Promise for the future

7 07 2011

For the past few weeks we’ve been talking about the Green Revolution, and the problem of feeding 9 billion people.

With respect to the Green Revolution, opinion is still divided as to how to assess its impact.   Vandana Shiva, founder of Navdanya (a movement of 500,000 seed keepers and organic farmers) said that the Green Revolution:

(has) led to reduced genetic diversity, increased vulnerability to pests, soil erosion, water shortages, reduced soil fertility, micronutrient deficiencies, soil contamination, reduced availability of nutritious food crops for the local population, the displacement of vast numbers of small farmers from their land, rural impoverishment and increased tensions and conflicts. The beneficiaries have been the agrochemical industry, large petrochemical companies, manufacturers of agricultural machinery, dam builders and large landowners.

The “miracle” seeds of the Green Revolution have become mechanisms for breeding new pests and creating new diseases.[1]

As Frederick Huyn notes, in his essay “Green Revolution” the only thing the Green Revolution achieved was “low yield from high ideals”.[2]   Yet there are those who credit the Green Revolution with helping to avoid mass starvation.

And as Juergen Voegele, director of agriculture and rural development for the World Bank, pointed out: “We already have close to one billion people who go hungry today, not because there is not enough food in the world but because they cannot afford to buy it.”[3]  An interesting article in Foreign Policy magazine pointed out that the poor, even if they have the money to buy food, sometimes use their money to buy other things instead, such as cell phones or televisions.[4]

So it’s a complicated formula.

Last week’s post introduced the argument that agriculture simply must reduce its environmental footprint.  So the question remains: what is the future of agriculture?  How can we feed people on Earth and still have a livable planet?

I like the suggestion that we have to learn from each other.   Jonathan Foley, director of the Institute on the Environment at the University of Minnesota, says:  “You’re either with Michael Pollan or you’re with Monsanto, but neither paradigm can fully meet our needs.”  So some are calling for what is being called a “resilient hybrid strategy” to meet these challenges – a sort of third way between industrialized agriculture and organic.   We can all take lessons from each other – the organic camp need not see “technology” as anathema, and conventional agriculture shouldn’t dismiss organic principles out of hand.  We should ditch the rhetoric and create new, hybrid solutions that boost production, conserve resources and build a truly sustainable agriculture.  These might include precision agriculture, mixed with high-output composting and organic soil remedies; drip irrigation, plus buffer strips to reduce erosion and pollution; and new crop varieties that reduce water and fertilizer demand.  On the production end, finding agreement on what the science writer Paul Voosen recently described as “a unified theory of farming” is unlikely. But finding ways to break down either-or thinking and foster traditional agricultural methods or advanced technologies where they fit best is clearly feasible.[5]

It will be much more challenging to own up to what our individual choices mean in terms of food availability – and to change them.

We think there should be four key components in this effort:

1)    Make food a human right.

2)    Science must play a key role.

3)    Agriculture will need to be regionally controlled and locally adapted, and governments should sponsor crop and genetic research.

4)    Adopt agroecology – includes frugal use of water, minimizes use of external inputs and sequesters carbon.

Skeptics will say that you simply cannot grow organic crops and have comparable yields to those of conventional crops which have been “protected” by pesticides and boosted by synthetic fertilizers.  Yet many studies are showing that, with patience, they indeed can yield comparable – or better – results.[6]   But the biggest gains in an effort to triple agricultural production on today’s global farm acreage may come from improvements in crop genetics and wasteful, inefficient farming and food management practices.

One key part of this strategy must be to use genetics to our advantage.  According to Paul Collier, professor of economics at Oxford Univerity, “Genetic modification is analogous to nuclear power: nobody loves it, but climate change has made its adoption imperative.”

Humans have been improving production through genetic selection since agriculture began. For 99 percent of history this process was rather hit or miss and based on farmers saving seeds and saving animals.  Then Mendel discovered how genetic traits were passed along, and we’ve been able to build on that knowledge to create hybrids which are more productive than their counterparts.  These age-old techniques can now be complemented, supplemented, and perhaps supplanted by an assortment of molecular “tools” that allow for the deletion or insertion of a particular gene or genes to produce plants (animals and microorganisms) with novel traits, such as resistance to briny conditions, longer “shelf-life,” or enhanced nutrient content. A change in a plant’s genetic sequence changes the characteristics of the plant. Such manipulation of genes—genetic engineering—results in a genetically modified organism or GMO.

Both “traditional” biotechnology and “modern” biotechnology result in crops with combinations of genes that would not have existed absent human intervention. A drought-resistant crop can be developed through “traditional” methods involving crosses with resistant varieties, selection, and backcrossing. Modern biotechnology can speed up this process by identifying the particular genes associated with drought resistance and inserting them directly. Whether developed through traditional or modern means, the resultant plants will resist drought conditions but only the second, genetically engineered one, is a GMO.

The problem is that today most plant genetics research is conducted by corporations rather than by governments.  These companies focus on crops that offer the biggest short-term commercial return – such as “Roundup Ready” soybeans and corn.   And in order to protect their intellectual property, the seeds available are sterile, so farmers are required to buy new seeds each year.  This has led to the outright prohibition of GMO organisms in most organic standards.  There remains widespread public opposition to the technology in many parts of the world.

Yet the promise of genetics research (non tethered to corporate bottom lines) is compelling.  According to Jason Clay, a vice president of the World Wildlife Fund,  the biggest genetic gains in the future will probably come from working on tropical crops that have been ignored to date, such as cocoa, yams, sorghum, millet, cassava, peanuts, sugarcane and sunflower.[7]  This work would focus not only on increased production but also disease and drought resistance or tolerance, dwarf traits so that tree crops could be harvested with less labor and for longer, and more marketable traits.

In looking at the overall factors involved in agricultural production (land, labor and capital) – it’s clear we have an abundance of both labor and capital.  But we’re reaching the limit of how much land and water we can use to produce food, as the conversion of natural habitat for food production continues unabated:  the FAO estimated an additional 121 million hectares will be converted to crop production in order to meet demand for agricultural commodities by 2030.[8]  Future gains must come from increased efficiency rather than expansion.[9]

Governments must take a more active role – by sponsoring research in genetics or crop science, for example, or by stepping in to support farmers so they won’t feel they have to sell their land to investors.  In the past two years alone, as many as 50 million acres of land around the world have changed hands from locals to foreign investors [10].  It seems that climate change is pushing viable farmland northward due to higher temperatures.  It’s creating new farming opportunities on previously marginal land.  As a result, multinational investors and sovereign wealth funds  are purchasing significant amounts of land in these marginal locales because local farmers are generally poor, and see it as a good way to make quick cash.[11]  Investors from various parts of the world, including rising powers such as China, India, Saudi Arabia, Kuwait, South Korea and Wall Street banks, such as Goldman Sachs and Morgan Stanley, are trying to corner the market on the world’s ever decreasing farmland. All of these investors are betting that population growth and climate change, droughts, desertification and flooding will soon make food as valuable as oil.

Time’s a-wasting – let’s roll up our sleeves and work together.  We really don’t have any room for half measures or for blinkered self-interest.

But because I’m an eternal optimist, I have to look on the bright side, so will end with a passage from Indur Goklany, assistant program director on technology and science policy at the Department of Interior:

Until the start of the Industrial Revolution, mankind was poor, hungry, illiterate, constantly at the mercy of disease and the elements, and short-lived; child labor was the norm; and one’s life opportunities were predetermined by sex and parentage. Today, despite an octupling of the world’s population, mankind has never been wealthier, better fed, less hungry, better educated, longer-lived and healthier; less constrained by caste, class, and sex; and 75 percent of global population is no longer mired in absolute poverty. This progress was enabled by economic development and technological change driven by cheap energy — all made possible by institutions underlying individual economic freedom. To extend this progress to a larger share of humanity and those not yet born, even as the world’s population increases, what matters most is to continue to nourish or, if necessary, develop these institutions.[12]

[1] Shiva, Vandana, “The Green Revolution in the Punjab”, The Ecologist, Vol 21, No. 2, March-April 1991

[3] Revkin, Andrew C., “Varied Menus for Sustaining a Well-Fed World”, January 2011.

[4] Banerjee, Abhijit and Buflo, Esther, “More than 1 Billion People are Hungry in the World”, Foreign Policy, May/June 2011, page 67.

[5] Revkin, Andrew C., “Varied Menus for Sustaining a Well-Fed World”, January 2011.

[6] Vasilikiotis, Christos, “Can Organic Farming Feed The World?”,

[8] Ibid., Page 14

[9] Ibid., Page 14

(10) Funk, McKenzie, “Capatalists of Chaos: The Global Land Grab”, Rolling Stone, May 2010.

[11] “Genetically Modified Seeds Will Not Solve the World Hunger Crisis”,

Agroecology and the Green Revolution

30 06 2011

The promise of the Green Revolution was that it would end hunger through the magic of chemicals and genetic engineering.   The reasoning goes like this:  the miracle seeds of the Green Revolution increase grain yields;    higher yields mean more income for poor farmers, helping them to climb out of poverty, and more food means less hunger.  Dealing with the  root causes of poverty that contribute to hunger takes a very long time – but people are starving now.  So we must do what we can now  –  and that’s usually to increase production. The Green Revolution buys the time Third World countries desperately need to deal with the underlying social causes of poverty and to cut birth rates.

Today, though, growth in food production is flattening, human population continues to increase, demand outstrips production; food prices soar. As Dale Allen Pfeiffer maintains in Eating Fossil Fuels, modern intensive agriculture – as developed through the Green Revolution –  is unsustainable and has not been the panacea some hoped it would be. Technologically-enhanced agriculture has augmented soil erosion, polluted and overdrawn groundwater and surface water, and even (largely due to increased pesticide use) caused serious public health and environmental problems. Soil erosion, overtaxed cropland and water resource overdraft in turn lead to even greater use of fossil fuels and hydrocarbon products. More hydrocarbon-based fertilizers must be applied, along with more pesticides; irrigation water requires more energy to pump; and fossil fuels are used to process polluted water.  And the data on yields, and fertilizer and pesticide use (not to mention human health problems)  supports these allegations.  A study by the Union of Concerned Scientists called “Failure to Yield” sums it up nicely. (click here).

Michael Pollan, author of The Omnivore’s Dilemma,  says the Achilles heel of current green revolution methods is a dependence on fossil fuels.  “The only way you can have one farmer feed 140 Americans is with monocultures. And monocultures need lots of fossil-fuel-based fertilizers and lots of fossil-fuel-based pesticides,” Pollan says. “That only works in an era of cheap fossil fuels, and that era is coming to an end. Moving anyone to a dependence on fossil fuels seems the height of irresponsibility.”

So is a reprise of the green revolution—with the traditional package of synthetic fertilizers, pesticides, and irrigation, supercharged by genetically engineered seeds—really the answer to the world’s food crisis?  As Josh Viertel, president of Slow Food USA, describes it:  the good news is that feeding the world in 2050 is completely possible; the bad news is that there isn’t a lot of money to be made by doing so.[1]

It has become clear that agriculture has to shrink its environmental footprint – to do more with less.  The world’s growing demand for agricultural production must be met not by bringing more land into production, with more gallons of water, or with more intensive use of inputs that impact the environment, but by being better stewards of existing resources through the use of technological innovation combined with policy reforms to ensure proper incentives are in place.[2]

A massive study (published in 2009)  called the “International Assessment of Agricultural Knowledge, Science and Technology for Development”  concluded that the immense production increases brought about by science and technology in the past 30 years have failed to improve food access for many of the world’s poor. The six-year study, initiated by the World Bank and the UN’s Food and Agriculture Organization and involving some 400 agricultural experts from around the globe, called for a paradigm shift in agriculture toward more sustainable and ecologically friendly practices that would benefit the world’s 900 million small farmers, not just agribusiness.  As the report states:  “business as usual is no longer an option”.[3]

Dr. Peter Rosset, former Director of Food First/The Institute for Food and Development Policy and an internationally renowned expert on food security, has this to say about the Green Revolution:

      In the final analysis, if the history of the Green Revolution has taught
      us one thing, it is that increased food production can-and often does-go
     hand in hand with greater hunger. If the very basis of staying
     competitive in farming is buying expensive inputs, then wealthier farmers
     will inexorably win out over the poor, who are unlikely to find adequate
     employment to compensate for the loss of farming livelihoods. Hunger is
     not caused by a shortage of food, and cannot be eliminated by producing

    This is why we must be skeptical when Monsanto, DuPont, Novartis, and
     other chemical-cum-biotechnology companies tell us that genetic
     engineering will boost crop yields and feed the hungry. The technologies
     they push have dubious benefits and well-documented risks, and the second
     Green Revolution they promise is no more likely to end hunger than the

    Far too many people do not have access to the food that is already
     available because of deep and growing inequality. If agriculture can play
     any role in alleviating hunger, it will only be to the extent that the
     bias toward wealthier and larger farmers is reversed through pro-poor
     alternatives like land reform and sustainable agriculture, which reduce
     inequality and make small farmers the center of an economically vibrant
     rural economy.

We began this series a few weeks ago with statements from several people who said that organic agriculture cannot feed the world.  Yet increasing numbers of scientists, policy panels and experts  are suggesting that agricultural practices pretty close to organic — perhaps best called “sustainable” — can feed more poor people sooner, begin to repair the damage caused by industrial production and, in the long term, become the norm.  This new way of looking at agriculture is called agroecology, which is simply the application of ecological principles to the production of food, fuel and pharmaceuticals.   The term is not associated with any one type of farming (i.e., organic, conventional or intensive) or management practices, but rather recognizes that there is no one formula for success.  Agroecology is concerned with optimizing yields while minimizing negative environmental and socio-economic impacts of modern technologies.

In March, 2011, the United Nations Special Rapporteur on the Right to Food , Olivier de Schutter, presented a new report, “Agro-ecology and the right to food”,  which was based on an extensive review of recent scientific literature.  The report demonstrates that agroecology,  if sufficiently supported, can double food production in entire regions within 10 years while mitigating climate change and alleviating rural poverty.  “To feed 9 billion people in 2050, we urgently need to adopt the most efficient farming techniques available,” says De Schutter.  “Today’s scientific evidence demonstrates that agroecological methods outperform the use of chemical fertilizers in boosting food production where the hungry live — especially in unfavorable environments. …To date, agroecological projects have shown an average crop yield increase of 80% in 57 developing countries, with an average increase of 116% for all African projects,” De Schutter says. “Recent projects conducted in 20 African countries demonstrated a doubling of crop yields over a period of 3-10 years.”

The report calls for investment in extension services, storage facilities, and rural infrastructure like roads, electricity, and communication technologies, to help provide smallholders with access to markets, agricultural research and development, and education. Additionally, it notes the importance of providing farmers with credit and insurance against weather-related risks.

De Sheutter goes on to say: “We won’t solve hunger and stop climate change with industrial farming on large plantations.” Instead, the report says the solution lies with smallholder farmers. Agro-ecology, according to De Sheutter, immediately helps “small farmers who must be able to farm in ways that are less expensive and more productive. But it benefits all of us, because it decelerates global warming and ecological destruction.”

The majority of the world’s hungry are smallholder farmers, capable of growing food but currently not growing enough food to feed their families each year. A net global increase in food production alone will not guarantee the end of hunger (as the poor cannot access food even when it is available), but an increase in productivity for poor farmers will make a dent in global hunger. Potentially, gains in productivity by smallholder farmers will provide an income to farmers as well, if they grow a surplus of food that they can sell.

As an example of how this process works, the UN report suggests that “rather than treating smallholder farmers as beneficiaries of aid, they should be seen as experts with knowledge that is complementary to formalized expertise”. For example, in Kenya, researchers and farmers developed a successful “push-pull” strategy to control pests in corn, and using town meetings, national radio broadcasts, and farmer field schools, spread the system to over 10,000 households.

The push-pull method involves pushing pests away from corn by interplanting corn with an insect repelling crop called Desmodium (which can be fed to livestock), while pulling the pests toward small nearby plots of Napier grass, “a plant that excretes a sticky gum which both attracts and traps pests.” In addition to controlling pests, this system produces livestock fodder, thus doubling corn yields and milk production at the same time. And it improves the soil to boot![4]

Further, by decentralizing production, floods in Southeast Asia, for example, might not mean huge shortfalls in the world’s rice crop; smaller scale farming makes the system less susceptible to climate shocks.  If you read the  story by Justin Gillis in the New York Times on May 5, which discusses the effects climate change is having on crop yields, this can only be a good thing.

Significantly, the UN report mentions that past efforts to combat hunger focused mostly on cereals such as wheat and rice which, while important, do not provide a wide enough range of nutrients to prevent malnutrition. Thus, the biodiversity in agroecological farming systems provide much needed nutrients. “For example,” the report says, “it has been estimated that indigenous fruits contribute on average about 42 percent of the natural food-basket that rural households rely on in southern Africa. This is not only an important source of vitamins and other micronutrients, but it also may be critical for sustenance during lean seasons.” Indeed, in agroecological farming systems around the world, plants a conventional American farm might consider weeds are eaten as food or used in traditional herbal medicine.

States and donors have a key role to play here. Private companies will not invest time and money in practices that cannot be rewarded by patents and which don’t open markets for chemical products or improved seeds.  The flood-tolerant rice mentioned above was created from an old strain grown in a small area of India, but decades of work were required to improve it.  But even after it was shown that this new variety was able to survive floods for twice as long as older varieties, there was no money for distribution of the seeds to the farmers.    Indeed, the distribution was made possible only through a grant from the Bill and Melinda Gates Foundation.

American efforts to fight global hunger, to date, have focused more on crop breeding, particularly genetic engineering, and nitrogen fertilizer than agroecology. Whereas the new UN report notes that, “perhaps because [agroecological] practices cannot be rewarded by patents, the private sector has been largely absent from this line of research.”   The U.S. aggressively promotes public-private partnerships with corporations[5]  such as seed and chemical companies Monsanto, Syngenta, DuPont, and BASF; agribusiness companies Cargill, Bunge; and Archer Daniels Midland; processed food companies PepsiCo, Nestle, General Mills, Coca Cola, Unilever, and Kraft Foods; and the retail giant Wal-Mart.[6]

We need to look closely at all options since there is so much at stake.  To meet the challenges listed above, perhaps we need what Jon Foley calls a “resilient hybrid strategy”.   Foley, director of the Institute of the Environment at the University of Minnesota, puts it this way:

I think we need a new kind of agriculture – kind of a third agriculture, between the big agribusiness, commercial approach to agriculture, and the lessons from organic and local systems…. Can we take the best of both of these and invent a more sustainable, and scalable agriculture?[7]

The New York Times article pointed out the success of a new variety of rice seeds that survived recent floods in India  after being submerged for 10 days.  “It’s the best example in agriculture,” said Julia Bailey-Serres, a researcher at the University of California, Riverside. “The submergence-tolerant rice essentially sits and waits out the flood.” (8)

But this path raises many concerns – for example, genetically modified seeds are anathema to much of Europe and many environmentalists.   And so far, genetic breakthroughs such as engineering plants that can fix their own nitrogen or are resistant to drought “has proven a lot harder than they thought,” says Michael Pollan, who says the  major problem with GMO seeds is that they’re intellectual property.   He is calling for an open source code  (i.e., divorcing genetic modifications from intellectual property). De Sheutter sees promise in marker-assisted selection and participatory plant breeding, which “uses the strength of modern science, while at the same time putting farmers in the driver’s seat.”

So what can be done?

[2] 2010 GAP Report, Global Harvest Initiative,

[3] Synthesis Report: International Assessment of Agricultural Knowledge, Science and Technology for Development”, 2009

[6] Richardson, Jill, “Groundbreaking New UN Report on How to Feed the World’s Hungry:  Ditch Corporate-Controlled Agriculture”, March 13, 2011

[7] Revkin, Andrew, “A Hybrid Path to Feeding 9 Billion on a Still-Green Planet”, New York Times, March 3, 2011,

(8)  Gillis, Justin, “A Warming Planet Struggles to Feed Itself”, New York Times, May 5, 2011,

How much is enough?

1 06 2011

Last week I talked about the fears associated with feeding a world population of 7 billion – let alone 9 billion – and mentioned that there are those who see organic agriculture as a niche market, unable to provide the calories needed for those 9 billion.  The topic is extraordinarily complex, and we can only begin to review various components that figure significantly in the equation.  For those interested, I highly recommend the report published by The Government Office for Science (GO-Science), London, entitled “The Future of Food and Farming: Challenges and Choices for Global Sustainability”.  The executive summary can be downloaded here.

To begin our exploration, let’s figure out how much food we’re talking about.  How much is enough?

The answer may surprise you.

Today, according to the United Nations’ Food and Agriculture Organization (FAO)[1],   the world is producing enough food to provide every man, woman and child with 2,700 calories a day, several hundred more than most adults are thought to need (which is around 2,100 a day).  Indeed, Josh Viertel, president of Slow Food USA, stated on the Atlantic Food Channel that in 2008, globally, we grew enough food to feed over 11 billion people.  We grew 4,000 calories per day per person—roughly twice what people need to eat.[2]  Allowing for all the food that could be eaten but is turned into biofuels, and the staggering amounts wasted on the way, farmers are already producing much more than is required (to feed everyone in the world).  If there is a food problem, it does not look like a technical or biological one.[3]

Eric Holt Gimenez, of Food First (The Institute for Food and Development Policy) put it eloquently: “In 2008 more food was grown than ever before in history. In 2008 more people were obese than ever before in history. In 2008 more profit was made by food companies than ever before in history. And in 2008 more people went hungry than ever before in history.”  But why are people going hungry if we have enough food to feed them?

Amartya Sen,  Professor of Economics and Philosophy at Harvard University and winner of the 1998 Nobel Prize in Economics, argued that the 1943 Bengal famine, in which 3 million people died from starvation and malnutrition, was not caused by a shortage of basic food – indeed, India was exporting food during the time that millions of its citizens were dying.  It was, rather, caused by a bunch of other factors[i].  The primary reason, though, was that the poor couldn’t pay for their food:   India was experiencing an economic boom which raised food prices, thereby raising the cost of food beyond the means of millions of rural workers whose wages didn’t keep up.

And the price of our food keeps going up:  In early January, 2011, the U.N. Food and Agriculture Organization (FAO) reported that its Food Price Index had reached an all-time high in December, exceeding the previous record set during the 2007-08 price surge. Even more alarming, The FAO announced later that the December record had been broken in January as prices climbed an additional 3 percent – then in February they reached the highest level ever recorded.[4]

So if we accept Dr. Sen’s conclusion that food prices are the cause of hunger, what can be done to lower them?  That answer – surprise! – is also extremely complex, including political conflict, poverty, harmful economic systems, and yes, climate change.  To simplify things we’ll just look at one facet of the argument that goes like this:  “ if output can be increased then food prices will moderate”.

How do we increase output enough to moderate food prices AND to feed an additional 2 billion people?  It’s not an impossible task:  according to the FAO’s Kostas Stamoulis, producing enough food to feed the world in the next four decades should be easier than in the previous four.” [5]  But it means changing the way food is produced, stored, processed, distributed and accessed – all in a world constrained by Earth’s lands, oceans, and atmosphere.  But producing enough food in the world so that everyone can potentially be fed is not the same thing as ensuring food security for all.[ii]

In the past, if more food was needed farmers just cleared more land, or they went fishing. Yet over the past 5 decades, while grain production has more than doubled, the amount of land devoted to arable agriculture globally has increased by only about 9%[6].  In recent decades, agricultural land that was formerly productive has been lost to urbanization and other human uses, as well as to desertification, salinization, soil erosion, and other consequences of unsustainable land management.  Further losses, which may be exacerbated by climate change, are likely.  Some new land could be brought into cultivation, but the competition for land from other human activities makes this an increasingly unlikely and costly solution, particularly if protecting biodiversity and the public goods provided by natural ecosystems (for example, carbon storage in rainforest) are given higher priority.  Recent policy decisions to produce first-generation biofuels on good quality agricultural land have added to the competitive pressures[7].

So we’re going to have to produce more food on the same amount of land  – probably less.   And fishing doesn’t seem to be an answer:  Virtually all capture fisheries are fully exploited, and most are overexploited.

Recent studies suggest that the world will need 70 to 100% more food by 2050 [8].  How to achieve that is hotly debated between those who support conventional agriculture (more and better technology) and those who think organic agriculture is a better way to deal with the long term problems created by this food crisis.  You can’t argue the point without knowing a bit about the Green Revolution, since conventional agriculture looks to that model to support its argument.  And that’s next week’s blog.

[3] “Feeding the World”, The Economist

[4] Brown, Lester, “Why world food prices may keep climbing”, Guardian Environment Network,

[5] “Feeding the World”, Ibid.

[6] J. Pretty, Agricultural Sustainability: Concepts, principles and evidence.  Philos. Trans. R. Soc. London Ser. B Biol Sci 363, 447 (2008).

[7] J. Fargione, J Hill, D. Tilman, S. Polasky, P. Hawthorne, Land Clearing and the biofuel carbon debt, Science, 319, 1235 2008).

[i] The government at the time was not a democracy, and the rulers had little interest in listening to the poor, even in the midst of famine.  Dr. Sen believes that shortfalls in food supplies will not cause famine in a democracy because vote-seeking politicians will undertake relief efforts.  So the famine was a combination of a myriad of factors:  wages, distribution, even democracy.

[ii] For more on this topic, see “The Future of Food and Farming: Challenges and Choices for Global Sustainability”, The Government Office for Science (GO-Science), London