Remember the children

28 09 2015

We’ve been really busy – one of the things that has delayed our blog post is our new website:  Two Sisters Ecotextiles (twosistersecotextiles.com).  It is a retail website, because we feel everybody should have access to safe fabrics.  If you go to our new site, you’ll notice that it features lots of pictures of kids, because kids are more at risk than adults from the chemicals in our environment.  We did a blog post about this a few years ago, and it’s reproduced here.

Our children today live in an environment that is fundamentally different from that of 50 years ago. In many ways, their world is better. In many ways, they’re healthier than ever before.  Thanks to safe drinking water, wholesome food, decent housing, vaccines, and antibiotics, our children lead longer, healthier lives than the children of any previous generation.  The traditional infectious diseases have largely been eradicated. Infant mortality is greatly reduced. The expected life span of a baby born in the United States is more than two decades longer than that of an infant born in 1900.

Yet, curiously, certain childhood problems are on the increase: asthma is now the leading cause of school absenteeism for children 5 to 17[1]; birth defects are the leading cause of death in early infancy[2]; developmental disorders (ADD, ADHD, autism, dyslexia and mental retardation) are reaching epidemic proportions – 1 in 88 children is now diagnosed with autism spectrum disorder[3].  (Currently one of every six American children has a developmental disorder of some kind [4].) Childhood leukemia and brain cancer has increased sharply, while type 2 diabetes, previously unknown among children, is on the increase[5].  And the cost is staggering – a few childhood conditions (lead poisoning, cancer, developmental disabilities –including autism and ADD – and asthma) accounted for 3% of total U.S. health care spending in the U.S.  “The environment has become a major part of childhood disease” trumpeted Time magazine in 2011.[6]

How can this be?

Today’s children face hazards that were neither known nor imagined a few decades ago. Children are at risk of exposure to thousands of new synthetic chemicals – chemicals which are used in an astonishing variety of products, from gasoline, medicines, glues, plastics and pesticides to cosmetics, cleaning products, electronics, fabrics, and food. Since World War II, more than 80,000 new chemicals have been invented.  Scientific evidence is strong, and continuing to build, that exposures to synthetic chemicals in the modern environment are important causes of these diseases[7].  Indoor and outdoor air pollution are now established as causes of asthma. Childhood cancer is linked to solvents, pesticides, and radiation. The National Academy of Sciences has determined that environmental factors contribute to 25% of developmental disorders in children[8], disorders that affect approximately 17% of U.S. children under the age of 18. The urban built environment and the modern food environment are important causes of obesity and diabetes. Toxic chemicals in the environment – lead, pesticides, toxic air pollutants, phthalates, and bisphenol A – are important causes of disease in children, and they are found in our homes, at our schools, in the air we breathe, and in the products we use every day – including textiles.

What is different now?

  • The chief argument used by manufacturers to defend their chemical use is that the amounts used in products are so low that they don’t cause harm.  Yet we now know that the old belief that “the dose makes the poison” (i.e., the higher the dose, the greater the effect) is simply wrong.  Studies are finding that even infinitesimally low levels of exposure – or any level of exposure at all – may cause endocrine or reproductive abnormalities, particularly if exposure occurs during a critical developmental window.[9] Surprisingly, low doses may even exert more potent effects than higher doses. 
Endocrine disrupting chemicals may affect not only the exposed individual but also their children and subsequent generations.[10] Add to that the fact that what the industry bases its “safe” exposure limits on is calibrated on an adult’s body size, not children’s body sizes.
  • We also now know that time of exposure is critical – because during gestation and through early childhood the body is rapidly growing under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted – and so on – until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which subsequently impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life. There is even a new terminology to explain the consequences of exposure to EDCs: “the fetal basis of adult disease”, which means that the maternal and external environment, coupled with an individual’s genes, determine the propensity of that individual to develop disease or dysfunction later in life.  This theory, known as the “developmental origins of health and disease,” or DOHad, has blossomed into an emerging new field. DOHad paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.
  • There is yet another consideration:  The health effects from chemical pollution may appear immediately following exposure – or not for 30 years. The developmental basis of adult disease has implicit in its name the concept that there is a lag between the time of exposure and the manifestation of a disorder. Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases that can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations – is called “epigenetics”. Exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[11] Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[12]
  • Age at time of exposure is critical. Fetuses are most at risk, because their rapidly developing bodies can be altered and reprogrammed before birth.
  • Finally, exposures don’t happen alone – other pollutants are often involved, which may have additive or synergistic effects.[13] It is well documented that chemicals can make each other more toxic, and because we can’t know what exposures we’re being subjected to (given the cocktail of smog, auto exhaust, cosmetics, cleaning products and countless other chemicals we’re exposed to every day) coupled with an individuals unique chemistry, we can’t know when exposure to a chemical will trigger a tipping point.

What makes these chemicals such a threat to children’s health?

  • Easy absorption. Synthetic chemicals can enter our children’s bodies by ingestion, inhalation, or through the skin. Infants are at risk of exposure in the womb or through breast milk. According to the Centers for Disease Control and Prevention (CDC), more than 200 high-volume synthetic chemicals can be found in the bodies of nearly all Americans, including newborn infants.  Of the top 20 chemicals discharged to the environment, nearly 75 percent are known or suspected to be toxic to the developing human brain.
  • Children are not little adults.  Their bodies take in proportionately greater amounts of environmental toxins than adults, and their rapid development makes them more vulnerable to environmental interference. Pound for pound, children breathe more air, consume more food, and drink more water than adults, due to their substantial growth and high metabolism. For example, a resting infant takes in twice as much air per pound of body weight as an adult. Subject to the same airborne toxin, an infant therefore would inhale proportionally twice as much as an adult.
  • Mass production. Nearly 3,000 chemicals are high-production-volume (HPV) chemicals – that means they’re produced in quantities of more than 1 million pounds.  HPV chemicals are used extensively in our homes, schools and communities. They are widely dispersed in air, water, soil and waste sites. Over 4 billion pounds of toxic chemicals are released into the nation’s environment each year, including 72 million pounds of recognized carcinogens.
  • Too little testing. Only a fraction of HPV chemicals have been tested for toxicity. Fewer than 20 percent have been studied for their capacity to interfere with children’s development. This failure to assess chemicals for their possible hazards represents a grave lapse of stewardship by the chemical industry and by the federal government that puts all of our  children at risk.
  • Heavy use of pesticides. More than 1.2 million pounds of pesticides — many of them toxic to the brain and nervous system — are applied in the United States each year. These chemical pesticides are used not just on food crops but also on lawns and gardens, and inside homes, schools, day-care centers and hospitals. The United States has only 1.3% of the world’s population but uses 24% of the world’s total pesticides.
  • Environmental Persistence. Many toxic chemicals have been dispersed widely into the environment. Some will persist in the environment for decades and even centuries.

Let’s take a look at just the group of chemicals which are known as endocrine disruptors:

In 2012, Greenpeace analyzed a total of 141 items of clothing, and found high levels of phthalates in four of the garments and NPE’s in 89 garments – in quantities as high as 1,000 ppm – as well as a variety of other toxic chemicals.[14] Phthalates and NPE’s are among the chemicals known as “endocrine disruptors” (EDCs) – chemicals which are used often – and in vast quantities – in textile processing.

The endocrine system is the exquisitely balanced system of glands and hormones that regulates such vital functions as body growth (including the development of the brain and nervous system), response to stress, sexual development and behavior, production and utilization of insulin, rate of metabolism, intelligence and behavior, and the ability to reproduce. Hormones are chemicals such as insulin, thyroxin, estrogen, and testosterone that interact with specific target cells.  The endocrine system uses these chemicals to send messages to the cells – similar to the nervous system sending electrical messages to control and coordinate the body.

Diabetes, a condition in which the body does not properly process glucose, is an endocrine disease, as is hypoglycemia and thyroid cancer. According to the Centers for Disease Control (CDC), 29.1 million people have diabetes.[15] The three types of diabetes are a good illustration of the two main ways that something can “go wrong” with hormonal control in our bodies. In type I diabetes, the pancreas is unable to make insulin. Without insulin, the liver never “gets the message” to take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type II diabetes, the person’s pancreas is making enough insulin, but the insulin receptor sites on the liver cells are “broken” (possibly due to genetic factors, possibly do to “overuse”) and cannot “get the message.” Because the liver is unable to receive the instructions (despite the presence of lots of insulin), it does not take glucose out of the bloodstream, so blood glucose remains too high, while the stores of glucagon in the liver are too low. In type III diabetes (AKA Alzheimer’s Disease)[16], it is the neurons in the brain, specifically, which “don’t get the message,” (though it sounds like researchers have yet to determine whether that’s due to lack of the brain-produced insulin upon which they depend, or whether that’s due to receptors on the neurons that either are or become “broken”) and thus, cannot take in the sugar that they need, with the result that, without an alternative fuel source such as medium-chain triglycerides, the neurons will starve.

Over the past 60 years, a growing number of EDC chemicals have been used in the production of almost everything we purchase. What this constant everyday low-dose exposure means in terms of public health is just beginning to be explored by the academic community. We have learned over time that many chemical substances can cause a range of adverse health problems, including death, cancer, birth defects, and delays in development of cognitive functions. For instance, it is well established that asbestos can cause a fatal form of lung cancer, thalidomide can cause limb deformities, and breathing high concentrations of some industrial solvents can cause irreversible brain damage and death. Only relatively recently have we learned that a large number of chemicals can penetrate the womb and alter the construction and programming of a child before it is born. Through trans-generational exposure, endocrine disruptors cause adverse developmental and reproductive disorders at extremely low amounts in the womb, and often within the range of human exposure.

Recent research is giving us a new understanding of EDCs since Dr. Theo Coburn wrote Our Stolen Future.  Thanks to a computer-assisted technique called microarray profiling, scientists can examine the effects of toxins on thousands of genes at once (before they could study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This capability means that we are throwing out our old notions of toxicology (i.e., “the dose makes the poison”). In a recent talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics—the study of how genes respond to toxins—the “breakthrough” that pushed the study of poisons beyond the “obvious things.”

As the TEDX (The Endocrine Disruption Exchange, Inc.) website states:   “The human health consequences of endocrine disruption are dire. Yet, no chemical has been regulated in the U.S. to date because of its endocrine disrupting effects – and no chemical in use has been thoroughly tested for its endocrine disrupting effects. The U.S. government has failed to respond to the evolving science of endocrine disruption. While much remains to be learned in regard to the nature and extent of the impact of endocrine disruptors on human health, enough is known now to assume a precautionary approach should be taken.

 

 

[1] Asthma and Allergy Foundation of America, http://www.aafa.org/display.cfm?id=8&sub=42

[2] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/dsInfantDeaths/

[3] Centers for Disease Control and Prevention, http://www.cdc.gov/Features/CountingAutism/

[4] Boyle, Coleen A., et al, “Trends in the Prevalence of Developmental Disabilities in U.S. children, 1997-2008”, Pediatrics,  February, 2011.

[5] Grady, Denise, “Obesity-Linked Diabetes in children Resists Treatment”, New York Times, April 29, 2012

[6] Walsh, Bryan, “Environmental Toxins Cost Billions in childhood Disease”, Time, May 4, 2011.

[7] Koger, Susan M, et al, “Environmental Toxicants and Developmental Disabilities”,  American Psychologist, April 2005, Vol 60, No. 3, 243-255

[8] Polluting Our Future, September 2000, http://www.aaidd.org/ehi/media/polluting_report.pdf

[9] Sheehan DM, Willingham EJ, Bergeron JM, Osborn CT, Crews D; “No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much?” Environ Health Perspect 107:155–159, 1999

[10] Anway MD, Skinner MK “Epigenetic transgenerational actions of endocrine disruptors.” Endocrinology 147: S43–S49, 2006

[11] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[12] http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[13] Crews D, Putz O, Thomas P, Hayes T, Howdeshell K “Animal models for the study of the effects of mixtures, low doses, and the embryonic environment on the action of endocrine disrupting chemicals”, Pure and Applied Chemistry, SCOPE/IUPAC Project Implications of Endocrine Active Substances for Humans and Wildlife 75:2305–2320, 2003

[14] http://www.greenpeace.org/international/Global/international/publications/toxics/Water%202012/TechnicalReport-06-2012.pdf     SEE ALSO: http://www.greenpeace.org/international/Global/international/publications/toxics/2014/A-Fashionable-Lie.pdf

[15] http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf

[16] De la Monte, Suzanne, and Wands, Jack R., “Alzheimer’s Disease is Type 3 Diabetes – Evidence Reviewed”, J. Diabetes Sci Technol 2008 Nov; 2(6): 1101-1113

 

Advertisements




Synergy

31 07 2014

I just read the article by Mark Winston in the New York Times (July 15, 2014) in which he talks about the “thousand little cuts” suffered by honeybees which has led to the catastrophic decline of these insects. (The article is reproduced at the end of this blog.) I had been thinking about synergy and this seems to fit right in.

Synergy means the interaction of two (or more) things that produce an overall effect that’s greater than – or different from – the sum of the individual effects. In other words, we cannot predict the whole simply by looking at the parts.   Even so, we are challenged to understand and predict the impacts that contaminants have on communities – when understanding the effect of a single contaminant on a single organism is daunting. There are almost unlimited variables that impact any situation.

The EPA tests chemicals for adverse health effects, which they assume will occur individually. But in the real world, we’re exposed to a medley of chemicals every day – from car exhaust, to cosmetics, clothing, pesticide sprays for agriculture or mosquitos, even smog. The fact that these exposures can react with each other, and in effect, make each other more toxic, is a newly emerging science. In 1996, the EPA was required for the first time to consider cumulative pesticide exposure under the Food Quality Protection Act (FQPA). The FQPA recognizes that real-world pesticide exposure doesn’t occur as a single discrete exposure to a single pesticide, but rather as a combination of several pesticides at once. For example, USDA data shows that apples sold in the United States contained 22 different pesticide residues, and peaches contained 40.[1]

I just discovered the term “co-carcinogen”, which means the additive or synergistic effect of two or more agents which leads to cancer. These “co-carcinogens” may not themselves be a carcinogen. For example, a study by the University of Minnesota published a paper about the cancer-promoting effects of capsaicin – found in foods that contain hot chili peppers. It’s complicated – if you’re interested, please click here.

Here’s an interesting story:

In the summer of 1985, 30 year-old Thomas Latimer was leading a good life in the suburbs of Dallas, TX. He was a vigorous, athletic man with a promising engineering career. On one particular Saturday afternoon, Mr. Latimer spent the day mowing the lawn, picking up the clippings and edging the walkways. After about an hour, he began to feel dizziness, nausea, tightness in his chest and a pounding headache. Ten days later, he felt even worse and went to see his doctor.

Over the next six years, Mr. Latimer found himself unable to exercise. He suffered from brain seizures. He visited 20 different doctors and underwent numerous tests to determine the source of his medical problems. His symptoms were consistent with organophosphate poisoning, most likely from the insecticide diazinon that had been applied to his lawn. But because his symptoms were so severe and the amount of pesticide he was exposed to was so low, the doctors continued to look for a complicating factor. After further research, a toxicologist, three neurologists and two neuro-ophthalmologists all concluded independently that the popular ulcer drug Tagamet that Mr. Latimer was taking had suppressed his liver, making him more susceptible to pesticide poisoning.

Alfredo A Sudan, a professor of neurology and ophthalmology at the University of Southern California, who conducted extensive tests evaluating an eye disorder that Mr. Latimer developed, estimates that taking a medication like Tagamet “can make a person 100 to 1,000 times more sensitive to organophosphate poisoning.”[2]

In 2001, researchers at Duke University’s Department of Pharmacology and Cancer Biology published a series of papers looking at the synergistic effects of DEET (the active ingredient in most insect repellants) and permethrin (a pesticides commonly used in community mosquite programs, as well as many household bug killers.) The purpose of the studies was to determine a possible link between pesticides and other chemicals used during the Persian Gulf War and the “Gulf War Syndrome” – a neurological disease. When DEET, permethrin and pyridostigmine bromide (a drug taken by soldiers to counteract toxic gas warfare chemicals) were administered alone – even at doses three times the level soldiers received – no effects were observed. But when the three chemicals were used in combination, test animals suffered neurological symptoms similar to the Gulf War veterans.[3]

Neurology experts give three possible reasons for the synergistic effects seen in the above experiments. First, the stress endured by animals when exposed to a combination of chemicals undermines the protective role of the blood brain barrier, allowing the level of toxics to cross into the brain to be 100 times higher. Second, tissue that has been exposed becomes more sensitive and receptive to other toxic substances. Third, certain chemicals bind to enzymes that detoxify the body, making the enzymes unavailable to protect the body from other intruding chemicals. Dr. Goran Jamal, a neurologist at the West London Regional Neuro-Science Center of the Imperial College of Medicine, makes the following comparison, “It’s like releasing 200 criminals in London and taking away the police officers that are usually on duty. There is bound to be some damage.”[4]

The organization Beyond Pesticides suggests a variety of tests: testing for interactions between pesticides commonly used in agriculture, between pesticides used in agriculture and food contaminants, for pesticides commonly found in drinking water, for pesticides and pharmaceuticals, and for pesticides that are likely to drift. However, this testing is probably unrealistic so the best approach might be to limit exposure – by limiting exposure you also limit synergistic health effects.

Here is Mark Winston’s article, “Our Bees, Ourselves”:

New York Times, Katie Scott

New York Times, Katie Scott

AROUND the world, honeybee colonies are dying in huge numbers: About one-third of hives collapse each year, a pattern going back a decade. For bees and the plants they pollinate — as well as for beekeepers, farmers, honey lovers and everyone else who appreciates this marvelous social insect — this is a catastrophe.

But in the midst of crisis can come learning. Honeybee collapse has much to teach us about how humans can avoid a similar fate, brought on by the increasingly severe environmental perturbations that challenge modern society.

Honeybee collapse has been particularly vexing because there is no one cause, but rather a thousand little cuts. The main elements include the compounding impact of pesticides applied to fields, as well as pesticides applied directly into hives to control mites; fungal, bacterial and viral pests and diseases; nutritional deficiencies caused by vast acreages of single-crop fields that lack diverse flowering plants; and, in the United States, commercial beekeeping itself, which disrupts colonies by moving most bees around the country multiple times each year to pollinate crops.

The real issue, though, is not the volume of problems, but the interactions among them. Here we find a core lesson from the bees that we ignore at our peril: the concept of synergy, where one plus one equals three, or four, or more. A typical honeybee colony contains residue from more than 120 pesticides. Alone, each represents a benign dose. But together they form a toxic soup of chemicals whose interplay can substantially reduce the effectiveness of bees’ immune systems, making them more susceptible to diseases.

These findings provide the most sophisticated data set available for any species about synergies among pesticides, and between pesticides and disease. The only human equivalent is research into pharmaceutical interactions, with many prescription drugs showing harmful or fatal side effects when used together, particularly in patients who already are disease-compromised. Pesticides have medical impacts as potent as pharmaceuticals do, yet we know virtually nothing about their synergistic impacts on our health, or their interplay with human diseases.

Observing the tumultuous demise of honeybees should alert us that our own well-being might be similarly threatened. The honeybee is a remarkably resilient species that has thrived for 40 million years, and the widespread collapse of so many colonies presents a clear message: We must demand that our regulatory authorities require studies on how exposure to low dosages of combined chemicals may affect human health before approving compounds.

Bees also provide some clues to how we may build a more collaborative relationship with the services that ecosystems can provide. Beyond honeybees, there are thousands of wild bee species that could offer some of the pollination service needed for agriculture. Yet feral bees — that is, bees not kept by beekeepers — also are threatened by factors similar to those afflicting honeybees: heavy pesticide use, destruction of nesting sites by overly intensive agriculture and a lack of diverse nectar and pollen sources thanks to highly effective weed killers, which decimate the unmanaged plants that bees depend on for nutrition.

Recently, my laboratory at Simon Fraser University conducted a study on farms that produce canola oil that illustrated the profound value of wild bees. We discovered that crop yields, and thus profits, are maximized if considerable acreages of cropland are left uncultivated to support wild pollinators.

means a healthier, more diverse bee population, which will then move to the planted fields next door in larger and more active numbers. Indeed, farmers who planted their entire field would earn about $27,000 in profit per farm, whereas those who left a third unplanted for bees to nest and forage in would earn $65,000 on a farm of similar size.

Such logic goes against conventional wisdom that fields and bees alike can be uniformly micromanaged. The current challenges faced by managed honeybees and wild bees remind us that we can manage too much. Excessive cultivation, chemical use and habitat destruction eventually destroy the very organisms that could be our partners.

And this insight goes beyond mere agricultural economics. There is a lesson in the decline of bees about how to respond to the most fundamental challenges facing contemporary human societies. We can best meet our own needs if we maintain a balance with nature — a balance that is as important to our health and prosperity as it is to the bees.[5]

 

 

 

 

[1] http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2003-04/Synergy.pdf

[2] Allen, Frank Edward. 1991. One Man’s Suffering Spurs Doctors to Probe Pesticide-Drug Link. The Wall Street Journal. October 14.

[3] Abou-Donia, M.B., et. al. 1996. Neurotoxicity resulting from coexposure to pyridostigmine bromide, DEET, and permethrin: Implications of Gulf War chemical exposures. J. Toxicol. Environ. Health 48:35-56.

[4] http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2003-04/Synergy.pdf

[5] Winston, Mark, “Our Bees, Ourselves”, New York Times, July 15, 2014, pg. A25