Toxic lies

14 07 2015

Julie Gunlock wrote a blog post entitled “The ‘toxic’ lies behind Jessica Alba’s booming baby business” (to read the post, click  here ) We’re not necessarily fond of Jessica Alba nor her Honest Company, but the statements made by Julie Gunlock need to be addressed. She contends that the Honest Company’s main commodity is fear and the “false promise that their products are safer than others.”

I will not comment on her admonitions about how The Honest Company’s products are full of chemicals (as this should be obvious), or that Alba had recognized that “many people  –  particularly women (sic) – have been convinced that common chemicals are a bogeyman that lurks, waiting to harm them” – since everything is made of chemicals, some bad for us, some that are not.  We aren’t part of the “man made is absolutely bad, natural is absolutely good” camp.

What I will address is her claim that chemicals used in products are “there for a reason” and they’re completely safe because “chemicals are regulated under nearly a dozen federal agencies and regulations.”   She states:   “ chemicals in products … are used in trace amounts, often improve the safety of those products and have undergone hundreds of safety tests.”

As she herself says, nothing could be further from the truth.

First, let’s address her contention that “chemicals in products…are used in trace amounts.”

 The idea that chemicals won’t harm us because the amounts used are so tiny is not new; it’s been used by industry for many years. However, new research is being done which is profoundly changing our old belief systems. For example, we used to think that a little dose of a poison would do a little bit of harm, and a big dose would do a lot of harm (i.e., “the dose makes the poison”) – because water, as Julie Gunlock herself reminds us, can kill you just as surely as arsenic, given sufficient quantity.   The new paradigm shows that exposure to even tiny amounts of chemicals (in the parts-per-trillion range) can have significant impacts on our health – in fact some chemicals impact the body profoundly in the parts per trillion range, but do little harm at much greater dosages. The old belief system did not address how chemicals can change the subtle organization of the brain. Now, according to Dr. Laura Vandenberg of the Tufts University Center for Regenerative and Developmental Biology[1] “we found chemicals that are working at that really low level, which can take a brain that’s in a girl animal and make it look like a brain from a boy animal, so, really subtle changes that have really important effects.”

In making a risk assessment of any chemical, we now also know that timing and order of exposure is critical – exposures can happen all at once, or one after the other, and that can make a world of difference.   And we also know another thing: mixtures of chemicals can make each other more toxic. For example: a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

And finally, the new science called “epigenetics” is finding that pollutants and chemicals might be altering the 20,000-25,000 genes we’re born with—not by mutating or killing them, but by sending subtle signals that silence them or switch them on or off at the wrong times.  This can set the stage for diseases, which can be passed down for generations. So exposure to chemicals can alter genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great granddaughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[2]  Another recent study has shown that men who started smoking before puberty caused their sons to have significantly higher rates of obesity. And obesity is just the tip of the iceberg—many researchers believe that epigenetics holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and diabetes. Other studies are being published which corroborate these findings.[3]

So that’s the thing: we’re exposed to chemicals all day, every day – heavy metals and carcinogenic particles in air pollution; industrial solvents, household detergents, Prozac (and a host of other pharmaceuticals) and radioactive wastes in drinking water; pesticides in flea collars; artificial growth hormones in beef, arsenic in chicken; synthetic hormones in bottles, teething rings and medical devices; formaldehyde in cribs and nail polish, and even rocket fuel in lettuce. Pacifiers are now manufactured with nanoparticles from silver, to be sold as ‘antibacterial.’ These exposures all add up – and the body can flush out some of these chemicals, while it cannot excrete others.  Chlorinated pesticides, such as DDT, for example, can remain in the body for 50 years.   Scientists call the chemicals in our body our “body burden”.  Everyone alive carries within their body at least 700 contaminants.[4]

This cumulative exposure could mean that at some point your body reaches a tipping point and, like falling dominoes, the stage is set for something disastrous happening to your health.

The generations born from 1970 on are the first to be raised in a truly toxified world. Probably one in three of the children you know suffers from a chronic illness – based on the finding of many studies on children’s health issues.[5]   It could be cancer, or birth defects – perhaps asthma, or a problem that affects the child’s mind and behavior, such as a learning disorder, ADHD or autism or even a peanut allergy. We do know, for example:

  • Childhood cancer, once a medical rarity, is the second leading cause of death (following accidents) in children aged 5 to 14 years.[6]
  • According to the American Academy of Allergy Asthma & Immunology, for the period 2008-2010, asthma prevalence was higher among children than adults – and asthma rates for both continue to grow. [7]
  • Autism rates without a doubt have increased at least 200 percent.
  • Miscarriages and premature births are also on the rise,
  • while the ratio of male to female babies dwindles and
  • teenage girls face endometriosis.

Dr. Warren Porter delivered a talk at the 25th National Pesticide Forum in 2007, in which he explained that a lawn chemical used across the country, 2,4-D, mecoprop and dicambra was tested to see if it would change or alter the capacity of mice to keep fetuses in utero. The test found that the lowest dosage of this chemical had the greatest effect – a common endocrine response.[8]

Illness does not necessarily show up in childhood. Environmental exposures, from conception to early life, can set a person’s  cellular code for life and can cause disease at any time, through old age. And the new science of epigenetics is showing us that these exposures can impact not only us, but our children, grandchildren and great-grandchildren.

I think that pretty much demolishes the argument that chemicals in “trace amounts” don’t do us any harm.

Second, what about her contention that “chemicals are regulated under nearly a dozen federal agencies and regulations … which have undergone hundreds of safety tests.”

 The chief legal authority for regulating chemicals in the United States is the 1976 Toxic Substances Control Act (TSCA).[9]

It is widely agreed that the TSCA is not doing the job of protecting us, and that the United States is in need of profound change in this area. Currently, legislation entitled the 2013 Chemical Safety Improvement Act, introduced by a bipartisan group of 26 senators, is designed to improve the outdated TSCA but it is still in committee.  The chemicals market values function, price and performance over safety, which poses a barrier to the scientific and commercial success of green chemistry in the United States and could ultimately hinder the U.S. chemical industry’s competitiveness in the global marketplace as green technologies accelerate under the European Union’s requirements.

We assume the TSCA is testing and regulating chemicals used in the industry[10]. It is not:

  • Of the more than 60,000 chemicals  in use prior to 1976, most were “grandfathered in”; only 263 were tested for safety and only 5 were restricted.  Today over 80,000 chemicals are routinely used in industry, and the number which have been tested for safety has not materially changed since 1976.  So we cannot know the risks of exposing ourselves to certain chemicals.  The default position is that no information about a chemical = no action.
  • The chemical spill which occurred in West Virginia in 2014 was of “crude MCHM”, or 4-methylcyclohexanemethanol, one of the chemicals that was grandfathered into the Toxic Substances Control Act of 1976.   That means that nobody knows for sure what that chemical can do to us.
    • Carcinogenic effects? No information available.
    • Mutagenic effects? No information available.
    • Developmental toxicity? No information available.

Lack of information is the reason the local and federal authorities were so unsure of how to advise the local population about their drinking  water supplies.  (And by the way, in January, 2014,  a federal lawsuit was filed in Charleston, WV, which claims that the manufacturer of MCHM hid “highly toxic and carcinogenic properties” of components of MCHM, hexane and methanol, both of which have been tested and found to cause diseases such as cancer.)

We assume that the TSCA requires manufacturers to demonstrate that their chemicals are safe before they go into use. It does not:

  • The EPA requires a “Premanufacture Notification” of a new chemical, and no data of any kind is required[11].   The EPA receives between 40-50 each week and 8 out of 10 are approved, with or without test data, with no restrictions on their proposed use. As 3M puts it on their PMN forms posted on EPA’s web site, “You are not required to submit the listed test data if you do not have it.”
  • The TSCA says the government has to prove actual harm caused by the chemical in question before any controls can be put in place.  The catch-22 is that chemical companies don’t have to develop toxicity data or submit it to the EPA for an existing product unless the agency finds out that it will pose a risk to humans or the environment – which is difficult to do if there is no data in the first place.  Lack of evidence of harm is taken as evidence of no harm.

We assume that manufacturers must list all ingredients in a product, so if we have an allergy or reaction to certain chemicals we can check to see if the product is free of those chemicals. It does not:

  • The TSCA allows chemical manufacturers to keep ingredients in some products secret.   Nearly 20% of the 80,000 chemicals in use today are considered “trade secrets”.  This makes it impossible for consumers to find out what’s actually in a product.  And there is no time limit on the period in which a chemical can be considered a trade secret.

These limitations all help to perpetuate the chemical industry’s failure to innovate toward safer chemical and product design.  It’s one of the reasons the USA is one of the few nations in the world in which asbestos is not banned.

Finally, and because I just couldn’t resist: her example of using what she concedes are “toxic fragrances” to cover up that “other toxic stink – the one coming out of your baby” speaks for itself.

In conclusion, I don’t think that we’re being alarmist in trying to find better alternatives for products we use every day.  Nor are the promises of companies like Alba’s false.

 

[1] Living on Earth, March 16, 2012, http://www.loe.org/shows/segments.html?programID=12-P13-00011&segmentID=1

[2] Sorensen, Eric, “Toxicants cause ovarian disease across generations”, Washington State University, http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31607

[3]http://www.sciguru.com/newsitem/13025/Epigenetic-changes-are-heritable-although-they-do-not-affect-DNA-structure  ALSO SEE: http://www.eeb.cornell.edu/agrawal/documents/HoleskiJanderAgrawal2012TREE.pdf ALSO SEE: http://www.the-scientist.com/?articles.view/articleNo/32637/title/Lamarck-and-the-Missing-Lnc/

[4] http://www.chemicalbodyburden.org/whatisbb.htm

[5] Theofanidis, D, MSc., “Chronic Illness in Childhood: Psychosocial and Nursing Support for the Family”, Health Science Journal, http://www.hsj.gr/volume1/issue2/issue02_rev01.pdf

[6] Ward, Elizabeth, et al; Childhood and adolescent cancer statistics, 2014, CA: Cancer Journal for Clinicians, Vol 64, issue 2, pp. 83-103, March/April 2014

[7] http://www.aaaai.org/about-the-aaaai/newsroom/asthma-statistics.aspx

[8] Porter, Warren, PhD; “Facing Scientific Realities: Debunking the “Dose Makes the Poison” Myth”, National Pesticide Forum, Chicago, 2007; http://www.beyondpesticides.org/infoservices/pesticidesandyou/Winter%2007-08/dose-poison-debunk.pdf

[9] The “regulations” mentioned, all of which fall under the TSCA, might include:

  • the Environmental Protection Agency’s Chemical Action Plans for certain chemicals – to date, 10 chemicals have Chemical Action Plans in place. These plans attempt to outline the risks each chemical may present and identify the specific steps the agency is taking to address the concerns.
  • Confidential Business Information (CBI) – designed to protect intellectual property and confidential business information.
  • Chemical Data Reporting (CDR) Rule: use and exposure information to help the EPA screen and prioritize chemicals for additional review.
  • Chemical Prioritization: Which allows the EPA to identify which chemicals in commerce warrant additional review.
  • Risk Assessment: Under TSCA, EPA assesses chemicals using conservative assumptions about the possible hazards a chemical may pose.

[10] http://www.chemicalindustryarchives.org/factfiction/testing.asp

[11] Ibid.

Advertisements




How we’re protected from chemical exposures.

4 03 2014

I always thought I wouldn’t have to worry about some things – like, oh,  incoming missiles,  terrorist plots, and chemicals which could destroy me – because I thought my government would have something in place to protect me.  But the recent chemical spill in West Virginia changed that: for those of you who don’t know, that was a spill of  about 10,000 gallons of what is called a “coal cleaner”  into the Elk River, contaminating the water supply of 300,000 people.

When I first began looking into the chemicals used in fabrics, and finding out that the soft, luscious fabrics we surround ourselves with every day are filled with chemicals that can cause me grievous harm, I was stopped in my tracks when someone suggested that the government wouldn’t let those chemicals in products sold in the USA – so how could fabrics contain those chemicals?   I didn’t have an answer for that, because at the time I too thought  that “of course the government must have laws in place to make sure we aren’t exposed to dangerous chemicals”!

The current regulation of chemicals in the US dates back to 1976 and the Toxic Substances Control Act (TSCA), which regulates the introduction of new or already existing chemicals.

But before talking about the TSCA, let’s first take a quick look at what’s changed since 1976,  because our understanding of the extent and pathways of chemical exposures has fundamentally changed since then.

We now know that the old belief that “the dose makes the poison” (i.e.,  the higher the dose, the greater the effect)  is simply wrong.  Studies are finding that even tiny quantities of chemicals – in the parts-per-trillion range – can have significant impacts on our health.  We’re also finding that mixtures of chemicals, each below their “no observed effect level”, may have greater environmental impacts than the chemicals alone.   In other words, toxins can make each other more toxic:   a dose of mercury that would kill 1 out of 100 rats, when combined with a dose of lead that would kill 1 out of 1000 rats – kills every rat exposed.

We also now know that timing and order of exposure is critical –  exposures can happen one after the other, or all at once.  The possible combinations of exposures is huge and knowledge is limited about the effects of mixed exposures.  During gestation and through early childhood  the body is rapidly growing  under a carefully orchestrated process that is dependent on a series of events.  When one of those events is interrupted, the next event is disrupted – and so on –  until permanent and irreversible changes result. These results could be very subtle — like an alteration in how the brain develops which impacts, for example, learning ability.  Or it could result in other impacts like modifying the development of an organ predisposing it to cancer later in life.

Add to that the concept of individual susceptibility.  For instance a large part of the population is unable to effectively excrete heavy metals, so their body burden accumulates faster, and their illnesses are more obvious.  They are the “canaries in the coal mine” in an environment that’s becoming increasingly more toxic.

We’re finding that chemicals migrate from products into the environment (and remember, we are part of the environment).

And this is where it gets really interesting:

Each of us starts life with a particular set of genes, 20,000 to 25,000 of them. Now scientists are amassing a growing body of evidence that pollutants and chemicals might be altering those genes—not by mutating or killing them, but by sending subtle signals that silence them or switch them on at the wrong times.  This can set the stage for diseases which can be passed down for generations.  This study of heritable changes in gene expression – the chemical reactions that switch parts of the genome off and on at strategic times and locations –  is called “epigenetics”.

They’re finding that exposure to chemicals is capable of altering genetic expression, not only in your children, but in your children’s children – and their children too.  Researchers at Washington State University found that when pregnant rats were exposed to permethrin, DEET or any of a number of industrial chemicals, the mother rats’ great grand-daughters had higher risk of early puberty and malfunctioning ovaries — even though those subsequent generations had not been exposed to the chemical.[1]  Another recent study has shown that men who started smoking before  puberty caused their sons to have significantly higher rates of obesity. And  obesity is just the tip of the iceberg—many researchers believe that epigenetics  holds the key to understanding cancer, Alzheimer’s, schizophrenia, autism, and  diabetes. Other studies are being published which corroborate these findings.[2]

With the advent of biomonitoring, and a growing recognition of the importance of early life exposures, low dose effects and epigenetics, the science linking environmental exposures to biological effects (i.e., disease) is becoming overwhelming.

And here’s why the Toxic Substances Control Act of 1976 is not doing the job of protecting us:

  • We assume the TSCA is testing and regulating chemicals used in industry. It is not:
    • Of the more than 60,000 chemicals  in use prior to 1976, most were “grandfathered in”; only 200 were tested for safety and only 5 were restricted.  Today over 80,000 chemicals are routinely used in industry, and the number which have been tested for safety has not materially changed since 1976.  So we cannot know the risks of exposing ourselves to certain chemicals.  The default position is that no information about a chemical = no action.
    • For those of you who don’t know, the spill in West Virginia was of “crude MCHM”, or 4-methylcyclohexanemethanol, one of the chemicals that was grandfathered in to the Toxic Substances Control Act of 1976.   That means that nobody knows for sure what that chemical can do to us.
      • Carcinogenic effects? No information available.
      • Mutagenic effects? No information available.
      • Developmental toxicity? No information available.     Lack of information is the reason the local and federal authorities were so unsure of how to advise the local population about their drinking  water supplies.  (And by the way, in January, 2014,  a federal lawsuit was filed in Charleston, WV, which claims that the manufacturer of MCHM hid “highly toxic and carcinogenic properties” of components of MCHM, hexane and methanol, both of which have been tested and found to cause diseases such as cancer.)
  • We assume that the TSCA requires manufacturers to demonstrate their chemicals are safe before they go into use.  It does not:
    • The law says the government has to prove actual harm caused by the chemical in question before any controls can be put in place.  The catch-22 is that chemical companies don’t have to develop toxicity data or submit it to the EPA for an existing product unless the agency find out that it will pose a risk to humans or the environment – which is difficult to do if there is no data in the first place.  Lack of evidence of harm is taken as evidence of no harm.
  • We assume that manufacturers must list all ingredients in a product, so if we have an allergy or reaction to certain chemicals we can check to see if the product is free of those chemicals.  It does not:
    • TSCA allows chemical manufacturers to keep ingredients in some products secret.   Nearly 20% of the 80,000 chemicals in use today are considered “trade secrets”.  This makes it impossible for consumers to find out what’s actually in a product.  And there is no time limit on the period in which a chemical can be considered a trade secret.

These limitations all help to perpetuate the chemical industry’s failure to innovate toward safer chemical and product design.  It’s one of the reasons the USA is one of the few nations in the world in which asbestos is not banned in many products.

In 2013, the Chemical Safety Improvement Act (CSIA) was introduced, however it does not deliver the critical fixes needed to fix the TSCA, although it is an improvement to the TSCA.  The Natural Resources Defense Council suggests some steps that we must take to reform the TSCA, and these apply to the CSIA also:

  • Require new and existing chemicals be assessed for safety – with mandatory and enforceable deadlines.  “Innocent until proven guilty” should not apply to chemicals.
  • Establish safety standards, especially with regard to children and other vulnerable groups.
  • Give the EPA the authority to protect the public from unsafe chemicals, including expedited action for those deemed the most toxic.
  • “Grandfathering in” spells trouble for the future.
  • Ensure the public’s right to know about the safety and use of chemicals.
  • Allow states to maintain laws which exceed federal protections to safeguard their citizens.




You are what you wear.

13 06 2013

In Memoriam: U.S. Senator Frank R. Lautenberg (D – NJ).

Sen. Lautenberg fought valiantly to reform the weak laws protecting consumers in the US from chemical incursions in their lives. He introduced the “Safe Chemicals Act of 2010”, which was defeated, but followed up with the “Chemical Safety Improvement Act” which has been endorsed by the New York Times, the Washington Post and has bipartisan support at this time. It caps eight years of work by Senator Lautenberg to fix the nation’s broken chemical law (the TSCA) which has been proven ineffective and is criticized by both the public health community and industry. Thank you Senator Lautenberg.
******************************************************************************
You are what you wear.

I don’t mean like in “the clothes make the man” kind of way, but in the “our bodies absorb chemicals found in our environment” kind of way.

The new science of biomonitoring has enabled scientists to take the guesswork out of the effects of toxic exposure in blood, urine, breast milk, semen and all the other parts of us where chemicals tend not to flush out. It has brought home the truth in the saying that we are what we wear – or eat, sit on, breathe, rub up against or drink. The “environment” is not “out there” as David Suzuki reminds us: We are the environment and it is us.

Since 1999, the Centers for Disease Control (CDC) has tested Americans every two years in order to build a database of what are called “body burdens,”(1) in order to help toxicologists set new standards for exposure and definitively link chemicals to illness, or else decouple them. The study attempts to assess exposure to environmental chemicals in the general U.S. population – and the more chemicals they look for, the more they find: The CDC started with 27 worrisome chemicals in 1999 and now tests for 219. Their findings have shown that no matter whether you’re rich or poor; live in the center of a city or a pristine rural community; east coast, west coast or in between; are elderly or newborn; Republican, Democrat or Socialist – you have BPA in your blood, as well as polybrominated diphenylethers (PBDE)s – which can retard a fetus’s neurological development; perfluorooctanoic acid (PFOA) – which impairs normal development; perchlorate – which can keep the thyroid from making necessary hormones and methyl tert-butyl ethers (now banned in most states) and mercury.

And the correlation between chemicals to illness seems to be on the rise(2) – certainly from studies done linking various chemicals to human disease and illness, but also because the spectrum of both “rare” and “common” illnesses is on the rise. The National Institutes of Health defines a rare disease as one affecting 200,000 or fewer Americans. Yet 25 – 30 million Americans suffer from one of the nearly 6,800 identifiable rare diseases. That compares to the 40 million Americans with one of the three “major” diseases: heart disease, cancer or diabetes.

Specifically with regard to fabrics: over 2,000 chemicals are used in textile processing, and these include some of the most toxic known (lead, mercury, arsenic, formaldehyde, Bisphenol A, PBDE, PFOA). There are no requirements that manufacturers disclose the chemicals used in processing – chemicals which remain in the finished fabrics. Often the chemicals are used under trade names, or are protected by legislation as “trade secrets” in food and drug articles – but fabrics don’t even have a federal code to define what can/cannot be used because fabrics are totally unregulated in the U.S., except in terms of fire retardancy or intended use. It’s pretty much a free-for-all.

What they’re finding is that this chemical onslaught seems to be changing us. Using a computer-assisted technique called microarray profiling, scientists can now examine the effects of toxins on thousands of genes at once (before they could only study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development.

In a talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics (the study of how genes respond to toxins) the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”(3) Scientists are developing new ideas about how chemicals can, in effect, re-program animals and humans to be more susceptible to certain diseases—and to pass that susceptibility on to their offspring. This theory is known as the “developmental origins of health and disease” (DOHad) , and is now an emerging field.

So why not seek products – fabrics, soaps, cosmetics, perfumes, deodorants, food – that don’t contain chemicals that harm you – or your children or grandchildren?
**************************************************************************

(1) What is a “body burden”: Starting before birth, children are exposed to chemicals that impair normal growth and development. Exposures continue throughout our lives and accumulate in our bodies. These chemicals can interact within the body and cause illness. And they get passed on from parent to child for generations.
(2) World Health Organization; http://www.who.int/healthinfo/global_burden_disease/en/index.html
(3) Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 28, 2011





CPSIA, lead and textiles in your life

1 12 2009

What does it take to change human behavior?

We have known that lead is poisonous ever since the Romans began sprinkling it on their food as a sweetener.   Lead was used so extensively in Rome (for metal pots, wine urns, water pipes and plates)  that some Romans began to suspect a connection between the metal and the general befuddlement that was cropping up among the aristocracy – the very people who could afford these urns and plates.  But the culture’s habits never changed, and some historians believe that many among the Roman aristocracy suffered from lead poisoning. Julius Caesar, for example, managed to father only one child, even though he enjoyed women a much as he enjoyed wine.  His successor, Caesar Augustus, was reported to be completely sterile.  Some scholars go so far as to say that lead poisoning was a contributing factor to the fall of the Roman Empire.

Lead is a neurotoxin – it affects the human brain and cognitive development, as well as the reproductive system. Some of the kinds of neurological damage caused by lead are not reversible.

Specifically, it affects reading and reasoning abilities in children, and is also linked to hearing loss, speech delay, balance difficulties and violent tendencies. (1)   According to Ruth Ann Norton, executive director of the Coalition to End Childhood Lead Poisoning, “There are kids who are disruptive, then there are ‘lead’ kids – very disruptive, very low levels of concentration.”  Children with a lead concentration of less than 10 micrograms ( µ) per deciliter (dl = one tenth of a liter) of blood scored an average of 11.1 points lower than the mean on the Stanford-Binet IQ test. (2)   Consistent and reproducible behavioral effects have been seen with blood levels as low as 7 µ/dl (micrograms of lead per tenth liter of blood), which is below the Federal standard of 10 µ/dl.   Scientists are generally in agreement that there is no “safe” level of blood lead.  Lead is a uniquely cumulative poison:  the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time.

A hundred years ago we were wearing lead right on our skin. I found this article funny and disturbing at the same time:

“Miss P. Belle Kessinger of Pennsylvania State College pulled a rat out of a warm, leaded-silk sack, noted that it had died of lead poisoning, and proceeded to Manhattan. There last week she told the American Home Economics Association that leaded silk garments seem to her potentially poisonous. Her report alarmed silk manufacturers who during the past decade have sold more than 100,000,000 yards of leaded silk without a single report of anyone’s being poisoned by their goods. Miss Kessinger’s report also embarrassed Professor Lawrence Turner Fairhall, Harvard chemist, who only two years ago said: ‘No absorption of lead occurs even under extreme conditions as a result of wearing this material in direct contact with the skin’. ”

This was published in Time magazine,  in 1934.  (Read the full article here. )



But lead has continued to be used in products, from dyestuffs made with lead (leading to lead poisoning in seamstresses at the turn of the century, who were in the habit of biting off their threads) (3), to lead in gasoline, which is widely credited for reduced IQ scores for all children born in industrialized countries between 1960 and 1980 (when lead in gasoline was banned).  Read more about this here.

Lead is used in the textile industry in a variety of ways and under a variety of names:

  • Lead acetate                 dyeing of textiles
  • Lead chloride               preparation of lead salts
  • Lead molybdate            pigments used in dyestuffs
  • Lead nitrate                  mordant in dyeing; oxidizer in dyeing(4)

Fabrics sold in the United States, which are used to make our clothing, bedding and many other products which come into intimate contact with our bodies, are totally unregulated – except in terms of required labeling of percentage of fiber content and country of manufacture.  There are NO laws which pertain to the chemicals used as dyestuffs, in processing, in printing,  or as finishes applied to textiles, except those that come under the Toxic Substances Control Act (TSCA) of 1976, which is woefully inadequate in terms of addressing the chemicals used by industry.  In fact, the Government Accounting Office (GAO) has announced that the 32 year old TSCA needs a complete overhaul (5), and the Environmental Protection Agency (EPA)  was quick to agree! (6).  Lisa Jackson, head of the EPA,  said on September 29, 2009 that the EPA lacks the tools it needs to protect people and the environment from dangerous chemicals.

And  fabrics are treated with a wide range of substances that have been proven not to be good for us.

The United States has new legislation which lowers the amount of lead allowed in children’s products – and only children’s products.   (This ignores the question of  how lead  in products used by pregnant  women may affect their fetus.  Research shows that as the brains of fetuses develop, lead exposure from the mother’s blood can result in significant learning disabilities.)  The new Consumer Product Safety Improvement Act (CPSIA) limits lead content in children’s products (to be phased in over three years) so that by August 14, 2011, lead content must be 100 ppm (parts per million) or less.  However there was an outcry from manufacturers of children’s bedding and clothing, who argued that the testing for lead in their products did not make sense, because:

  • it placed an unproductive burden on them, and
  • it required their already safe products to undergo costly or unnecessary testing.

The Consumer Product Safety Commission voted to exempt textiles from the lead testing and certification requirements of the CPSIA.

So let me repeat here: the daily intake of lead is not as important a determinant of ultimate harm as is the duration of exposure and the total lead ingested over time. Children are uniquely susceptible to lead exposure over time, and  neural damage occurring during the period from 1 to 3 years of age is not likely to be reversible.  It’s also important to be aware that lead available from tested products would not be the only source of exposure in a child’s environment.  Although substantial and very successful efforts have been made in the past twenty years to reduce environmental lead, children are still exposed to lead in products other than toys or fabrics. Even though it was eliminated from most gasoline in the United States starting in the 1970s, lead continues to be used in aviation and other specialty fuels. And from all those years of leaded gasoline, the stuff that came out of cars as fuel exhaust still pollutes soil along our roadways, becoming readily airborne and easily inhaled.   All lead exposure is cumulative – so it’s important to eliminate any source that’s within our power to do so.

Are the manufacturers of children’s bedding and clothing correct?  Are their products inherently safe?  I thought I’d do some exploration to find out what information I could find out about chemicals used in our fabrics – and I’ll have the results next week.

(1) “ ‘Safe’ levels of lead still harm IQ”, Associated Press, 2001

(2) Ibid.

(3) Thompson, William Gilmsn, The Occupational Diseases, 1914, Cornell University Library, p. 215

[4] “Pollution of Soil by Agricultural and Industrial Waste”, Centre for Soil and Agroclimate Research and Development, Bogor, Indonesia, 2002.   http://www.agnet.org/library/eb/521/

(4) http://www.atsdr.cdc.gov/toxprofiles/tp13-c5.pdf

(5) http://www.rsc.org/chemistryworld/News/2009/January/29010901.asp

(6) http://www.bdlaw.com/news-730.html