Sofa cushions – foam, soy foam or latex?

12 09 2013

So we have produced the frame and put in the suspension system.  Next in line are the cushions – something soft to sit on.

In an upholstered piece of furniture, the cushions need a filler of some kind.  Before plastics, our grandparents used feathers, horsehair or wool or cotton batting.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is start with good foam and you won’t be sorry.”

Cushions are generally measured by two values:

  • The density or weight per cubic foot of polyurethane foam. The higher the number the more it weighs.   Foam that has a density of 1.8 foam, for example, contains 1.8 lbs of foam per cubic foot and foam that is 2.5 foam would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  • The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block one third.

The foam is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually, and explore issues other than embodied energy :

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is      considered the ‘workhorse’ of flexible foam production.
    • Both methyloxirane  and TDI have been formally identified as carcinogens by the State of California
    • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
    • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.       However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2]

Now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable  resource
  2. it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for      the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”.   Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain.  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

Is there really a question as to which to buy?


[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

Advertisements




Beyond natural fibers

11 07 2012

It looks like the plastic bottle is here to stay, despite publicity about bisphenol A and other chemicals that may leach into liquids inside the bottle. The amount of plastic used to make the bottles is so enormous that estimates of total amount of plastic used is staggering. Earth911.com says that over 2,456 million pounds of PET was available for recycling in the United States in 2009. Any way you look at it, that’s a lot of bottles.
Those bottles exist – they’re not going away, except perhaps to the landfill. So shouldn’t we be able to use them somehow?
We have already posted blogs about plastics (especially recycled plastics) last year ( to read them, click here, here, and here ) so you know where we stand on the use of plastics in fabrics. All in all, plastic recycling is not what it’s touted to be. Even if recycled under the best of conditions, a plastic bottle or margarine tub will probably have only one additional life. Since it can’t be made into another food container, your Snapple bottle will become a “durable good,” such as carpet or fiberfill for a jacket. Your milk bottle will become a plastic toy or the outer casing on a cell phone. Those things, in turn, will eventually be thrown away.
So the reality is that polyester bottles exist, and using them any way we can before sending them to the landfill will prevent the use of more crude oil, which we’re trying to wean ourselves from, right? Recycling some of them into fiber seems to be a better use for the bottles than land filling them.
Plastic bottles (the kind that had been used for some kind of consumer product) are the feedstock for what is known as “post-consumer recycled polyester”. Even though plastic recycling appears to fall far short of its promise, recycled polyester, also called rPET, is now accepted as a “sustainable” product in the textile market, because it’s a message that can be easily understood by consumers – and polyester is much cheaper than natural fibers. So manufacturers, in their own best interest, have promoted “recycled polyester” as the sustainable wonder fabric, which has achieved pride of place as a green textile option in interiors.
Recycled post consumer polyester is made from bottles – which have been collected, sorted by hand, and then melted down and formed into chips, sometimes called flakes. These chips or flakes are then sent to the yarn spinning mills, where they’re melted down, often mixed with virgin polyester, and and spun into yarn, which is why you’ll often see a fabric that claims it’s made of 30% post consumer polyester and 70% virgin polyester, for example.

But today the supply chains for recycled polyester are not transparent, and if we are told that the resin chips we’re using to spin fibers are made from bottles – or from industrial scrap or old fleece jackets – we have no way to verify that. Once the polymers are at the melt stage, it’s impossible to tell where they came from. So the yarn/fabric could be virgin polyester or it could be recycled. Many so called “recycled” polyester yarns may not really be from recycled sources at all because – you guessed it! – the process of recycling is much more expensive than using virgin polyester. Unfortunately not all companies are willing to pay the price to offer a real green product, but they sure do want to take advantage of the perception of green. So when you see a label that says a fabric is made from 50% polyester and 50% recycled polyester – well, (until now) there was absolutely no way to tell if that was true.
Along with the fact that whether what you’re buying is really made from recycled yarns – or not – most people don’t pay any attention to the processing of the fibers. Let’s just assume, for argument’s sake, that the fabric (which is identified as being made of 100% recycled polyester) is really made from recycled polyester. But unless they tell you specifically otherwise, it is processed conventionally.
What does that mean? It can be assumed that the chemicals used in processing – the optical brighteners, texturizers, dyes, softeners, detergents, bleaches and all others – probably contain some of the chemicals which have been found to be harmful to living things. In fact the chemicals used, if not optimized, may very well contain the same heavy metals, AZO dyestuffs and/or finish chemicals that have been proven to cause much human suffering.
It’s widely thought that water use needed to recycle polyester is low, but who’s looking to see that this is true? The weaving, however, uses the same amount of water (about 500 gallons to produce 25 yards of upholstery weight fabric) – so the wastewater is probably expelled without treatment, adding to our pollution burden. And it’s widely touted that recycling polyester uses just 30 – 50% of the energy needed to make virgin polyester – but is that true in every case? There is no guarantee that the workers who produce the fabric are being paid a fair wage – or even that they are working in safe conditions. And finally there are issues specific to the textile industry:

  • The base color of the recyled chips varies from white to creamy yellow. This makes it difficult to get consistent dyelots, especially for pale shades, necessitating more dyestuffs.
  • In order to get a consistently white base, some dyers use chlorine-based bleaches.
  • Dye uptake can be inconsistent, so the dyer would need to re-dye the batch. There are high levels of redyeing, leading to increased energy use.
  • PVC is often used in PET labels and wrappers and adhesives. If the wrappers and labels from the bottles used in the post-consumer chips had not been properly removed and washed, PVC may be introduced into the polymer.
  • Some fabrics are forgiving in terms of appearance and lend themselves to variability in yarns, such as fleece and carpets; fine gauge plain fabrics are much more difficult to achieve.

As the size of the recycled polyester market grows, we think the integrity of the sustainability claims for polyesters will become increasingly important. There has not been the same level of traceability for polyesters as there is for organically labeled products.

But now there is now a new, third party certification which is addressing these issues. The Global Recycle Standard (GRS), originated by Control Union and now administered by Textile Exchange (formerly Organic Exchange), is intended to establish independently verified claims as to the amount of recycled content in a yarn, with the important added dimension of prohibiting certain chemicals, requiring water treatment and upholding workers rights, holding the weaver to standards similar to those found in the Global Organic Textile Standard:

  • Companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • All prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • All wastewater must be treated for pH, temperature, COD and BOD before disposal;
  • There is an extensive section related to worker’s rights.

The GRS provides a track and trace certification system that ensures that the claims you make about a product can be officially backed up. It consists of a three-tiered system: Gold standard – products contain between 95 percent to 100 percent recycled material;Silver standard – products contain between 70 percent to 95 percent recycled product;Bronze standard – products have a minimum of 30 percent recycled content.

I have long been concerned about the rampant acceptance of recycled polyester as a green choice when no mention has been made of processing chemicals, water treatment or workers rights, so we welcome this new GRS certification, which allows us to be more aware of what we’re really buying when we try to “do good”.





Global Recycle Standard update

1 05 2012

Textile Exchange, which administers the new Global Recycle Standard, has introduced what it says is a “minor but important” change in GRS version 2.1, according to the April/May 2012 issue of Ecotextile News.  (If you’re wondering what the Global Recycle Standard is all about, please see our blog post on the subject:  click here .)

The new change removes the allowance for the use of pre-industrial waste.  The Version 2.1 will only recognize pre-consumer and post-consumer waste.  This change was made because the Textile Exchange has determined that pre-industrial waste does not meet the Federal Trade Commission requirement for recycled input – which is that in order to be considered a recycled input, it must have been diverted from the waste stream.  An example of such pre-industrial waste that does not meet the criteria for being diverted from the waste stream is that of short cotton fibers which fall out of cotton during the spinning process;  the fibers are scooped up and re-introduced into the spinning process.  In terms of polyester, an example would be that of a manufacturer collecting plastic pellets that have spilled onto the manufacturing floor, washing them and then feeding them directly back into the same manufacturing process without reprocessing.

Both of these examples are considered an efficient manufacturing procedure and standard industry practice, not recycling.

Interpreting these pre-consumer recycled content claims can get very specific and technical.  Underwriters Laboratory has published a handy White Paper entitled  “Interpreting Pre-Consumer Recycled Content Claims: Philosophy and Guidance on Environmental Claims for Pre-Consumer Recycled Materials”.(1)

The new GRS standard becomes effective June 1, 2012.  All companies being newly certified to the GRS will be required to use the new GRS v.2.1, while companies with existing GRS v2 certification will be able to maintain their current status until the end of the validity date of their certification.

Textile Exchange is currently working on Version 3 of the GRS, and they say it will be more stringent than the current version, with further refining of definitions for inputs that can be claimed as recycled input and additional requirements for chemical inputs.

(1)  http://greenerul.com/pdf/ULE_whitepaper_July2010.pdf





Bioplastics – are they the answer?

16 04 2012

From Peak Energy blog; August 27, 2008

From last week’s blog post, we discussed how bio based plastics do indeed save energy during the production of the polymers, and produce fewer greenhouse gasses during the process.  Yet right off the bat, it could be argued that carbon footprints may be an irrelevant measurement,  because it has been established that plants grow more quickly and are more drought and heat resistant in a CO2 enriched atmosphere!   Many studies have shown that worldwide food production has risen, possibly by as much as 40%, due to the increase in atmospheric CO2 levels.[1] Therefore, it is both ironic and a significant potential problem for biopolymer production if the increased CO2 emissions from human activity were rolled back, causing worldwide plant growth to decline. This in turn would greatly increase the competition for biological sources of food and fuel – with biopolymers coming in last place.[2]  But that’s probably really stretching the point.

The development of bioplastics holds the potential of renewability, biodegradation, and a path away from harmful additives. They are not, however, an automatic panacea.  Although plant-based plastics appeal to green-minded consumers thanks to their renewable origins,  their production carries environmental costs that make them less green than they may seem.  It’s important to remember that bioplastics, just like regular plastics, are synthetic polymers; it’s just that plants are being used instead of oil to obtain the carbon and hydrogen needed for polymerization.

It’s good marketing, but bad honesty, as they say, because there are so many types of plastics and bioplastics that you don’t know what you’re getting in to;  bioplastics are much more complicated than biofuels.  There are about two dozen different ways to create a bioplastic, and each one has different properties and capabilities.

Actually the term “bioplastic” is pretty meaningless, because some bioplastics are actually made from oil – they’re called “bioplastics” because they are biodegradeable.  That causes much confusion because plastics made from oil can be biodegradeable whereas some plant-based  bioplastics are not. So the term bioplastics can refer either to the raw material (biomass) or, in the case of oil-based plastic, to its biodegradability.  The problem with biodegradability and compostability is that there is no agreement as to what that actually means either,  and under what circumstances

You might also see the term “oxo-degradable”.   Oxo-degradables look like plastic, but they are not. It is true that the material falls apart, but that is because it contains metal salts which cause it to disintegrate rapidly into tiny particles. Then you cannot see it anymore, but it is still there, in the ocean too. Just as with conventional plastics, these oxo-degradables release harmful substances when they are broken down.

Let’s re-visit  some of the reasons bioplastics are supposed to be an environmental benefit:

  • Because it’s made from plants, which are organic, they’re good for the planet.  Polymer bonds can be created from oil, gas or plant materials. The use of plant materials does not imply that the resulting polymer will be organic or more environmentally friendly. You could make non-biodegradable, toxic plastic out of organic corn!
  • Bioplastics are biodegradable. Although made from materials that can biodegrade, the way that material is turned into plastic  makes it difficult (if not impossible) for the materials to naturally break down.  There are bioplastics made from vegetable matter (maize or grass, for example) which are no more biodegradable than any other plastics, says Christiaan Bolck of Food & Biobased Research.[3]  Bioplastics do not universally biodegrade in normal conditions  –  some require special, rare conditions to decompose, such as high heat composting facilities, while others may simply take decades or longer to break down again, mitigating the supposed benefits of using so-called compostable plastics material. There are no independent standards for what even constitutes “biodegradable plastic.”  Sorona makes no claim to break down in the environment; Ingeo is called “compostable” (though it can only be done in industrial high heat composters). Close studies of so-called degradable plastics have shown that some only break down to plastic particles which are so small they can’t be seen  (“out of sight, out of mind”), which are more easily ingested by animals. Indeed, small plastic fragments of this type may also be better able to attract and concentrate pollutants such as DDT and PCB.[4]
  • Bioplastics are recyclable. Because bioplastics come in dozens of varieties, there’s no way to make sure you’re getting the right chemicals in the recycling vat – so although some bioplastics are recyclable, the recycling facilities won’t separate them out.  Cargill Natureworks insists that PLA  can in theory be recycled, but in reality it is likely to be confused with polyethylene terephthalate (PET).  In October 2004, a group of recyclers and recycling advocates issued a joint call for Natureworks to stop selling PLA for bottle applications until the recycling questions were addressed.[5]  But the company claims that levels of PLA in the recycling stream are too low to be considered a contaminant.  The process of recycling bioplastics is cumbersome and expensive – they present a real problem for recyclers because they cannot be handled using conventional processes. Special equipment and facilities are often needed. Moreover, if bioplastics commingle with traditional plastics, they contaminate all of the other plastics, which forces waste management companies to reject batches of otherwise recyclable materials.
  • Bioplastics are non-toxicBecause they’re not made from toxic inputs (as are oil based plastics), bioplastics have the reputation for being non toxic.  But we’re beginning to see the same old toxic chemicals produced from a different (plant-based) source of carbon. Example:  Solvay’s bio-based PVC uses phthalates,  requires chlorine during production, and produces dioxins during manufacture, recycling and disposal. As one research group commissioned by the European Bioplastics Association was forced to admit, with regard to PVC,  “The use of bio-based ethylene is …  unlikely to reduce the environmental impact of PVC with respect to its toxicity potential.[6]

The arguments against supporting bioplastics include the fact that they are corporate owned, they compete with food, they bolster industrial agriculture and lead us deeper into genetic engineering, synthetic biology and nanotechnology.  I am not with those who think we shouldn’t go there, because we sorely need scientific inquiry  and eventually we might even get it right.  But, for example, today’s industrial agriculture is not, in my opinion, sustainable, and the genetic engineering we’re doing is market driven with no altruistic motive. 

If properly designed, biodegradable plastics have the potential to become a much-preferred alternative to conventional plastics. The Sustainable Biomaterials Collaborative (SBC)[7] is a coalition of organizations that advances the introduction and use of biobased products. They seek to replace dependence on materials made from harmful fossil fuels with a new generation of materials made from plants – but the shift they propose is more than simply a change of materials.  They promote (according to their website): sustainability standards, practical tools, and effective policies to drive and shape the emerging markets for these products.  They also refer to “sustainable bioplastics” rather than simply “bioplastics”.  In order to be a better choice, these sustainable bioplastics must be:

  • Derived from non-food, non-GMO source materials – like algae rather than GMO corn, or from sustainably grown and harvested cropland or forests;
  • Safe for the environment during use;
  • Truly compostable and biodegradable;
  • Free of toxic chemicals during the manufacturing and recycling process;
  • Manufactured without hazardous inputs and impacts (water, land and chemical use are considerations);
  • Recyclable in a cradle-to-cradle cycle.

Currently, manufacturers are not responsible for the end-life of their products. Once an item leaves their factories, it’s no longer the company’s problem. Therefore, we don’t have a system by which adopters of these new bioplastics would be responsible for recovering, composting, recycling, or doing whatever needs to be done with them after use. Regarding toxicity, the same broken and ineffective regulatory system is in charge of approving bioplastics for food use, and there is no reason to assume that these won’t raise just as many health concerns as conventional plastics have. Yet again, it will be an uphill battle to ban those that turn out to be dangerous.

A study published in Environmental Science & Technology traces the full impact of plastic production all the way back to its source for several types of plastics.[8]   Study author Amy Landis of the University of Pittsburgh says, “The main concern for us is that these plant-derived products have a green stamp on them just because they’re derived from biomass.  It’s not true that they should be considered sustainable. Just because they’re plants doesn’t mean they’re green.”

The researchers found that while making bioplastics requires less fossil fuel and has a lower impact on global warming, they have higher impacts for eutrophication, eco-toxicity and production of human carcinogens.  These impacts came largely from fertilizer use, pesticide use and conversion of lands to agricultural fields, along with processing the bio-feedstocks into plastics, the authors reported.

According to the study, polypropylene topped the team’s list as having the least life-cycle impact, while PVC and PET (polyethylene terephthalate) were ranked as having the highest life-cycle impact.

But as the Plastic Pollution Coalition tells us, it’s not so much changing the material itself that needs changing – it’s our uses of the stuff itself.  We are the problem:   If we continue to buy single-use disposable objects such as plastic bottles and plastic bags, with almost 7 billion people on the planet, our throwaway culture will continue to harm the environment, no matter what it’s made of.

The Surfrider Foundation

The Surfrider Foundation has a list of ten easy things you can do to keep plastics out of our environment:

  1. Choose to reuse when it comes to  shopping bags and bottled water.  Cloth bags and metal or glass reusable  bottles are available locally at great prices.
  2. Refuse single-serving packaging, excess  packaging, straws and other ‘disposable’ plastics.  Carry reusable utensils in your purse, backpack or car to use at bbq’s, potlucks or take-out  restaurants.
  3. Reduce everyday plastics such as sandwich bags and juice cartons by replacing them with a reusable lunch bag/box that includes a thermos.
  4. Bring your to-go mug with you to the coffee shop, smoothie shop or restaurants that let you use them. A great  way to reduce lids, plastic cups and/or plastic-lined cups.
  5. Go digital! No need for plastic cds,  dvds and jewel cases when you can buy your music and videos online.
  6. Seek out alternatives to the plastic  items that you rely on.
  7. Recycle. If you must use plastic, try to choose #1 (PETE) or #2 (HDPE), which are the most commonly recycled      plastics. Avoid plastic bags and polystyrene foam as both typically have very low recycling rates.
  8. Volunteer at a beach cleanup. Surfrider Foundation Chapters often hold cleanups monthly or more frequently.
  9. Support plastic bag bans, polystyrene  foam bans and bottle recycling bills.
  10. Spread the word. Talk to your family and friends about why it is important to Rise Above Plastics!

[1] See for example: Idso, Craig, “Estimates of Global Food Production in the year 2050”, Center for the Study of Carbon dioxide and Global Change, 2011  AND  Wittwer, Sylvan, “Rising Carbon Dioxide is Great for Plants”, Policy Review, 1992  AND  http://www.ciesin.org/docs/004-038/004-038a.html

[2] D. B. Lobell and C. B. Field, Global scale climate-crop yield relationships and the impacts of recent warming, Env. Res. Letters 2, pp. 1–7, 2007 AND L. H. Ziska and J. A. Bunce, Predicting the impact of changing CO2 on crop yields: some thoughts on food, New Phytologist 175, pp. 607–618, 2007.

[3] Sikkema, Albert, “What we Don’t Know About Bioplastics”, Resource, December 2011; http://resource.wur.nl/en/wetenschap/detail/what_we_dont_know_about_bioplastics

[4] Chandler Slavin, “Bio-based resin report!” Recyclable Packaging Blog May 19, 2010 online at http://recyclablepackaging.wordpress.com/2010/05/19/bio-based-resin-report

[6] L. Shen, “Product Overview and Market Projection of Emerging Bio- Based Plastics,” PRO-BIP 2009, Final Report, June 2009





Outdoor fabrics

25 03 2012

We love being outdoors. I’ve been told that the most popular outdoor activity in the U.S.A is picnicking.  I would think barbeque must be a close second.  So we love fabrics that we can use outdoors  – you know the ones that resist fading, are stain resistant and can be cleaned with mild soap and water?  They don’t fade or degrade.  Perfect!

Let’s look at America’s most popular outdoor fabric, Sunbrella, which their website claims is recognized as “a fabric with a conscience”, because, as they claim:

  • all Sunbrella fabrics are fully recyclable;
  • they require no dyeing that produces wastewater;
  • and they have received the GREENGUARD and Skin Cancer Foundation certifications.

Before we show why we think these are all claims which exemplify different facets of what Terra Choice calls the “Six Sins of Greenwashing”, let’s first look at the stuff Sunbrella is made of.

Sunbrella is, as their website says, a 100% solution dyed acrylic fabric.   Solution dyeing is simply mixing the dyestuff into the melted polymer.  So unlike dyeing that penetrates a fiber,  this method means that the color is inherent in the fiber, and there is no dye or water waste.  This is a good method of dyeing – but that’s not the issue  – the real issue is what the fabrics are made of.

The key ingredient of acrylic fiber is acrylonitrile, (also called vinyl cyanide).   Acrylic manufacturing involves highly toxic substances which require careful storage, handling, and disposal. The polymerization process can result in an explosion if not monitored properly.  It also produces toxic fumes. Recent legislation requires that the polymerization process be carried out in a closed environment and that the fumes be cleaned, captured, or otherwise neutralized before discharge to the atmosphere – because the burning of acrylic releases fumes of hydrogen cyanide and oxides of nitrogen.

The International Agency for Research on Cancer (IARC) concluded that there is inadequate evidence in humans for the carcinogenicity of acrylonitrile, but classified it as a Class 2B carcinogen (possibly carcinogenic).   Acrylonitrile increases cancer in high dose tests in male and female rats and mice. (1)    A recent report which was published in Occupational and Environmental Medicine  found that women who work in textile factories which produce acrylic fabrics have seven times the risk of developing breast cancer than the normal population.(2)

According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.

Acrylic is not easily recycled nor is it readily biodegradable. It is considered a group 7 plastic among recycled plastics and is not collected for recycling in most communities. Large pieces can be reformed into other useful objects if they have not suffered too much stress, crazing, or cracking, but this accounts for only a very small portion of the acrylic plastic waste. In a landfill, acrylic plastics, like many other plastics, are not readily biodegradable. Some acrylic plastics are highly flammable and must be protected from sources of combustion.

Now that you know what Sunbrella’s made of, let’s look at their claims:

  • All Sunbrella fabrics are fully recyclable – If you check the website, Sunbrella has a proprietary recycling program, which means they will pick up your old Sunbrella.  Why do they do this?  Because the local municipalities do not accept acrylic fabric nor do most plastic recycling companies.  It’s admirable that Sunbrella has put this program into place, but we don’t really know that they actually re-purpose the old fabric rather than simply cart it to the landfill, do we?
  • Sunbrella fabrics require no dyeing that produces wastewater  – because it’s solution dyed, so therefore this is, well if not exactly a red herring, certainly irrelevant to the fact that the fabric is made from acrylic.
  • Sunbrella fabrics have received the GREENGUARD and Skin Cancer Foundation certifications.
    • Sunbrella fabrics have been certified by GreenGuard Children and Schools because the chemicals used in acrylic production are bound in the polymer – in other words, they do not evaporate. So Sunbrella fabrics do not contribute to poor air quality, (you won’t be breathing them in), but there is no guarantee that you won’t absorb them through your skin. And you would be supporting the production of more acrylic, the production of which is not a pretty thing.
    • With regard to the Skin Cancer Foundation – the certification seems to be based on the fact that Sunbrella fabrics block the sun, which prevents skin cancer, rather than anything inherently beneficial in the fabric itself – because the certification is not valid for any Sunbrella fabric which is sheer or transparent.  So another red herring.

Now that you know what Sunbrella is made of, do you really want convenience at such a great cost?


(1) Hagman, L, “How confident can we be that acrylonitrile is not a human carcinogen?”, Scandanavian Journal of Work, Environment and Health, 2001;27(1):1-4 .

[2] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817 (abstract: http://oem.bmj.com/content/67/4/263.abstract) SEE ALSO: http://www.breastcancer.org/risk/new_research/20100401b.jsp AND http://www.medpagetoday.com/Oncology/BreastCancer/19321





Global Recycle Standard

9 09 2011

It looks like the plastic bottle is here to stay, despite publicity about bisphenol A  and other chemicals that may leach into liquids inside the bottle.   Plastic bottles (the kind that had been used for some kind of consumer product) are the feedstock for what is known as “post-consumer recycled polyester”. Even though plastic recycling appears to fall far short of its promise,  recycled polyester, also called rPET, is now accepted as a “sustainable” product in the textile market, because it’s a message that can be easily understood by consumers – and polyester is much cheaper than natural fibers.   So manufacturers, in their own best interest, have promoted “recycled polyester” as the sustainable wonder fabric, which has achieved pride of place as a green textile option in interiors.

We have already posted blogs about plastics (especially recycled plastics) last year ( to read them, click here, here or here ) so you know where we stand on the use of plastics in fabrics.  All in all, plastic recycling is not what it’s touted to be. Even if recycled under the best of conditions, a plastic bottle or margarine tub will probably have only one additional life. Since it can’t be made into another food container, your Snapple bottle will become a “durable good,” such as carpet or fiberfill for a jacket. Your milk bottle will become a plastic toy or the outer casing on a cell phone. Those things, in turn, will eventually be thrown away.  Even though the mantra has been “divert from the landfill”, what do they mean?  Divert to where?

But the reality is that polyester bottles exist,  and recycling some of them  into fiber seems to be a better use for the bottles than land filling them.

Recycled post consumer polyester is made from bottles – which have been collected, sorted by hand, and then melted down and formed into chips (sometimes called flakes).

PET resin chips


These chips or flakes are then sent to the yarn spinning mills, where they’re melted down, often mixed with virgin polyester,  and  and spun into yarn, which is why you’ll often see a fabric that claims it’s made of 30% post consumer polyester and 70% virgin polyester, for example.

Polyester yarn

But today the supply chains for recycled polyester are not transparent, and if we are told that the resin chips we’re using to spin fibers are made from bottles – or from industrial scrap or old fleece jackets  – we have no way to verify that.  Once the polymers are at the melt stage, it’s impossible to tell where they came from.  So the yarn/fabric could be virgin polyester or  it could be recycled.   Many so called “recycled” polyester yarns may not really be from recycled sources at all because – you guessed it! – the  process of recycling is much more expensive than using virgin polyester.  Unfortunately not all companies are willing to pay the price to offer a real green product, but they sure do want to take advantage of the perception of green.   So when you see a label that says a fabric is made from 50% polyester and 50% recycled polyester – well, (until now) there was absolutely no way to tell if that was true.

Along with the fact that whether what you’re buying is really made from recycled yarns – or not – most people don’t pay any attention to the processing of the fibers.  Let’s just assume, for argument’s sake, that the fabric (which is identified as being made of 100% recycled polyester) is really made from recycled polyester.  But unless they tell you specifically otherwise, it is processed conventionally.

What does that mean?    It can be assumed that the chemicals used in processing – the optical brighteners, texturizers, dyes, softeners, detergents, bleaches and all others – probably contain some of the chemicals which have been found to be harmful to living things.  In fact the chemicals used, if not optimized, may very well contain the same heavy metals, AZO dyestuffs and/or finish chemicals that have been proven to cause much human suffering.

It’s widely thought that water use needed to recycle polyester is low, but who’s looking to see that this is true?  The weaving, however, uses the same amount of water (about 500 gallons to produce 25 yards of upholstery weight fabric) – so the wastewater is probably expelled without treatment, adding to our pollution burden.

And it’s widely touted that recycling polyester uses just 30 – 50% of the energy needed to make virgin polyester – but is that true in every case?

There is no guarantee that the workers who produce the fabric are being paid a fair wage – or even that they are working in safe conditions.

And finally there are issues specific to the textile industry:

  • The base color of the recyled chips varies from white to creamy yellow.  This makes it difficult to get consistent dyelots, especially for pale shades, necessitating more dyestuffs.
  • In order to get a consistently white base, some dyers use chlorine-based bleaches.
  • Dye uptake can be inconsistent, so the dyer would need to re-dye the batch.  There are high levels of redyeing, leading to increased energy use.
  • PVC is often used in PET labels and wrappers and adhesives.  If the wrappers and labels from the bottles used in the post-consumer chips had not been properly removed and washed, PVC may be introduced into the polymer.
  • Some fabrics are forgiving in terms of appearance and lend themselves to variability in yarns,  such as fleece and carpets; fine gauge plain fabrics are much more difficult to achieve.

As the size of the recycled polyester market grows, we think the integrity of the sustainability claims for polyesters will become increasingly important.  There has not been the same level of traceability for polyesters as there is for organically labeled products.  According to Ecotextile News, this is due (at least in part) to lack of import legislation for recycled goods.

One solution, suggested by Ecotextile News, is to create a tracking system that follows the raw material through to the final product.  This would be very labor intensive and would require a lot of monitoring, all of which adds to the cost of production – and don’t forget, recycled polyester now is fashion’s darling because it’s so cheap, so those manufacturer’s wouldn’t be expected to increase costs.

There are also private standards which have begun to pop up, in an effort to differentiate their brands.  One fiber supplier which has gone the private standard route is Unifi.   Repreve™ is the name of Unifi’s recycled polyester – the company produces recycled polyester yarns, and (at least for the filament yarns) they have Scientific Certification Systems certify that Repreve™ yarns are made with 100% recycled content.  Unifi’s  “fiberprint” technology audits orders across the supply chain  to verify that if Repreve is in a product it’s present in the amounts claimed.  But there are still  many unanswered questions (because they’re  considered “proprietary information” by Unifi)  so the process is not transparent.

But now, Ecotextile News’s  suggestion has become a reality.   There is now a new, third party certification which is addressing these issues.  The Global Recycle Standard (GRS), originated by Control Union and now administered by Textile Exchange (formerly Organic Exchange),  is intended to establish independently verified claims as to the amount of recycled content in a yarn, with the important added dimension of prohibiting certain chemicals, requiring water treatment and upholding workers rights, holding the weaver to standards similar to those found in the Global Organic Textile Standard:

  • Companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • All prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • All wastewater must be treated for pH, temperature, COD and BOD before disposal;
  •  There is an extensive section related to worker’s rights.

The GRS provides a track and trace certification system that ensures that the claims you make about a product can be officially backed up. It consists of a three-tiered system:

  • Gold standard –  products contain between 95 percent to 100 percent recycled material;
  • Silver standard – products contain between 70 percent to 95 percent recycled product;
  • Bronze standard –  products  have a minimum of 30 percent recycled content.

I have long been concerned about the rampant acceptance of recycled polyester as a green choice  when no mention has been made of processing chemicals, water treatment or workers rights, so we welcome this new GRS certification, which allows us to be more aware of what we’re really buying when we try to “do good”.





When is recycled polyester NOT recycled polyester?

23 03 2011

Fabric might be the only product I can think of which is known by its component parts, like cotton, silk, wool.  These words usually refer to the fabric rather than the fiber used to make the fabric.  We’ve all done it: talked about silk draperies, cotton sheets.  There seems to be a disassociation between the fibers used and the final product, and people don’t think about the process of turning cotton bolls or silkworm cocoons or flax plants into luxurious fabrics.

There is a very long, involved and complex process needed to turn raw fibers into finished fabrics.  Universities award degrees in textile engineering,  color chemistry or any of a number of textile related fields.  One can get a PhD in fiber and polymer science,  or study the design, synthesis and analysis of organic dyes and pigments.  Then there is the American Association of Textile Chemists and Colorists (AATCC) which has thousands of members in 60 different countries.  My point is that we need to start focusing on the process of turning raw textile fiber into a finished fabric – because therein lies all the difference!

And that brings me to recycled polyester, which has achieved pride of place as a green textile option in interiors.  We have already posted blogs about plastics (especially recycled plastics) last year (on 4.28.10, 5.05.10 and 5.12.10) so you know where we stand on the use of plastics in fabrics.  But the reality is that polyester bottles exist,  and recycling some of them  into fiber seems to be a better use for the bottles than landfilling them.

But today the supply chains for recycled polyester are not transparent, and if we are told that the resin chips we’re using to spin fibers are made from bottles – or from any kind of  polyester  –  we have no way to verify that.  Once the polymers are at the melt stage, it’s impossible to tell where they came from, because the molecules are the same.  So the yarn/fabric  could be virgin polyester or  it could be recycled.   Many so called “recycled” polyester yarns may not really be from recycled sources at all because – you guessed it! – the process of recycling is much more expensive than using virgin polyester.   And unfortunately not all companies are willing to pay the price to offer a real green product, but they sure do want to take advantage of the perception of green.   So when you see a label that says a fabric is made from 50% polyester and 50% recycled polyester – well, there is absolutely no way to tell if that’s true.

Some companies are trying to differentiate their brands by confirming that what they say is recycled REALLY is from recycled sources.  Unifi, which supplies lots of recycled resins and yarns, has an agreement with Scientific Certification Systems to certify that their Repreve yarns are made from 100% recycled content.  Then Unifi’s  “fiberprint” technology audits orders across the supply chain to verify that if Repreve is in a product , that it’s present in the right amounts.  But with this proprietary information there are still many questions Unifi doesn’t answer – the process is not transparent.  And it applies only to Unifi’s branded yarns.

Along with the fact that whether what you’re buying is really made from recycled yarns – or not – most people don’t pay any attention to the processing of the fibers.  Let’s just assume, for argument’s sake, that the fabric (which is identified as being made of 100% recycled polyester) is really made from recycled polyester.  But unless they tell you specifically otherwise, it is processed conventionally.  That means that the chemicals used during processing – the optical brighteners, texturizers, dyes, softeners, detergents, bleaches and all others – probably contain some of the chemicals which have been found to be harmful to living things.  The processing uses the same amount of water (about 500 gallons to produce 25 yards of upholstery weight fabric) – so the wastewater is probably expelled without treatment, adding to our pollution burden.  And there is no guarantee that the workers who produce the fabric are being paid a fair wage – or even that they are working in safe conditions.

One solution, suggested by Ecotextile News, is to create a tracking system that follows the raw material through to the final product.  They assumed that this would be very labor intensive and would require a lot of monitoring (all of which adds to the cost of production – and don’t forget, recycled polyester now is fashion’s darling because it’s so cheap!).

But now, Ecotextile News‘ suggestion has become a reality.   There is a new, third party certification which is addressing these issues.  The Global Recycle Standard (GRS), issued by Control Union, is intended to establish independently verified claims as to the amount of recycled content in a yarn. The GRS provides a track and trace certification system that ensures that the claims you make about a product can be officially backed up. It consists of a three-tiered system with the Gold standard requiring products to contain between 95 percent to 100 percent recycled material; the Silver standard requires products to be made of between 70 percent to 95 percent recycled product; and the Bronze standard requires products to have a minimum of 30 percent recycled content.

And – we think this is even more important –  in addition to the certification of the recycled content, the GRS looks at the critical issues of processing and workers rights.  This new standard holds the weaver to similar standards as found in the Global Organic Textile Standard:

  • companies must keep full records of the use of chemicals, energy, water consumption and waste water treatment including the disposal of sludge;
  • all prohibitied chemicals listed in GOTS are also prohibited in the GRS;
  • all wastewater must be treated for pH, temperature, COD and BOD before disposal;
  • there is an extensive section related to worker’s health and safety.