policy should include:

  • tough  government regulations that demand pre-market testing and prohibit chemicals that do not quickly degrade into harmless compounds. Exempting previously permitted ingredients from this evaluation makes little sense, as older chemicals have often been proven more dangerous than newer ones.
  • The chemical industry itself needs to replace persistent and hazardous chemicals with those that are proven to be safe.  Plastics ingredients found to pose a significant threat to the environment or human health should be quickly phased out of production. Congress chose this approach to manage pesticide hazards, and it has proven to be reasonably effective since the passage of the Food Quality Protection Act in 1996.
  • Federal redemption fees for products containing plastics should be set at levels tied to chemical persistence, toxicity, and production volume. These fees should be high enough that consumers have a strong incentive to recycle.
  • We need mandatory labeling of plastic ingredients, in order to allow consumers to make responsible choices in the marketplace.
  • Finally, manufacturers should take responsibility for cleaning up environmental contamination from the more than one trillion pounds of plastic wastes they have produced over the past 50 years.




Plastics – part 1

28 04 2010

Philosopher George Carlin once said,   “Man is only here to give the planet something it didn’t have:   Plastic.”

And man has done well:  plastic is ubiquitous in our world today and the numbers are growing.   We produce 20 times more plastic today than we did 50 years ago.

The production and use of plastics has a range of environmental impacts. Plastics production requires significant quantities of resources:  it uses land and water, but the primary resource is fossil fuels, both as a raw material and to deliver energy for the manufacturing process. It is estimated that 8% of the world’s annual oil production is used as either feedstock or energy for production of plastics.

Plastics production also involves the use of potentially harmful chemicals, which include cadmium, lead, PVC, and other pollutants which are added as stabilizers, plasticizers or colorants. Many of these have not undergone environmental risk assessment and their impact on human health and the environment is currently uncertain.  Finally, plastics manufacture  produces waste and emissions. In the U.S., fourteen percent of airborne toxic emissions come from plastics production.  The average plastics plant can discharge as much as 500 gallons of  wastewater per minute – water contaminated with process chemicals.  (The overall environmental impact varies according to the type of plastic and the production method employed.)

Every second, 200 plastic bottles made of virgin, non-renewable resources are land-filled – and every hour another 2.5 million bottles are thrown away.  And though I can’t get a definitive answer about whether the plastics decompose (because although they don’t biodegrade they do photodegrade – when exposed to UV radiation, over time they break down into smaller and smaller bits, leaching their chemical components), most sources, if they do accept that plastic can degrade, admit that nobody knows how long it really takes because most plastics have only been around for 50 years or so  –  but estimates range into the thousands of years.   (To read how scientists make estimates for plastic decomposition rates, click here. )

How do we cope with this plastic onslaught?

Recycling is the most widely recognized concept in solid waste management – and the environmental benefits of recycling plastic are touted elsewhere.  I’ll just give you the highlights here:

  • It reduces the amount of garbage we send to landfills:  Although plastic accounts for only 8% of the waste by weight, they occupy about 20% of the volume in a landfill due to their low bulk density.
  • It conserves energy:  recycling 1 pound of PET conserves 12,000 BTUs of heat energy; and the production of recycled PET uses 1/3 less energy than is needed to produce virgin PET.
  • It reduces greenhouse gas emissions.
  • It helps conserve natural resources.

But it should be remembered that some items are much better candidates for recycling than others.  Aluminum recycling, for example, uses 95% less energy than producing aluminum from bauxite ore, and aluminum cans can be recycled into new aluminum cans.  There is no limit to the amount of times an aluminum container can be recycled. The PET bottle, which is used for everything from water to wine,  was patented in 1973 – that’s only 27 years ago!  Prior to that most bottles were of glass.  Glass, like aluminum,  is infinitely recyclable.  As late as 1947, virtually 100% of all beverage bottles were returnable; and states with bottle deposit laws have 35 – 40% less litter by volume.  I found this image while looking for Earth Day anniversary images, and think it’s a great example of how corporations will slant anything to their purposes.  (Please note that the company in question is Coca Cola – I’ll have a lot to say about Coke’s recycling efforts in 2010 in upcoming blog posts):

There are different costs and benefits for other recyclable items: plastic, paper, electronics, motor oil… They each have their own individual problems.

With reference to the textile industry, 60% of all the virgin polyethelene terephthalate (PET) produced globally is used to make fibers, while only 30% goes into bottle production.  As I explained in a previous blog,  the textile industry has adopted recycled polyester as the fiber of choice to promote its green agenda.   What I want to do is expose this choice for what it is: a self-serving attempt to convince the public that a choice of a recycled polyester fabric is actually a good eco choice – when the reality is that this is another case of expediency and greed over any authentic attempts to find a sustainable solution.  My biggest complaint with the industry’s position is that there is no attempt made to address the question of water treatment or of chemical use during dyeing and processing of the fibers.

So to begin, let’s look at what plastic recycling means, since there are many misconceptions about recycling plastic – especially plastic bottles from which (some) recycled polyester yarns are made.

In 1970, at the time of the first Earth Day, Gary Anderson won a contest sponsored by Container Corporation of America to present a design which symbolizes the recycling process.  His winning design  was a three-chasing-arrows Mobius loop, with the arrows twisting and turning among themselves.   Because of the symbol’s simplicity and clarity it became widely used worldwide and is a symbol now recognized  by almost everyone.  Today almost all plastic containers have the “chasing arrows” symbol.  We’re bombarded with that symbol – any manufacturer worth his salt slaps it on their products.

But the symbol itself is meaningless.  This symbol is not a government mandated code, and does not imply any particular type or amount of recycled content.  Many people think that the “chasing arrows” symbol means the plastic can be recycled – and that too is untrue.

The only useful information in the “chasing arrows” symbol is the number inside the arrows, which indicates the general class of resin used to make the container. There are thousands of types of plastic used for consumer packaging today. In 1988, the Society of the Plastics Industry devised a numbering system  to aid in sorting plastics for recycling, because in order to be recycled,  each plastic container must be separated by type before it can be used again to make a new product. Of the seven types, only two kinds, polyethelene terephthalate (PET), known as #1, and High Density Polyethelyne (HDPE) – or #2 –  are typically collected and reprocessed.   Some of these resins are not yet recyclable at all (such as #6 or 7), or they’re recyclable only rarely.

In addition, a resin code might indeed indicate #1 (PET) for example, but depending on the use (yogurt cup vs. soda bottle) it will contain different dyes, plasticizers, UV inhibitors, softeners, or other chemicals.
This mix of additives changes the properties of the plastic, so not all #1 resins can be melted together – further complicating the process.  Here’s a list of the seven resin codes and some of the concerns associated with each:

Consumers see the symbol and  – thinking it means the plastic can be recycled – drop bottles into recycling bins, feeling they’ve “done their part” and that the used bottle is now part of the infinite loop, becoming a new and valued product.  But does the bottle actually get “recycled”, returning to a high value product, staying out of the garbage dump?

Well, uh, . . .  not really.  Collecting plastic containers in a recycling bin fosters the belief that, like aluminum and glass, the recovered material is converted into new containers.  In fact, none of the recovered plastic containers are being made into containers again, but rather into new secondary products, like textiles, parking lot bumpers, or plastic lumber – all unrecyclable products.  “Recycled’ in this case merely means “collected.”

A bottle can become a fabric, but a fabric can’t become a bottle – or even another fabric, but we’ll get to that later.  There are far too few exceptions to this rule.

Plastic has what’s called a “heat history”: each time it gets recycled the polymer chains break down, weakening the plastic and making it less suitable for high end use.  PET degrades after about 5 melt cycles.  This phenomenon, known in the industry as “cascading” or “downcycling,” has a troubling consequence.    It means that all plastic – including the tiny proportion that finds its way into another bottle – “will eventually end up in the landfill,” said Jerry Powell, editor of Plastics Recycling Update.

The technology exists to recycle most kinds of plastic, but a lack of infrastructure prevents all but the most widespread kinds of plastic from being recycled.  Collection is expensive because plastic bottles are light yet bulky, making it hard to efficiently gather significant amounts of matching plastic.  For recycling to work, communities must be able to cost effectively collect and sort plastic, and businesses must be willing to accept the material for processing. So no matter whether a particular plastic is in a form which allows it to be melted and reused, something is only recyclable if there is a company out there who is willing to use it to make a new product. If there is no one who will accept the material and make a new product out of it, then it is not recyclable.

Only a few kinds of plastic have the supply and market conditions that make recycling feasible. With plastics in particular, how the plastic particles are put together (molded or extruded) changes their chemical make up and make them non recyclable in certain applications. Some bottles make it to a recycler, who must scramble to find a buyer.  The recycler  often ends up selling the bottles at a loss to an entrepreneur who makes carpeting or traffic strips – anything but new bottles.

Recycling reduces the ecological impact of plastic, but it remains more complicated, more expensive and less effective than other parts of the recycling industry. No matter how many chasing arrows are printed on plastic products, it doesn’t change the fact that plastic is largely a throwaway material.

Next week:   what is the plastic industry doing to create a stronger recycling market for its product?