Not Michael Pollan’s Food Rules

26 07 2017

One of the presenters at the 2011 Living Building Challenge (whose name I’ve been trying to find, but cannot – so apologies to the presenter who remains unnamed), inspired by writer Michael Pollan’s Food Rules, shared a list of ways to choose products that remove the worst of the chemical contamination that plagues many products. These rules apply to all products, including fabrics:

  • If it is cheap, it probably has hidden costs.
  • If it starts as a toxic input (like ethylene glycol in the manufacture of polyester), you probably don’t want it in your house or office.
  • Use materials made from substances you can imagine in their raw or natural state.
  • Use carbohydrate-based materials (i.e., natural fibers) when you can.
  • Just because almost anything can kill you doesn’t mean fabrics should.
  • Pay more, use less.
  • Consult your nose – if it stinks, don’t use it.
  • If they can’t tell you what’s in it, you probably don’t want to live with it. (Note: this is not just the fibers used to weave the fabric – did the processing use specific chemicals, like heavy metals in the dyestuff, or are there any finishes on the fabric?)
  • Avoid materials that are pretending to be something they are not (like polyester mimicking linen).
  • Question materials that make health claims.
  • Regard space-age materials with skepticism.


Another concern for vigilant parents

19 11 2014

We live in an environment that is full of chemicals – some which are bad for us and yet are completely natural.   We don’t subscribe to the notion that man-made is absolutely bad and natural is absolutely good – botulism is completely natural and can kill you just as dead. But sometimes we adopt products for our use in ways that can hurt us, because we don’t pay attention to the chemicals that are contained in that product nor of how we use the product. Recently, the crushed up tires that are appearing in playgrounds and as the playfield surface of schools around the country have become an object of concern, so let’s take a look at those.

Discarded rubber tires are the bane of waste management – according to the EPA, we generate 290 million scrap tires each year.[1] Obviously finding a market for these slow-to-decompose materials is desirable, and many innovative uses have been developed, including using ground up tires on playground and sports field surfaces. According to the Synthetic Turf Council, this “crumb rubber has been installed in approximately 11,000 U.S. fields, tracks and playgrounds in the United States.[2] And the California Office of Environmental Health says that recycled rubber tires have become one of the top choice materials for surfacing children’s playgrounds.[3]

Crumb rubber is a black, pellet-like substance the size of a cracker crumb. Run your hand through the field, and you’ll pick up black dust, similar to the consistency of pencil graphite. It’s easy to spread, and can easily get into your mouth, shoes, clothing and nostrils. Routes of exposure, especially in the case of infants, can include dermal absorption, inhalation, and even ingestion directly from the material.

Here’s a story about crumb rubber from NBC news:

Various studies have identified the chemicals found in tires, which are made of 40-60% rubber polymers, carbon black (20-35%), silicas, process and extender oils (up to 28%), vulcanization chemicals and chemical anti-degradents, and plasticizers and softeners. It is well known that rubber tire debris contains toxic compounds such as highly aromatic oils and other reactive additives.[1]

The EPA has identified a number of compounds which may be found in tires, though they’re quick to point out that not all are contained in every tire:[2]

  • heavy metals ( cadmium, chromium, iron, lead, magnesium, manganese, molybdenum, selenium, sulfur, and zinc, which can be as much as 2% of tire mass) – most of which have documented health consequences including damage to the central nervous system.
  • Plasticizers (such as phthalates)- phthalates act as estrogens once absorbed by the body. They are considered endocrine disrupting chemicals (EDC’s); conditions associated with EDC’s include infertility; breast, prostate and ovarian cancers; asthma; and allergies.[3]
  • Styrene butadiene – associated with risk of leukemia[4]; known to be genotoxic[5]
  • Benzene – known to be a human carcinogen; also impacts the nervous and immune systems[6]
  • Chloroethane, which causes cancer in mice, is also a neurotoxin[7]
  • Halogenated flame retardants – need we reiterate how these impact human health?
  • Methyl ethyl ketone and methyl isobutyl ketone – there is no evidence of carcinogenicy or mutagenicy but studies show impairment of central nervous system; both are on the Hazardous Substances List by OSHA.[8]
  • Naphthalene – a group C carcinogen (possible human carcinogen); also causes neurological damage.[9]

Another concern is the smell that wafts up from the playing field – like old tires – coupled with the fact that the fields often are 10 – 15 degrees warmer than the ambient temperature, and many of the compounds evaporate at temperatures as low as 77 degrees F. Compounds found to be present in the air in a study done by the Connecticut Agricultural Experiment Station include: [10]

  • Benzothiazole: A skin and eye irritation, harmful if swallowed. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Butylated hydroxyanisole: A recognized carcinogen, suspected endocrine toxicant, gastrointestinal toxicant, immunotoxicant, neurotoxicant, skin and sense-organ toxicant. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • n-hexadecane: A severe irritant based on human and animal studies. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • 4-(t-octyl) phenol: Corrosive and destructive to mucous membranes. There is no available data on cancer, mutagenic toxicity, teratogenic toxicity, or developmental toxicity.
  • Polycyclic aromatic hydrocarbons (PAHs): heavy occupational exposure leads to risk of lung, skin or bladder cancers; genotoxic, leading to malignancies and heritable genetic damage in humans. [11] In 2010, the EPA concluded that in the case of PAHs, “breathing PAHs and skin contact seem to be associated with cancer in humans.”[12] The total concentration of PAHs in crumb rubber exceedes the Norwegian Pollution Control Authority’s normative values for most sensitive land use.[13]

A 2012 study analyzing rubber mulch taken from children’s playgrounds in Spain found harmful chemicals present in all, frequently at high levels.[14] Twenty-one samples were collected from 9 playgrounds in urban locations and screened for various pollutants. The results showed that all samples contained at least one hazardous chemical, with most containing multiple PAHs found at high concentrations. The authors concluded that the use of rubber recycled tires on playgrounds “should be restricted or even prohibited in some cases.”[15]

Many, if not most, of the compounds present in tire crumbs and shreds have been incompletely tested for human health effects, so there is no data available to evaluate the chemicals (as evidenced by the four compounds above).

Artificial turf and rubber crumb manufacturers point to the fact that no research has linked cancer to artificial turf – yet most studies add the caveat that more research should be conducted.

According to Dr. Joel Forman, associate professor of pediatrics and preventive medicine at New York’s Mt. Sinai Hospital, in all these studies, data gaps make it difficult to draw firm conclusions. As he says, “None of [the studies] are long term, they rarely involve very young children and they only look for concentrations of chemicals and compare it to some sort of standard for what’s considered acceptable,” said Dr. Forman. “That doesn’t really take into account subclinical effects, long-term effects, the developing brain and developing kids.” Forman said that it is known that some of the compounds found in tires, “even in chronic lower exposures” can be associated with subtle neurodevelopmental issues in children.

“If you never study anything,” said Dr. Forman, “you can always say, ‘Well there’s no evidence that shows you have a problem,’ but that’s because you haven’t looked. To look is hard.”

Another notable critic of the stuff is Dr. Phillip Landrigan of the Mount Sinai School of Medicine, who submitted a letter to the New York City Planning Department last year expressing concerns over the carcinogens in tire crumbs.

He wrote that the principal chemical components of crumb rubber are Styrene and Butadiene — Styrene is neurotoxic, and Butadiene is a proven human carcinogen that has been shown to cause leukemia and lymphoma.

“There is a potential for all of these toxins to be inhaled, absorbed through the skin and even swallowed by children who play on synthetic turf fields,” Dr. Landrigan wrote. “Only a few studies have been done to evaluate this type of exposure risk.”

So if it walks like a duck, quacks like a duck and looks like a duck…

And as if to add insult to injury, wood chips were found to do a better job of protecting children from head trauma![16]

Remember that children are much more likely to be harmed by exposure to chemicals in their environment than adults because they’re smaller (therefore exposure is greater) and their bodies are still developing. So what’s a concerned parent to do?

  • First – ignore the tire crumb playgrounds and find a good old wood chip or grass site.
  • Teach your children the importance of frequent hand washing as many chemicals enter bodies via the mouth.
  • And persuade local officials to use wood chips rather than recycled rubber.


[1] Llompart, Maria et al, “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”, Chemosphere, Vol. 90, issue 2, January 2013, pages 423-431



[4] Santos-Burgoa, Carlos; “Lymphohematopoietic Cancer in Styrene-Butadiene Polymerization Workers”, American Journal of Epidemiology, Volume 136, issue 7, pp. 843-854.

[5] Norppa, H and Sorsa, M; “Genetic toxicity of 1,3-butadiene and styrene”, IARC Scientific Publications, 1993 (127): 185-193.


[7] US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Chloroethane”, December 1998

[8]; and


[10]Mattina, MaryJane et al; “Examination of Crumb Rubber Produced From Recycled Tires”, The Connecticut Agricultural Experiment Station, 2007,


[12] US Environmental Protection Agency (EPA). Polycyclic Aromatic Hydrocarbons (PAHs)-Fact Sheet. January 2008.

[13] Llompart M, Sanchez-Prado L, Lamas JP, Garcia-Jares C, et al. “Hazardous organic chemicals in rubber recycled tire playgrounds and pavers”. Chemosphere. 2012; Article In Press.


[15] Ibid.

[16] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track PrRememoducts. January 2007.




[3] State of California-Office of Environmental Health Hazard Assessment (OEHHA), Contractor’s Report to the Board. Evaluation of Health Effects of Recycled Waste Tires in Playground and Track Products. January 2007.



Breast cancer and acrylic fibers

16 09 2010

Just in case you missed the recent report which was published in Occupational and Environmental Medicine [1], a Canadian study found that women who work with some common synthetic materials could treble their risk of developing breast cancer after menopause.  The data included  women working in textile factories which produce acrylic fabrics   –  those women have seven times the risk of developing breast cancer than the normal population, while those working with nylon fibers had double the risk.

I found it interesting that the researchers justified their findings because “synthetic fibers are typically treated with several chemicals, such as flame retardants from the organophosphate family, delustering agents, and dyes, some of which have estrogenic properties and may be carcinogenic.”

These are the same organophosphate flame retardants and dyes that are used across the textile spectrum, and which are found in most textiles that we surround ourselves with each day.

But also let’s look at the fibers themselves.  The key ingredient of acrylic fiber is acrylonitrile, (also called vinyl cyanide). It is a carcinogen (brain, lung and bowel cancers) and a mutagen, targeting the central nervous system.  According to the Centers for Disease Control and Prevention, acrylonitrile enters our bodies through skin absorption, as well as inhalation and ingestion.  So could the acrylic fibers in our acrylic fabrics be a contributing factor to these results?

Acrylic fibers are just not terrific to live with anyway.  Acrylic manufacturing involves highly toxic substances which require careful storage, handling, and disposal. The polymerization process can result in an explosion if not monitored properly. It also produces toxic fumes. Recent legislation requires that the polymerization process be carried out in a closed environment and that the fumes be cleaned, captured, or otherwise neutralized before discharge to the atmosphere.(2)

Acrylic is not easily recycled nor is it readily biodegradable. Some acrylic plastics are highly flammable and must be protected from sources of combustion.

What about nylon?  Well, in a nutshell, the production of nylon includes the precursors benzene (a known human carcinogen) and hydrogen cyanide gas (extremely poisonous); the manufacturing process releases VOCs, nitrogen oxides and ammonia.  And finally there is the addition of those organophosphate flame retardants and dyes.

Of course, there are the usual caveats about the study, and those commenting on it said further studies were needed since chance or undetected bias could have played a role in the findings. In addition, according to Reuters, “the scientists said more detailed studies focusing on certain chemicals were now needed to try to establish what role chemical exposure plays in the development of breast cancer.”  So this is yet another area in which more research needs to be done.  No surprise there.

But in the meantime, did you know that many popular fabrics are made of acrylic fibers?   One of the most popular is Sunbrella outdoor fabrics.     Sunbrella fabrics have been certified by GreenGuard Children and Schools because the chemicals used in acrylic production are bound in the polymer – in other words, they do not evaporate.   So Sunbrella fabrics do not contribute to poor air quality, (you won’t be breathing them in), but there is no guarantee that you won’t absorb them through your skin.  And you would be supporting the production of more acrylic, the production of which is not a pretty thing.

And what about backings on fabrics?  Many are made of acrylic.  Turn those fabric samples over and see if there is a plastic film on the back – it’s often made of acrylic.  Upholsterers like fabrics to be backed because it makes the process much easier and stabilizes the fibers.

So I don’t know about you, but I think I’ll avoid those synthetics for now – at least until we know where we stand.

[1] Occupational and Environmental Medicine 2010, 67:263-269 doi: 10.1136/oem.2009.049817  (abstract:  SEE ALSO: AND


Is Ultrasuede® a “green” fabric?

8 09 2010

In 1970, Toray Industries colleagues Dr. Toyohiko Hikota and Dr. Miyoshi Okamoto created the world’s first micro fiber as well as the process to combine those fibers with a polyurethane foam into a non-woven structure – which the company trademarked as Ultrasuede®.

In April 2009,  Toray announced “a new  environmentally responsible line of products which are based on innovative recycling technology”, called EcoDesign™.    An EcoDesign™ product, according to the company press release, “captures industrial materials, such as scrap polyester films, from the Toray manufacturing processes and recycles them for use in building high-quality fibers and textiles.”

One of the first EcoDesign™ products to be introduced by Toray is a variety of their Ultrasuede®  fabrics.

So I thought we’d take a look at Ultrasuede® to see what we thought of their green claims.

The overriding reason Toray’s EcoDesign™ products are supposed to be environmentally “friendly” is because recycling postindustrial polyesters reduces both energy consumption and CO2 emissions by an average of 80% over the creation of virgin polyesters, according to Des McLaughlin, executive director of Toray Ultrasuede (America).   (Conventional recycling of polyesters generally state energy savings of between 33% – 53%.)

If that is the only advance in terms of environmental stewardship, we feel it falls far short of being considered an enlightened choice.  If we just look at the two claims made by the company:

  1. Re: energy reduction:  If we take the average energy needed to produce 1 KG of virgin polyester, 125 MJ[1], and reduce it by 80% (Toray’s claim), that means it takes 25 MJ to produce 1 KG of Ultrasuede® –  still far more energy than is needed to produce 1 KG of organic hemp (2 MJ), linen (10 MJ), or cotton (12 MJ).
  2. CO2 emissions are just one of the emissions issues – in addition to CO2, polyester production generates particulates, N2O, hydrocarbons, sulphur oxides and carbon monoxide,[2] acetaldehyde and 1,4-dioxane (also potentially carcinogenic).[3]

But in addition to these claims, the manufacture of this product creates many concerns which the company does not address, such as:

  1. Polyurethane, a component of Ultrasuede®, is the most toxic plastic known next to PVC; its manufacture creates numerous hazardous by-products, including phosgene (used as a lethal gas during WWII), isosyanates (known carcinogens), toluene (teratogenic and embryotoxic) and ozone depleting gases methylene chloride and CFC’s.
  2. Most polyester is produced using antimony as a catalyst.  Antimony is a carcinogen, and toxic to the heart, lungs, liver and skin.  Long term inhalation causes chronic bronchitis and emphysema.  So, recycled  – or not –  the antimony is still present.
  3. Ethylene glycol (EG) is a raw material used in the production of polyester.  In the United States alone, an estimated 1 billion lbs. of spent ethylene glycol is generated each year.  The EG distillation process creates 40 million pounds of still bottom sludge. When incinerated, the sludge produces 800,000 lbs of fly ash containing antimony, arsenic and other metals.[4] What does Toray do with it’s EG sludge?
  4. The major water-borne emissions from polyester production include dissolved solids, acids, iron and ammonia.  Does Toray treat its water before release?
  5. And remember, Ultrasuede®  is still  . . .plastic.  Burgeoning evidence about the disastrous consequences of using plastic in our environment continues to mount.  A new compilation of peer reviewed articles, representing over 60 scientists from around the world, aims to assess the impact of plastics on the environment and human health [5]and they found:
    1. Chemicals added to plastics are absorbed by human bodies.   Some of these compounds have been found to alter hormones or have other potential human health effects.
    2. Synthetics do not decompose:  in landfills they release heavy metals, including antimony, and other additives into soil and groundwater.  If they are burned for energy, the chemicals are released into the air.
  1. Nor does it take into consideration our alternative choices:  that using an organic fiber supports organic agriculture, which may be one of our most underestimated tools in the fight against climate change, because it:
    1. Acts as a carbon sink:   new research has shown that what is IN the soil itself (microbes and other soil organisms in healthy soil) is more important in sequestering carbon that what grows ON the soil.  And compared to forests, agricultural soils may be a more secure sink for atmospheric carbon, since they are not vulnerable to logging and wildfire. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  demonstrates that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions. [6]
    2. eliminates the use of synthetic fertilizers, pesticides and genetically modified organisms (GMOs) which is  an improvement in human health and agrobiodiversity
    3. conserves water (making the soil more friable so rainwater is absorbed better – lessening irrigation requirements and erosion)
    4. ensures sustained biodiversity

Claiming that the reclamation and use of their own internally generated scrap is an action to be applauded may be a bit disingenuous.   It is simply the company doing what most companies should do as efficient operations:  cut costs by re-using their own scrap. They are creating a market for their otherwise un-useable scrap polyester from other operations such as the production of polyester film.  This is a good step by Toray, but to anoint it as the most sustainable choice or even as a true sustainable choice at all is  premature. Indeed we have pointed in prior blog posts that there are many who see giving “recycled polyester” a veneer of environmentalism by calling it a green option is one of the reasons plastic use has soared:     indeed plastic use has increased by a factor of 30 since the 1960s while recycling plastic has only increased by a factor of 2. [7] We cannot condone the use of this synthetic, made from an inherently non-renewable resource, as a green choice for the many reasons given above.

We’ve said it before and we’ll say it again:  The trend to eco consciousness in textiles represents major progress in reclaiming our stewardship of the earth, and in preventing preventable human misery.  You have the power to stem the toxic stream caused by the production of fabric. If you search for and buy an eco-textile, you are encouraging a shift to production methods that have the currently achievable minimum detrimental effects for either the planet or for your health. You, as a consumer, are very powerful. You have the power to change harmful production practices. Eco textiles do exist and they give you a greener, healthier, fair-trade alternative.

What will an eco-textile do for you? You and the frogs and the world’s flora and fauna could live longer, and be healthier – and in a more just, sufficiently diversified, more beautiful world.

[1]“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Enviornemnt Institute

[2] “Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, by Cherrett et al, Stockholm Environment Institute

[3] Gruttner, Henrik, Handbook of Sustainable Textile Purchasing, EcoForum, Denmark, August 2006.

[4] Sustainable Textile Development at Victor,

[5] “Plastics, the environment and human health”, Thompson, et al, Philosophical Transactions of the Royal Society, Biological Sciences, July 27, 2009


[7] and

Optical brighteners

14 07 2010

I got a call awhile ago from Harmony Susalla, founder and chief designer for Harmony Art  (if you haven’t seen her glorious fabrics go right now to  She was wondering about optical brighteners, and I discovered I couldn’t tell her much except to say that some are derived from benzene, which is a chemical nobody wants to live with.  GOTS allows the use of optical brighteners – with caveats (see below) – but they are supposed to reevaluate them “in two years from date of adoption” of version 2.0, which puts the reevaluation right about now.

So let’s explore optical brighteners, which are used extensively in:

  • Laundry detergents (to replace whitening agents removed during washing and to make the clothes appear cleaner.) – detergents may contain up to 0.2% whitening agents,
  • Paper, especially high brightness papers, resulting in their strongly fluorescent appearance under UV illumination. Paper brightness is typically measured at 457nm, well within the fluorescent activity range of brighteners. Paper used for banknotes does not contain optical brighteners, so a common method for detecting counterfeit notes is to check for fluorescence.
  • Cosmetics: One application is in formulas for washing and conditioning grey or blonde hair, where the brightener can not only increase the luminance and sparkle of the hair, but can also correct dull, yellowish discoloration without darkening the hair).  Some advanced face and eye powders contain optical brightener microspheres that brighten shadowed or dark areas of the skin, such as “tired eyes”.
  • as well as fabrics, which may contain 0.5% OBAs. A side effect of textile optical whitening is to make the treated fabrics more visible with Night Vision Devices than non-treated ones (the fluorescence caused by optical brighteners can easily be seen with an ordinary black light). This may or may not be desirable for military or other applications

You can still buy “bluing” – which is advertised to “whiten whites and brighten colors”.  Bluing works by removing yellow light to lessen the yellow tinge.   Optical brighteners – also called optical brightening agents (OBAs), fluorescent brightening agents (FBAs), and/or fluorescent whitening agents (FWAs) or “synthetic fluorescent dyes” –  work a bit differently.  Optical brighteners are chemicals similar to dyes which absorb ultraviolet light and emit it back as visible blue light – in other words, they fluoresce the ultraviolet light into visible light. The blue light emitted by the brightener compensates for the diminished blue of the treated material and changes the hue away from yellow or brown and toward white.

They are designed to mask yellow or brown tones in the fibers and make the fabric look cleaner and brighter than it would otherwise appear to the naked eye.   In other words, the undesirable color is made invisible to the eye in an “optical manner”.  Optical brighteners are used both on natural fibers (cotton, linen, hemp, silk) as well as in polymer melts for polyester and other synthetic fiber production.

Optical brighteners aren’t effective unless they remain in the fabric, and persist after washing.  They only last so long, until the point when they actually burn out and no longer do anything. They are also subject to fading when exposed long term to UV.

Brighteners can be “boosted” by the addition of certain polyols like high molecular weight polyethylene glycol or polyvinyl alcohol. These additives increase the visible blue light emissions significantly. Brighteners can also be “quenched”. Too much use of brightener will often cause a greening effect as emissions start to show above the blue region in the visible spectrum.

Optical brighteners are synthesized from various chemicals.  The group of chemicals which are called “optical brighteners” consists of approximately 400 different types listed in the Color Index, but less than 90 are produced commercially. (To get more information about the Color Index click here .)

Basic classes of chemicals used in OBAs  include:

  • Triazine-stilbenes (di-, tetra- or hexa-sulfonated)
  • Coumarins
  • Imidazolines
  • Diazoles
  • Triazoles
  • Benzoxazolines
  • Biphenyl-stilbenes

Using these chemicals, many companies compose their own chemical versions of an optical brightener, and sell it under a branded name, such as:

  • Blankophar R
  • Calcofluor
  • Uvitex
  • Bluton
  • CBS
  • DMS E=416
  • Kolorcron 2B

To find out what is in the optical brightener in any fabric, you must know the name of the optical brightener, and also the C.I. number (such as Brightener 24 or 220).  Then you can look up the chemical composition of the substance – but  only if you’re a subscriber to the Color Index database.  So it’s pretty difficult to confirm what is actually in an optical brightener.

In exploring some of the chemicals used in formulating optical brighteners,  I found one called cyanuric chloride, a derivative of 1,3,5 triazine.  Cyanuric chloride is used as a precursor and crosslinking agent in sulfonated triazine-stilbene based optical brighterners.   It is also classified as “very toxic”, “harmful” and “corrosive” by the EU and has several risk phrases identified with it – including R26 (“very toxic by inhalation”).  R26 is a substance which is specifically prohibited by GOTS.  So how can optical brighteners be allowed under GOTS?

The short answer is:  some are allowed, some are not – it depends on the chemical composition of each individual optical brightener.   Like dyestuffs, GOTS allows optical brighteners if they “meet all criteria for the selection of dyes and auxiliaries as defined in chapter 2.4.6, Dyeing.”  Those criteria include the prohibition of all chemicals listed in 2.3.1 and substances which are assigned certain risk phrases “or combinations thereof”.   But in order to know if a particular optical brightener meets these criteria, it’s necessary to know the chemical formula for that brightener.   And that takes a bit of detective work – and even so you might not be able to get final answers.  Don’t you begin to feel like a hamster in one of those wheels going round and round?

What are the problems associated with optical brighteners?
Some brighteners have been proven to cause allergic skin reactions or eye irritation in sensitive people.   The German Textiles Working Group conducted a health assessment of various optical brightening agents  following concerns of potential health risks to the public. It was found that there is a general lack of information on toxicity and a need for studies into dermal  absorption and the release of these substances from clothes.  While it has not been shown to negatively affect health, it has also not been proven safe.

They are known to be toxic to fish and other animal and plant life and have been found to cause mutations in bacteria.

Most OBAs are not readily biodegradable, so chemicals remain in wastewater for long periods of time, negatively affecting water quality and animal and plant life.  It is assumed that the substances accumulate in sediment or sludge, leading to high concentrations.
In wastewater, OBAs can also leach into groundwater, streams, and lakes. Since fluorescence is easy to detect,  optical brightener monitoring is an emerging technique to quickly and cost-effectivley detect the contamination of stormwater by sanitary wastewater.

REACH is the new European Union regulation which aims to  improve human health and the environment through better and earlier identification of the properties of chemical substances.  REACH stands for Registration, Evaluation, Authorisation and Restriction of Chemical substances.   REACH contains provisions to reduce the use of what are called “high volume production” chemicals.  These are defined as chemicals having annual production and/or importation volumes above 1 million pounds.  It is assumed that high volume production is a proxy for high exposure; in addition, large releases of low toxicity substances such as salts do cause environmental harm due to the sheer volume of the substance.
Much of the impact from optical brighteners comes in the form of large releases of low toxicity substances.  A number of these optical brighteners are listed as high and low production volume substances and so will be subject to REACH.   For example, C.I. Fluorescent Brightener 220 is listed as a high production volume chemical.

Textiles and water use

24 02 2010

Water.  Our lives depend on it.  It’s so plentiful that the Earth is sometimes called the blue planet – but freshwater is a remarkably finite resource that is not evenly distributed everywhere or to everyone.  The number of people on our planet is growing fast, and our water use is growing even faster.  About 1 billion people lack access to potable water, and about 5 million people die each year from poor drinking water, or poor sanitation often resulting from water shortage[1] – that’s 10 times the number of people killed in wars around the globe.[2] And the blues singers got it right: you don’t miss your water till the well runs dry.

I just discovered that the word “rival” comes from the Latin (rivalis) meaning those who share a common stream.  The original meaning, apparently, was closer to our present word for companion, but as words have a way of doing, the meaning became skewed to mean competition between those seeking a common goal.

This concept – competition between those seeking a common goal – will soon turn again to water, since water, as they say, is becoming the “next oil”;  there’s also talk of “water futures” and “water footprints”  – and both governments and big business are looking at water (to either control it or profit from it).  Our global water consumption rose sixfold between 1900 and 1995 – more than double the rate of population growth – and it’s still growing as farming, industry and domestic demand all increase.  The pressure is on.

Note: There are many websites and books which talk about the current water situation in the world, please see our bibliography which is at the bottom of this post.

What does all this have to do with fabrics you buy?

The textile industry uses vast amounts of water throughout all processing operations.  Almost all dyes, specialty chemicals and finishing chemicals are applied to textiles in water baths.  Most fabric preparation steps, including desizing, scouring, bleaching and mercerizing, use water.  And each one of these steps must be followed by a thorough washing of the fabric to remove all chemicals used in that step before moving on to the next step.  The water used is usually returned to our ecosystem without treatment – meaning that the wastewater which is returned to our streams contains all of the process chemicals used during milling.  This pollutes the groundwater.  As the pollution increases, the first thing that happens is that the amount of useable water declines.  But the health of people depending on that water is also at risk, as is the health of the entire ecosystem.

When we say the textile industry uses a lot of water, just how much is a lot?  One example we found:  the Indian textile industry uses 425,000,000 gallons of water every day [3] to process the fabrics it produces.  Put another way, it takes about 20 gallons of water to produce one yard of upholstery weight fabric.  If we assume one sofa uses about 25 yards of fabric, then the water necessary to produce the fabric to cover that one sofa is 500 gallons.  Those figures vary widely, however, and often the water footprint is deemed higher.  The graphic here is from the Wall Street Journal, which assigns 505 gallons to one pair of Levi’s 501 jeans [4]:

The actual amount of water used is not really the point, in my opinion.  What matters is that the water used by the textile industry is not “cleaned up” before they return it to our ecosystem.  The textile industry’s chemically infused effluent – filled with PBDEs,  phthalates, organochlorines, lead and a host of other chemicals that have been proven to cause a variety of human health issues – is routinely dumped into our waterways untreated.  And we are all downstream.

The process chemicals used by the mills are used on organic fibers just as they’re used on polyesters and conventionally produced natural fibers.  Unless the manufacturer treats their wastewater – and if they do they will most assuredly let you know it, because it costs them money – then we have to assume the worst.  And the worst is plenty bad.  So just because you buy something made of “organic X”, there is no assurance that the fibers were processed using chemicals that will NOT hurt you or that the effluent was NOT discharged into our ecosystem, to circulate around our planet.

You might hear from plastic manufacturers that polyester has virtually NO water footprint, because the manufacturing of the polyester polymer uses very little water – compared to the water needed to grow or produce any natural fiber.  That is correct.  However, we try to remind everyone that the production of a fabric involves two parts:

  • The production of the fiber
  • The weaving of the fiber into cloth

The weaving portion uses the same types of process chemicals – same dyestuffs, solubalisers and dispersents, leveling agents, soaping, and dyeing agents, the same finishing chemicals,  cationic and nonionic softeners, the same FR, soil and stain, anti wrinkling or other finishes – and the same amount of water and energy.  And recycled polyesters have specific issues:

  • The base color of the recycled polyester chips vary from white to creamy yellow, making color consistency difficult to achieve, particularly for the pale shades.  Some dyers find it hard to get a white, so they’re using chlorine-based bleaches to whiten the base.
  • Inconsistency of dye uptake makes it difficult to get good batch-to-batch color consistency and this can lead to high levels of re-dyeing, another very high energy process.  Re-dyeing contributes to high levels of water, energy and chemical use.
  • Unsubstantiated reports claim that some recycled yarns take almost 30% more dye to achieve the same depth of shade as equivalent virgin polyesters.[5]
  • Another consideration is the introduction of PVC into the polymer from bottle labels and wrappers.

So water treatment of polyester manufacturing should be in place also.  In fact there is a new standard called the Global Recycle Standard, which was issued by Control Union Certifications.   The standard has strict environmental processing criteria in place in addition to percentage content of recycled  product – it includes wastewater treatment as well as chemical use that is based on the Global Organic Textile Standard (GOTS) and the Oeko-Tex 100.

And to add to all of this, Maude Barlow, in her new book, Blue Covenant (see bibliography below) argues that water is not a commercial good but rather a human right and a public trust.  These mills which are polluting our groundwater are using their corporate power to control water they use – and who gives them that right?  If we agree that they have the right to use the water, shouldn’t they also have an obligation to return the water in its unpolluted state?  Ms. Barlow and others around the world are calling for a UN covenant to set the framework for water a a social and cultural asset, not an economic commodity, and the legal groundwork for a just system of distribution.


The World’s Water:

Ground water and drinking water:

New York Times series, Toxic Waters:

Barlow, Maude, “Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water”, The New Press, 2008

Water Footprint Network:

[1]Tackling the Big Three (air and water pollution, and sanitation), David J. Tenenbaum, Environmental Health Perspectives, Volume 106, Number 5, May 1998.

[2] Kirby, Alex, “Water Scarcity: A Looming Crisis?”, BBC News Online

[3] CSE study on pollution of Bandi river by textile industries in Pali town, Centre for Science and Environment, New Delhi, May 2006 and “Socio-Economic, Environmental and Clean Technology Aspects of Textile Industries in Tiruppur, South India”, Prakash Nelliyat, Madras School of Economics.

[4] Alter, Alexandra, “Yet Another Footprint to worry about: Water”, Wall Street Journal, February 17, 2009

[5] “Reduce, re-use,re-dye?”,  Phil Patterson, Ecotextile News, August/September 2008

Embodied energy needed to make one sofa

6 01 2010

I just read the article by Team Treehugger on Planet Green on what to look for if you’re interested in green furniture. And sure enough, they talked about the wood (certified sustainable – but without any  explanation about why Forest Stewardship Council (FSC) certified wood should be a conscientious consumers only choice), reclaimed materials, design for disassembly, something they call “low toxicity furniture”, buying vintage…the usual suspects.  Not once did they mention your fabric choice.

Of course, all these are important considerations and like most green choices, there are tradeoffs and degrees of green.  But if we look at the carbon footprint of an average upholstered sofa and see what kind of energy requirements are needed to produce that sofa, we can show you how your fabric choice is the most important choice you can make in terms of embodied energy.  Later on (next week’s post) we’ll take a look at what your choices mean in terms of toxicity and environmental degredation.

These are the components of a typical sofa:

  • Wood
  • Foam (most commonly) or other cushion filling
  • Fabric
  • Miscellaneous:
    • Glue
    • Varnish/paint
    • Metal springs
    • Thread
    • Jute webbing
    • Twine
  1. WOOD: A 6 foot sofa uses about 32 board feet of lumber (1) .  For kiln dried maple, the embodied energy for 32 board feet is 278 MJ.  But if we’re looking at a less expensive sofa which uses glulam (a laminated lumber product), the embodied energy goes up to 403 MJ.
  2. FOAM:  Assume 12 cubic feet of foam is used, with a density of 4 lbs. per cubic foot (this is considered a good weight for foam);  the total weight of the foam used is 48 lbs. The new buzz word for companies making upholstered furniture is “soy based foam” (an oxymoron which we’ll expose in next week’s post), which is touted to be “green” because (among other things)  it uses less energy to produce.  Based on Cargill Dow’s own web site for the BiOH polyol which is the basis for this new product, soy based foam uses up to 60% less energy than does conventional polyurethane foams.   Companies which advertise foam made with 20% soy based polyols  use 1888 MJ of energy to create 12 cubic feet of foam, versus 2027 MJ if conventional polyurethane was used.  For our purposes of comparison, we’ll use the lower energy amount of 1888 MJ and give the manufacturers the benefit of the doubt.
  3. FABRIC:  Did you know that the decorative fabric you choose to upholster your couch is not the only fabric used in the construction?  Here’s the breakdown for fabric needed for one sofa:
    1. 25 yards of decorative fabric
    2. 20 yards of lining fabric
    3. 15 yards of burlap
    4. 10 yards of muslin

TOTAL amount of fabric needed for one sofa:  70 yards!

Using data from various sources (see footnotes below), the amount of energy needed to produce the fabric varies between 291 MJ (if all components were made of hemp, which has the lowest embodied energy) and 7598 MJ (if all components were made of  nylon, which has the highest embodied energy requirements).  If we choose the most commonly used fibers for each fabric component, the total energy used is 2712 MJ:

fiber Embodied energy in MJ
25 yards decorative fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
TOTAL: 2712

I could not find any LCA studies which included the various items under “Miscellaneous” so for this example we are discounting that category.  It might very well impact results, so if anyone knows of a study which addresses these items please let us know!

So  we’re looking at three components (wood, foam and fabric), only two of which most people seem to think are important in terms of upholstered furniture manufacture.  But if we put the results in a table, it’s suddenly very clear that fabric is the most important consideration – at least in terms of embodied energy:

Embodied energy in MJ
WOOD: 32 board feet, kiln dried maple 278
FOAM: 12 cubic feet, 20% bio-based polyol 1888
SUBTOTAL wood and foam: 2166
25 yards uphl  fabric/ 22 oz lin. yd = 34.0 lbs polyester 1953
20 yards lining fabric / 15 oz linear yard = 19 lbs cotton 469
15 yards burlap / 10 oz linear yard = 9.4 lbs hemp 41
10 yards muslin / 7 oz linear yard = 4.4 lbs polyester 249
SUBTOTAL, fabric: 2712

If we were to use the most egregious fabric choices (nylon), the subtotal  for the energy used to create just the fabric would be 7598 MJ – more than three times the energy needed to produce the wood and foam!  This is just another instance where  fabric, a forgotten component,  makes a profound impact.

(1)  From: “Life Cycle Analysis of Wood Products: Cradle to Gate LCIof residential wood building material”, Wood and Fiber Science, 37 Corrim Special Issue, 2005, pp. 18 – 29.

(2)  Data for embodied energy in fabrics:

“Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester”, Stockholm Environment Institute, 2005

Composites Design and Manufacture, School of Engineering, University of Plymouth UK, 2008,

Study: “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow.