What does the new TB117-2013 mean to you?

16 12 2013

California has approved a new  flammability standard for residential furniture that is receiving widespread praise among environmentalists.  But we’d like you to examine, with us, some details about the new standard that you’ll need to know to keep you and your family safe from these extremely toxic chemicals.

California is the only state in the U.S. with a mandatory flammability standard for residential furniture.  The original law, TB117, was passed with all the good will in the world – to protect people from dying in house fires by giving them time to escape.  But  as is often the case, there were unintended consequences – we have found that the fire retardant chemicals are linked to cancer, developmental problems, reduced IQ and impaired fertility –  and more.  These chemicals  both persist (i.e, last a long time) and  bioaccumulate (i.e., are absorbed at a rate greater than that at which the substance is lost – leading to a risk of chronic poisoning) in human systems.  And the final straw:  ironically, the chemicals don’t protect us from fires – they just allow the material not to fail the flammability test.  In actual fires, the materials do burn, and just as massively as untreated foam,  and that releases toxic smoke into the air; one pundit has said that firefighters have more to fear from the smoke  than from the actual fire.

Recently, there has been growing pressure to change California’s “Technical Bulletin 117”, which required furniture manufacturers to inject flame retardant chemicals into the polyurethane foam used in all upholstered furniture sold in the state.  (Please note: the law only pertained to filling materials.) Because California is such a huge market, this law has become a de facto national standard. This pressure was fueled by a series of articles in the Chicago Tribune entitled “Playing with Fire” (click here to read the articles) , and more recently by the HBO film, Toxic Hot Seat, both of which exposed the considerable health risks of flame retardant chemicals, as well as the attempts by the chemical industry to thwart attempts at reform.

Why are flame retardant chemicals required in polyurethane foam?  Answer:  Because polyurethane is basically solid gasoline, which means it’s basically an accelerant.   The old test required that it pass a test by withstanding an open flame for 12 seconds before igniting.  Because this is impossible, the chemicals were added to prevent ignition.

What makes the new TB117-2013 different is that the test methods have changed.  Legislators decided to amend the manner in which flammability is measured.  They reasoned that most house fires start from smoldering cigarettes, which cause the fabric to smolder and catch fire – not from within the cushion in the foam.   They thought that upholstery cover fabrics play a more important role in fire behavior performance than filling materials – flames start on the fabric,  not from deep within the cushions, so the best way to prevent the foam from igniting is to make sure that the surface materials do not smolder in the first place.

So the new test did away with the 12 second open flame test and replaced it with a smolder-only test.  In this test, a lighted cigarette (not an open flame) is placed on the surface of the furniture.   If charring occurs which is 2 inches or less, the furniture is considered to pass.  This is a much easier test to pass than the open flame test.

So the new TB117-2013 enables foam manufacturers to reduce or eliminate flame retardant chemicals – but it doesn’t forbid their use.   The new law was designed to enable manufacturers to eliminate the flame retardants, but if they choose to use them it’s not illegal.  It’s up to manufacturers to decide how they plan to meet the new standard.

Most fabrics used in upholstery today are  synthetics or synthetic blends (natural fiber/synthetic).  And synthetics are created from crude oil – so they too are basically solid gasoline.  An accelerant.  Fabrics can be fire retarded easily and cheaply, and it’s very commonly done.  So although the foam manufacturers can (if they so choose) eliminate flame retardant chemicals in the foam, the burden of passing a smolder test now falls on the fabric.  It seems to me that the flame retardant chemicals are now just going to be found in the fabrics rather than the foam.

The new law was originally supposed to go into effect on July 1, 2014, but manufacturers, who said they “needed the additional times to deplete current supplies and effectuate the new regulatory changes” extended the new date to January 1, 2015.  However, starting in January, 2014, manufacturers will be able to sell furniture with a “TB117-2013” tag – so consumers should make sure to ask whether the sofa or chair has been treated with flame retardant chemicals.  Manufacturers are not required to disclose whether they use flame retardants or not, and few label their products.

If you really want to be sure, the Center for Environmental Health can test foam to detect the presence of flame retardants.  The tests only indicate whether certain elements are present, such as chlorine or bromine.  If so, it is likely the foam was treated with flame retardants.  If you want information on how to use this free service, click here.

Even if the foam is  tested and found not to contain flame retardants, that is by no means a clean bill of health for your sofa, because the fabrics may well contain flame retardants.  And a TB117-2013 label on a piece of furniture is not a guarantee that there are no flame retardants used in the piece.

And we think it’s pretty critical to add this final caveat – flame retardant chemicals are just ONE of the many chemicals which may be found in your fabrics.  Textile production uses a lot of chemicals,  most of which have toxicity profiles as equally unsavory as flame retardants: consider formaldehyde, perfluorocarbons (PFC’s), benzene, APEO’s, polychlorinated biphenyls (PCB’s) and Bisphenol A in synthetics, and heavy metals such as lead, mercury and cadmium.  So to limit yourselves to eliminating flame retardant chemicals from the fabrics or furniture you live with  – as wonderful as that is – means you’re not seeing the forest for the trees.

Advertisements




What kind of fabric for your new sofa?

26 09 2013

We’ve looked at the frame, suspension system and cushioning on a sofa;  next up:  fabric.  We consider fabric to be a very important, yet certainly misunderstood, component of furniture.  It can make up 40 – 45% of the price of a sofa.    So we’ll be breaking this topic up into several smaller bite size portions:  after a general discussion of what kind of fabric to choose for your lifestyle,  we’ll look at the embodied energy in your fabric choice, and then why an organic fabric is better for you as well as the rest of us.

One thing to remember is that there is much  more fabric used in constructing an  upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind.  A fabric with densely woven yarns tends to be more durable than a loosely woven fabric.  Often people assume leather is the best choice for a busy family.  We did a post about leather – if you’re at all considering leather, please read this first (https://oecotextiles.wordpress.com/2012/05/22/leather-furniture-what-are-you-buying/ ).  Another choice  widely touted is to use Ultrasuede.  Please see our post about this fabric: https://oecotextiles.wordpress.com/2010/09/08/is-ultrasuede%c2%ae-a-green-fabric/.

Equally important in evaluating durability as the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable – no matter how durable it appears on the showroom floor.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.

2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.

3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[2]  http://www.globalhemp.com/Archives/Magazines/historic_fiber_remains.html

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.





How to buy a “quality” sofa – part 4, fabric

26 09 2012

This week we’ll begin to talk about the fabric used in your sofa – which we (of course) think is a very complicated and important topic! One thing to remember is that there is much more fabric used in constructing an upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind. But more important in evaluating durability than the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

And of course, any company can skew results in their favor.  This is an image I found on Google images, with abrasion test results from a company selling leather motorcycle clothing.  They did say that “leather will sometimes score up to 100,000 cycles or so on the Wyzenbeek test, but testing to destruction (over 50k cycles) doesn’t always prove much.”  No comment on these results !

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

  1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or      fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.
  2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.
  3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.





What do you get when you hire an interior designer?

3 11 2010

I just came from showing our fabrics to a well-known interior design firm here in Seattle.   We were told that the only criteria they use to pick fabrics is that it must be beautiful – and of the right color.    Environmental and safety issues are just NOT part of the equation.

The visit was not completely a disaster because they did show interest in some of our fabrics – based solely on the beauty and coloration.  But I’ve been thinking since then about the responsibility  designers have to provide interiors for their clients which are not only beautiful, but which will not cause harm.  I know people don’t really want to think that the cute baby blanket they’re eyeing will cause a genetic malformation in their little one – or that a chemical in that blanket  will spark a cancer that only shows up 20 years from now.  So it’s easy to ignore the problem.

On top of the goal of making their client’s interior spaces safe, there is the additional problem of what THEIR choices do me and MY family – because by choosing certain fabrics they’re  ensuring that those fabrics will continue to be produced:  those choices ensure that the textile effluent is still being poured into my groundwater, and the sludge is still sent to the landfill, where it leaches the chemicals into the soils and groundwater.

Designers can continue to ignore the misery their choices may cause – at least for now.  But I think we should know what they’re doing, so I did a quick study to see what kind of effect fabric may have on us and the planet.

Let’s assume a designer orders fabric to cover one sofa, two chairs and enough fabric for drapery in a living room.  We’ll assume the amount of fabric needed would be:

  • 20 yards of upholstery fabric for the sofa, and 7 yards for each of the chairs:  34 yards of  fabric which weighs18 oz per square yard and is 54” wide (total weight: 57.4 lbs);
  • 40 yards of drapery weight fabric at 10 oz per square yard, 54” wide (total weight: 37.5 lbs).

It takes between 13 – 14 gallons of water to produce one pound of natural fiber fabric, and it takes between 6 – 8 gallons of water to produce 1 pound of polyester fabric.

If we use the 8 gallon figure which is at the top of the polyester range but low for natural fibers, the total amount of water used to produce this fabric would have been at least 759 gallons.  To put that in perspective, there are about 300 gallons in a large hot tub.

Consider that it takes between 10% and 100% of the weight of the fabric  IN CHEMICALS to produce that fabric – for detergents, bleaches, dyes, finishes, scours, optical brighteners, wetting agents, biocides – the list is at least 2,000 chemicals long.   But to be a tad conservative,  let’s say it takes just 50% of the weight of the fabric in chemicals to produce the fabrics for our room.   If the process water (from sizing, desizing, scouring, dyeing, printing and finishing)  was returned to our ecosystem without treatment – that means that 47 pounds of chemicals will have been introduced into our ecosystem.  Most of the process chemicals are not toxic to us, but remember the concept of reactive chemistry:  many of the chemicals used, though benign themselves, will react with other chemicals to create a third substance which is toxic.  This reaction can occur during the production of the fibers (in the case of synthetics), during the manufacturing process, or at end of life (i.e., burning at the landfill, decomposing or biodegrading).

But there are chemicals used in processing which are toxic – just as they are.  Some of the chemicals expelled in the wastewater DO pose a threat to my health – and that list includes (but is not limited to):

  • Polybrominated diphenyl ethers (PBDE’s) , known to cause damage to the brains of newborns (among many other things); they’re persistent and bioaccumulative;
  • Benzenes and benzidines:  highly carcinogenic
  • Phthalates:          known to cause breast  cancer and asthma
  • Arsenic:                carcinogen
  • Lead:                     attacks the nervous system
  • Mercury:             attacks the immune system, alters genetic data and damages nervous system
  • Chlorine (sodium hypochlorite):                  hormonal disruption, infertility and immune system suppression.

These chemicals are all dumped into our environment every day.   Remember, as David Suzuki reminds us, we ARE the environment.  What is “out there” inevitably is found inside us.  That’s why PBDE’s (which are persistent in the environment – meaning they don’t break down into benign, less toxic components)  are found in animals worldwide, from penguins in the Arctic to hummingbirds in the tropics – and levels have been doubling every 3 to 5 years for the past three decades.   (you can read more about PBDE’s and the furniture in your homes here ).  We are silently and progressively changing the chemistry of our bodies.

And lest you think you can ignore what unscrupulous mill practices are doing to our environment by discharging untreated effluent – remember that the fabric you bring into your home and live with intimately  is also suffused with these chemicals.  Everybody is concerned about “outgassing” – the media is full of information about Volatile Organic Compounds (VOCs).  But air quality is just one component of a healthy environment.  Not all chemicals volatilize, so they do not “outgass” – but are certainly toxic nevertheless.  Take lead, for example – a component of many dyestuffs, lead is not a gas at room temperature so it does not “outgass”.  But microscopic particles of your fabric do abrade when you rub against them, and these particles settle into the dust in our homes, to be breathed in by crawling kids and pets.

And designers are hired, presumably, for their expertise.   The designer should not be a mindless  agent following a vision without regard to function or use.  Theoretically, the designer has a body of knowledge that is deeper than the client’s, so an ethical burden is placed on the designer.  The client can plead ignorance of the issues but the designer cannot.  According to Daniel Yang,  good design seeks to foster the client’s trust, then fulfills or exceeds her expectations.  Designers should advocate for a better design while striving to make the best product they can for their clients.  But how can a product be considered “good” if it compromises that clients health and well being?  Daniel Yang points out that it’s hard to advocate for a product when the people that end up consuming the product will probably never come back to complain – as is the case with fabrics.

So I wish I could go back to those designers who look only at color and aesthetics and point out that their thoughtless choice are harming not only their clients, but me and my family – all of us.  And that they should consider these questions if they want to save their professional souls –  or to save their professional license,  as many are suggesting that the law might  soon mandate that designers consider the public welfare when specifying products.